
Tensorized Projection for High-Dimensional Binary Embedding

Weixiang Hong, Jingjing Meng, Junsong Yuan
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore
{wxhong,jingjing.meng,JSYUAN}@ntu.edu.sg

Abstract

Embedding high-dimensional visual features (d-dimensional)
to binary codes (b-dimensional) has shown advantages in var-
ious vision tasks such as object recognition and image re-
trieval. Meanwhile, recent works have demonstrated that to
fully utilize the representation power of high-dimensional
features, it is critical to encode them into long binary codes
rather than short ones, i.e., b ∼ O(d) (Sánchez and Perronnin
2011). However, generating long binary codes involves large
projection matrix and high-dimensional matrix-vector mul-
tiplication, thus is memory and computationally intensive.
To tackle these problems, we propose Tensorized Projection
(TP) to decompose the projection matrix using Tensor-Train
(TT) format, which is a chain-like representation that allows
to operate tensor in an efficient manner. As a result, TP can
drastically reduce the computational complexity and mem-
ory cost. Moreover, by using the TT-format, TP can regulate
the projection matrix against the risk of over-fitting, conse-
quently, lead to better performance than using either dense
projection matrix (like ITQ (Gong and Lazebnik 2011)) or
sparse projection matrix (Xia et al. 2015). Experimental com-
parisons with state-of-the-art methods over various visual
tasks demonstrate both the efficiency and performance ad-
vantages of our proposed TP, especially when generating high
dimensional binary codes, e.g., when b ≥ d.

1. Introduction

Nearest neighbor (NN) search is a fundamental research
topic in artificial intelligence (Shakhnarovich, Darrell, and
Indyk 2006). The straightforward solution, linear scan, is
memory intensive and computationally expensive in large-
scale high-dimensional cases; hence approximate nearest
neighbor (ANN) search is usually favored in practice.

Binary embedding (Gong and Lazebnik 2011; Yu et al.
2014; Wang et al. 2016), which aims at encoding high-
dimensional feature vectors to compact binary codes, has
recently arisen as an effective and efficient way for ANN
search. By encoding high-dimensional features into binary
codes, one can perform rapid ANN search because (1) op-
erations with binary vectors (such as computing Hamming
distance) are very fast thanks to hardware support, and (2)
the entire dataset can fit in (fast) memory rather than slow
memory or disk.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Representation learning using deep neural networks
(DNN) (Krizhevsky, Sutskever, and Hinton 2012; He et al.
2016) has shown that DNN features are useful for various vi-
sion tasks such as object classification and image retrieval.
Unlike traditional hand-crafted features like SIFT (Lowe
2004) and GIST (Oliva and Torralba 2001), these DNN fea-
tures are usually of thousands of dimensions or even more.
Meanwhile, although compact binary codes are preferred to
save the storage, recent works have demonstrated that the
long codes can bring superior performance to compact ones,
especially when the feature vectors are of thousands of di-
mensions (Gong et al. 2013; Sánchez and Perronnin 2011;
Xia et al. 2015; Yu et al. 2014). For example, the long binary
codes of 4096 dimensions can achieve the mAP of 82% on
DNN-4096 dataset (Xia et al. 2015), while the mAP of 256-
dimensional binary codes is only 51%.

However, the large projection matrix for generating long
binary codes can cause two challenges: (1) the high com-
putational cost of high-dimensional matrix-vector multipli-
cations, and (2) the risk of over-fitting. For the first chal-
lenge, it has been noticed that for high-dimensional in-
put feature vector of dimensionality d, the length b of bi-
nary codes required to achieve reasonable accuracy is usu-
ally O(d) (Sánchez and Perronnin 2011; Gong et al. 2013;
Yu et al. 2014). When d is large and b ∼ O(d), the projection
matrix R ∈ R

b×d could involve millions or even billions of
parameters. Such a high cost is not favorable when we en-
code a big dataset of visual features, or when the computa-
tional resource is a concern, e.g., on a mobile platform. For
the second challenge, there have been efforts to address it
by regulating the projection matrix and reducing the number
of free parameters. Interestingly, such regularizations may
also bring fast matrix-vector multiplication and improve the
computational efficiency.

Representative works for high-dimensional binary em-
bedding include Bilinear Projection(BP) (Gong et al. 2013),
Sparse Projection(SP) (Xia et al. 2015), Circulant Binary
Embedding(CBE) (Yu et al. 2014), Fast Orthogonal Projec-
tion (KBE) (Zhang et al. 2015) and Fried Binary Embed-
ding (FBE) (Hong, Yuan, and Das Bhattacharjee 2017), etc.
Unfortunately, these existing methods either achieve high
accuracy but still suffer from the O(d2) complexity like SP,
or are promising in efficiency but at the cost of accuracy
such as KBE, CBE and FBE. In detail, CBE and FBE cannot

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

69



directly learn arbitrary shapes of projection matrix, several
tricks such as zero padding, stacking and bits dropping are
exploited by CBE and FBE to learn projection matrix of gen-
eral shapes. These tricks introduce inconsistency between
training and testing phases, thus, could lead to undesirable
accuracy loss. Moreover, BP is not applicable to generating
binary codes that are longer than the original feature vector.

To generate long binary codes efficiently while preserv-
ing accuracy, we propose a novel approach, Tensorized Pro-
jection (TP). The idea is to decompose the projection ma-
trix using the Tensor-Train (TT) decomposition (Oseledets
2011), which is a chain-like format that enables efficient
operation with tensors. The decomposition into TT-format
can facilitate fast matrix-vector multiplications. Moreover,
the ultimate projection matrix would have restricted free-
dom due to the inherent structure in TT-format. For in-
stance, when encoding a 4096-dimensional feature vector
into 4096-bit binary codes, our TP has only 1252 tunable
parameters, which are only 0.1% of SP (Xia et al. 2015) and
0.01% of ITQ (dense matrix) (Gong and Lazebnik 2011).
Restricted freedom is naturally against overfitting, and could
lead to good generalization performance as shown in our
experiments. Another side benefit of TP is that TT-format
can be efficiently stored. As a result, the memory cost is
also reduced. Extensive experiments show that our approach
not only achieves competitive performance in compact-bit
case but also outperforms state-of-the-art methods in long-
bit scenario.

2. Related Work
A good review of binary embedding can be found in (Wang
et al. 2017). Here we focus on several closely related works,
including Iterative Quantization (ITQ) and its five variants.
The Iterative Quantization is essential to the understand-
ing of our work. Its five variants include Bilinear Projec-
tion (BP) (Gong et al. 2013), Circulant Binary Embedding
(CBE) (Yu et al. 2014), Sparse Projection (SP) (Xia et
al. 2015), Fast Orthogonal Projection (KBE) (Zhang et al.
2015) and Fried Binary Embedding (FBE) (Hong, Yuan, and
Das Bhattacharjee 2017), which are state-of-the-art works
for high-dimensional binary embedding.

Iterative Quantization (ITQ) aims to find the hash codes
such that the difference between the data and hash codes
is minimized by viewing each bit as the quantization value
along the corresponding dimension. It consists of two steps:
(1) dimension reduction via PCA; (2) find the hash codes as
well as an optimal rotation.

Bilinear Projections (BP) projects a data vector by two
smaller matrices rather than a single large matrix, based on
the assumption that the data vectors are formulated by re-
shaping matrices. This assumption of BP is valid for sev-
eral traditional hand-crafted features like GIST (Oliva and
Torralba 2001) and VLAD (Jegou et al. 2012), but not true
for learned features such as those learned by deep neural
network(DNN) (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016). Also, BP is not applicable to generate bi-
nary codes that are longer than the original feature vector.

Circulant Binary Embedding (CBE) imposes a circu-
lant structure on the projection matrix for efficient matrix-

vector multiplication. In virtue of the fast Fourier transform,
the computational cost of FBE is only O(d log d), much less
than O(d2) of the dense projection method.

Fried Binary Embedding (FBE) decomposes the projec-
tion matrix as a series of structured matrices and Hadamard
matrices, which they referred as adaptive Fastfood Trans-
form (Le, Sarlós, and Smola 2013; Yang et al. 2015). Similar
to CBE, FBE accelerates binary encoding by fast Hadamard
transform with a time complexity of O(d log d). Although
CBE and FBE show promising speedup, the accuracy and
the number of tunable parameter of them are still not sat-
isfactory enough as shown by our experiments. Moreover,
CBE and FBE are not capable to learn arbitrary shapes of
projection matrix directly.

Fast Orthogonal Projection (KBE) decomposes the pro-
jection matrix as a series of smaller orthogonal matrices.
Similar to CBE, there exists a fast algorithm to compute
Kronecker projection with a time complexity of O(d log d),
therefore, KBE has shown great advantages in terms of effi-
ciency, compare with dense projection method (like ITQ).

Sparse Projection (SP) introduces a sparsity regularizer
to achieve efficiency in encoding. They also show that there
exist many redundant parameters in dense projection matrix.
However, their method requires the percentage of non-zero
elements to be around 10% for competitive performance, ac-
cording to Figure 4 in (Xia et al. 2015), which can be still
suffering in case that both d and b are very large.

3. TT-format

3.1. Definition

A t-dimensional tensor R is said to be in Tensor-Train for-
mat (TT-format) (Oseledets 2011), if every entry of it can be
written as the following matrix product:

R(i1, i2, . . . , it) = G1[i1]G2[i2] . . .Gt[it] (1)

where Gk[ik] ∈ R
rk−1×rk is a matrix sliced from a 3-

dimensional tensor Gk ∈ R
rk−1×nk×rk , nk is the length of

the k-th dimension of tensor R. We refer such 3-dimensional
tensors Gk as the cores. To ensure that the matrix prod-
uct in Equation 1 is a scalar, r0 = rt = 1 has to be im-
posed. The sequence {rk}tk=0 is called the TT-ranks, and
its maximum is considered as the TT-rank of tensor R:
r = maxk=0,...,trk. We use rTT (R) to denote the TT-rank
of tensor R.

3.2. TT-representations for vector and matrices

TT-format has demonstrated promising results in several re-
cent machine learning topics (Novikov et al. 2014; 2015;
Stoudenmire and Schwab 2016). In this work, we propose
to integrate it into binary embedding by formulating the pro-
jection matrix as TT-format. However, the direct application
of the TT-decomposition to a matrix (2-dimensional tensor)
coincides with the low-rank matrix factorization and the di-
rect TT-decomposition of a vector is equivalent to explicitly
storing its elements. To work with large vectors and matri-
ces efficiently, the TT-format for them is defined in a special
manner (Dolgov and Savostyanov 2014).

70



Consider a vector x ∈ R
d , where d =

∏t
k=1 dk.

We can establish a bijection μ between the coordinate
l ∈ {1, . . . , d} of x and a t-dimensional vector-index
μ(l) =

(
μ1(l), . . . , μt(l)

)
of the corresponding tensor X ,

where μk(l) ∈ {1, . . . , dk}. The element of tensor X ∈
R

d1×d2×···×dt is then mapped by the corresponding vector
elements: X (μ(l)) = x(l).

Now we introduce the TT-representation of a matrix R ∈
R

b×d , where b =
∏t

k=1 bk and d =
∏t

k=1 dk. Let bijections
ν(s) =

(
ν1(s), . . . , νt(s)

)
and μ(l) =

(
μ1(l), . . . , μt(l)

)
map row and column indices s and l of the matrix R to the
t-dimensional vector-indices whose k-th dimensions are of
the length bk and dk respectively, k = 1, . . . , t. From the
matrix R we can form a t-dimensional tensor R whose k-th
dimension is of the length bkdk and is indexed by the tuple(
νk(s), μk(l)

)
. The tensor R can then be converted into the

TT-format:

R(s, l) = R
((

ν1(s), μ1(l)
)
, . . . ,

(
νt(s), μt(l)

))

= G1[ν1(s), μ1(l)] . . .Gt[νt(s), μt(l)]
(2)

where the tensors Gt
k=1 serve as the cores with tuple(

νk(s), μk(l)
)

being the index. Throughout this paper, we
use R ∼ R to denote such a transformable relationship be-
tween a matrix R and its corresponding tensor R.

3.3. Fast matrix-vector multiplication

Matrix-vector multiplication is the fundamental operation in
linear algebra. Given a matrix R ∈ R

b×d and a vector x ∈
R

d, their multiplication is written as following:

y = Rx (3)

We assume that the matrix R is represented in TT-format as
in Equation 2, with cores as Gt

k=1 and TT-rank as r. Then
Equation 3 can be expressed in the tensor form:

Y(i1, . . . , it) =
∑

j1,...,jd

G1[i1, j1] . . .Gt[it, jt]X (j1, . . . , jt)

(4)
Direct application of the TT-matrix-by-vector multiplica-
tion for Equation 4 yields the computational complexity
O(tr2b̂ max{d, b}), where b̂ = maxkbk (Oseledets 2011).

4. Tensorized Projection

A widely considered objective function for binary embed-
ding involves minimizing the quantization loss between the
data and hash codes, which is adopted in ITQ and its vari-
ants such as BP, FBE etc. Following (Wang et al. 2017;
Xia et al. 2015), we put dimension reduction and optimal
rotation of ITQ into one integrated objective:

min
C,R

‖RX− C‖2F
s.t. RTR = I.

(5)

where X ∈ R
d×n is the dataset, C is a b-by-n matrix con-

taining only 1 and −1. The matrix R ∈ R
b×d serves for both

dimension reduction and rotation. ITQ (Gong and Lazebnik

2011) solves Equation 5 via alternative update. After finding
R, ITQ can produce binary codes using the hash function be-
low:

c = sgn(Rx), (6)
where x ∈ R

d denotes a data vector, and sgn(·) is the sign
function, which outputs 1 for positive numbers and −1 oth-
erwise.

Although ITQ has shown promising results of binary em-
bedding, its computational cost of the matrix-vector multi-
plication in Equation 6 is O(bd), which limits its application
to high-dimensional binary embedding. To reduce the cost
of calculating Rx, we decompose the projection matrix R
using the TT-representation, i.e.,

R ∼ R (7)

By constraining the TT-rank of R to less than or equal to
some desired threshold r0, the number of tunable parameters
can also be largely reduced. For example, for a projection
matrix R ∈ R

4096×4096, its free parameter will be reduced
to 1252 when r0 is 4. In summary, we attain our optimization
objective by putting Equation 5 and 7 together:

min
C,R

‖RX− C‖2F
s.t. RTR = I,

R ∼ R, and rTT (R) ≤ r0.

(8)

5. Optimization

Due to the involvement of TT-format, Equation 8 is a more
challenging problem compared with Equation 5. Updating
any core of R could cause the violation of the orthonor-
mal constraint on R. To find a feasible solution, we adopt
the variable-splitting and penalty techniques in optimization
(Courant 1943; Wang et al. 2008). Specifically, we move
the orthonormal constraint onto an auxiliary variable R̄ and
meanwhile penalize the difference between R̄X and RX. As
a result, we relax the problem in Equation 8 to the following
form:

min
C,R,R̄

‖R̄X− C‖2F + β‖R̄X− RX‖2F
s.t. R̄TR̄ = I,

R ∼ R, and rTT (R) ≤ r0.

(9)

where β is a penalty weight. Such a relaxation is similar to
Half-Quadratic Splitting (Wang et al. 2008). By introducing
an auxiliary variable, the original problem can be separated
into feasible sub-problems, and the solution to Equation 9
will converge to that of Equation 8 when β → ∞ (Wang
et al. 2008). We solve Equation 9 in an alternating manner:
update one variable with others fixed.

5.1. Update C

This sub-problem is equivalent to minC‖R̄X− C‖2F =
maxC

∑
i,j(R̄X)ijCij , where i, j are the indexes of matrix

elements. Because Cij ∈ {−1, 1}, this problem can be eas-
ily solved by Cij = sgn((R̄X)ij), or simply

C = sgn(R̄X). (10)

71



5.2. Update R̄

With R fixed, the two terms in Equation 9 are both quadratic
on R̄. By some derivations, the problem Equation 9 be-
comes:

min
R̄

‖R̄X−Y‖2F
s.t. R̄TR̄ = I,

(11)

where Y = (C+ βRX)/(1 + β). This problem is known as
the orthogonal procrustes problem (Gower and Dijksterhuis
2004) and is widely studied in binary embedding (Gong and
Lazebnik 2011; Gong et al. 2013; Xia et al. 2015). Equa-
tion 11 is minimized as following: first find the SVD of the
matrix YXT as YXT = UΣVT, then let

R̄ = UVT. (12)

According to (Gower and Dijksterhuis 2004), the pro-
crustes problem is solvable only if b ≥ d. In case that
b < d, R̄TR̄ = I is no longer a valid constraint because
rank(R̄TR̄) ≤ min(b, d) while rank(I) is d. To handle the
case of b < d, we reduce X to b dimensions by X′ = PX,
where P is the b-by-d PCA projection matrix correspond-
ing to the largest eigenvalues. Then we replace X with X′ in
the Equation 11 for solving a b-by-b matrix R̄′. Finally, R̄ is
given by R̄′P. We do not pre-project the data X by PCA in
the main problem Equation 11, because the PCA projection
matrix P is a dense matrix, using P as pre-processing will
ruin all the merits introduced by TT-format.

5.3. Update R

Let Z = R̄X, the subproblem related to R is:

min
R

||RX− Z||2F
s.t. R ∼ R, and rTT (R) ≤ r0.

(13)

Minimization of 2-norm is known as least square regres-
sion, whose solution is simply given by solving the corre-
sponding linear system, thus, solving Equation 13 is equiv-
alent to solve the following constrained linear system

RX = Z

s.t. R ∼ R, and rTT (R) ≤ r0.
(14)

Let ⊗ denote Kronecker product, vec(X) denote the vec-
torization of the matrix X formed by stacking the columns
of X into a single column vector. For any matrices A,X,B
and C, we have

(BT ⊗A)vec(X) = vec(AXB) = vec(C)

(A⊗ B)T = AT ⊗ BT.
(15)

Moreover, if one can form the matrix products AB and XC,
we can also perform

(A⊗X)(B⊗ C) = AB⊗XC. (16)

By applying these properties, Equation 14 can be trans-
formed as a constrained least square problem

(XXT ⊗ Ib)vec(R) = (X⊗ Ib)vec(Z)

s.t. R ∼ R, and rTT (R) ≤ r0.
(17)

Although the left-hand side matrix (XXT ⊗ Ib) ∈ R
bd×bd

is huge, it is a block-diagonal matrix, with all its blocks be-
ing the same. Thus we only need to store XXT ∈ R

d×d, in-
stead of explicitly storing (XXT ⊗ Ib); Similarly, the right-
hand vector (X⊗ Ib)vec(Z) ∈ R

bd can be found out with-
out explicitly computing (X⊗ Ib). Next, we adopt Alternat-
ing Least Square(ALS) methods (Dolgov and Savostyanov
2014) to find a locally optimal solution to Equation 17 by
iteratively updating the cores G of the tensor R.

Alternating Least Square (ALS) methods To sim-
plify the presentation of ALS methods, we denote
Q = (XXT ⊗ Id), r = vec(R) and p = (X⊗ Id)vec(Z).
Thus Equation 17 can be rewritten as:

Qr = p

s.t. r ∼ R, and rTT (R) ≤ r0.
(18)

Despite appearing as a constrained linear system, solving the
cores G of the tensor R in Equation 18 is unfortunately a
nonlinear optimization problem which can hardly be tack-
led unless an accurate initial guess is available (Rohwedder
and Uschmajew 2013), even if we have known the shape
[n1, n2, . . . , nt] and TT-rank r0 of R. To make it tractable,
we update the cores G one by one to attain an approximate
solution.

We use index grouping to reshape tensors into matrices
and vectors, i.e., combine two or more indices i1, . . . , ik
into a single multi-index i1 . . . ik. Following (Rohwedder
and Uschmajew 2013), we define interface matrices G≤k ∈
R

n1n2...nk×r0 and G<k ∈ R
r0×nk+1...nt as:

G≤k(i1 . . . ik, r0) = G1(i1) . . .Gk(ik)

G>k(r0, ik+1 . . . id) = Gk+1(ik+1) . . .Gt(it)
(19)

where ik ∈ {1, . . . , nk}. We further define a matrix G �=k ∈
R

n1n2...nt×r0nkr0 as:

G �=k = G<k ⊗ Ink
⊗ (G>k)T (20)

where Ink
is the nk-dimensional identity matrix.

To update the k-th core Gk with others fixed, we stretch all
its entries into a vector gk ∈ R

r0nkr0 . According to (Dolgov
and Savostyanov 2014), we have

r = G �=kgk (21)

By substituting Equation 21 back to Equation 18, the update
rule for the k-th core Gk can be easily found as:

gk =
(
(QG �=k)

T(QG �=k)
)−1(

QG �=k

)T
p (22)

As shown in Figure 5.3 in (Kressner and Tobler 2011),
the convergence of ALS algorithm is almost independent of
the order of updating cores, and sequential update of cores
can facilitate computational efficiency (Holtz, Rohwedder,
and Schneider 2012), therefore, we sequentially update the
cores from G1 to Gk in our implementation.

5.4. Implementations

To optimize our objective function in Equation 9, we iter-
atively update the three variable C, R̄ and R. We initialize

72



0 5 10 15
1.5

2

2.5

3

3.5

4

4.5
x 10

8

# Iteration

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

Figure 1: Convergence of our algorithm. The vertical axis
represents the objective function value of Equation 9 and the
horizontal axis corresponds to the number of iterations. The
optimization of R is obtained on the training set of DNN-
4096 with the number of cores as 6 and the TT-rank as 4.

R̄ as a random orthogonal matrix to satisfy the orthogo-
nal constraint, consequently, R is initialized by rounding R̄
into TT-format with desired TT-rank r0 using TT-SVD algo-
rithm (Oseledets 2011). The training data is subtracted with
its mean prior to learning. For the hyperparameter β in Equa-
tion 9, we experimentally find that a fixed β = 1 leads to
competitive accuracy, and the accuracy is insensitive to the
choice of β (we tried from 0.1 to 100). So we simply fix
β = 1 for all experiments in this work.

Since our solution to each sub-problem can always reduce
the objective function value in Equation 9, and the objective
function value is lower-bounded (not smaller than 0), our al-
gorithm is guaranteed to reach a convergence. In practice, it
takes around 10 iterations to converge as shown in Figure 1.

6. Experiments

To evaluate Tensorized Projection (TP), we conduct experi-
ments on three tasks: approximate nearest neighbor (ANN)
search, image retrieval, and image classification. For each
task, we compare TP with several state-of-the-art methods
for high-dimensional visual feature embedding. The com-
pared methods are ITQ, BP, CBE, SP, KBE and FBE. All
experiments are conducted using Matlab, while the evalua-
tion of encoding time is implemented in C++ using a sin-
gle thread. The machine we use is equipped with Intel Xeon
CPUs E5-2630 (2.30GHz) and 96 GB memory.

6.1. Approximate Nearest Neighbor Search

6.1.1. Experiments on DNN features Recent research ad-
vances have demonstrated the advantage of deep learning
features as image representations (Krizhevsky, Sutskever,
and Hinton 2012; He et al. 2016). We first conduct exper-
iments on such features. We use the pre-trained AlexNet
(Krizhevsky, Sutskever, and Hinton 2012) provided by
Caffe (Jia et al. 2014) to extract DNN features for one mil-
lion images in MIRFLICKR-1M dataset (Huiskes and Lew
2008). We extract 4096-dimensional outputs of the second
fc layer as image features. We refer to this dataset as DNN-
4096. We randomly pick 1,000 samples as queries. Note that
each 4096-dimensional raw feature (real number) requires a
storage of 16,384 bytes (131,072 bits).

Following the protocol in (Xia et al. 2015), we measure
the search quality using mean Average Precision (mAP),

1 2 4 8 16

TT-rank

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
A

P

8 cores

6 cores

4 cores

2 cores

(a) mAP vs. TT-rank

1 2 4 8 16

TT-rank

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
A

P

4×4×4×4×4×4

2×16 ×2×2×16 ×2

16 ×2×2×2×16 ×2

128 ×2×2×2×2×2

(b) mAP vs. TT-rank

1 2 4 8 16

TT-rank

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
A

P

2×4×4×4×4×2

2×2×8×8×2×2

2×2×32 ×2×2×2

32 ×2×2×2×2×2

(c) mAP vs. TT-rank

1 2 4 8 16

TT-rank

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e
n

c
o

d
in

g
 t

im
e

 /
 m

s

8 cores

6 cores

4 cores

2 cores

(d) encoding time vs. TT-rank

Figure 2: Comparison results on DNN-4096 dataset for the
task of encoding 4096-dimensional feature to 1024-bit bi-
nary codes. (a) The change of mAP for different number of
cores. (b) The change of mAP for different shapes of TP in-
put tensor. (c) The change of mAP for different shapes of TP
output tensor. (d) The change of encoding time for different
number of cores, the detailed shapes of input/output tensor
are shown in Table 1 below.

Cores Input/Output Shape TT-1 TT-2 TT-4 TT-8 TT-16

2
64 × 64

4096 8192 16384 32768 65536
32 × 32

4
8 × 8 × 8 × 8

192 640 2304 8704 33792
4 × 8 × 8 × 4

6
4 × 4 × 4 × 4 × 4 × 4

80 288 1088 4224 16640
2 × 4 × 4 × 4 × 4 × 2

8
2 × 2 × 4 × 4 × 4 × 4 × 2 × 2

64 240 928 3072 12288
2 × 2 × 2 × 4 × 4 × 2 × 2 × 2

Table 1: The number of tunable parameters when encoding
4096-dimensional feature to 1024-bit binary codes using dif-
ferent cores and TT-rank. As comparison, the uncompressed
projection matrix contains 4, 194, 304 elements.

i.e., the mean area under the precision-recall curve. Given
a query, we perform Hamming ranking, i.e., samples in the
dataset are ranked according to their Hamming distances to
the query, based on their binary codes. The average distance
to the 50th nearest neighbors of images in the dataset is used
to define the true positive samples of a query.

Self-comparisons We first conduct ablation studies to in-
vestigate the effectiveness of various number of cores, in-
put/output tensor shapes and TT-ranks. Consider the task of
projecting 4096-dim feature to 1024-bit binary codes, Fig-
ure 2(a) shows the mAP of different number of cores, in-
cluding 2, 4, 6, 8 cores. The corresponding shapes of input
and output tensor are listed in Table 1; For the case of 6 cores
with the fixed shape of output tensor, Figure 2(b) shows the
results for various shapes of input tensor; For the case of 6
cores with the fixed shape of input tensor, Figure 2(c) shows
the results for various shapes of output tensor; Figure 2(d)

73



128  256  512  1024 2048 4096 8192 16384 32768

bits

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
A

P TP

SP

BP

CBE

ITQ

FBE

KBE

(a) mAP vs. bits

1024 2048 4096 8192 16384

bits

0

1

2

3

4

5

6

7

E
n

c
o

d
in

g
 T

im
e
 /
 m

s

TP

SP

BP

CBE

ITQ

FBE

KBE

(b) encoding time vs. bits

Figure 3: Comparison results on DNN-4096 dataset. (a) The
change of mAP w.r.t bits. (b) The change of encoding time
w.r.t bits. For clarify, we only show the encoding time below
7ms. BP is unavailable for the longer codes (b > d).

bits 2048 4096 8192 16384 32768

BP 6144 8192 − − −
CBE 8192 8192 16384 32768 65536

ITQ 8.3 × 106 1.6 × 107 3.2 × 107 6.4 × 107 1.2 × 108

SP 8.3 × 105 1.6 × 106 3.2 × 106 6.4 × 106 1.2 × 107

FBE 12288 12288 24576 49152 98304

KBE 88 96 104 112 120

TP (ours) 1120 1152 1216 1472 1728

Shape of TP Output 2×4×4×4×4×4 4×4×4×4×4×4 8×4×4×4×4×4 8×8×4×4×4×4 8×8×8×4×4×4

Table 2: The number of tunable parameters when encoding
4096-dimensional feature to binary codes. The last row con-
tains the shapes of output tensor for various bits.

shows the encoding time for different number of cores, the
detailed shapes of input/output tensor are shown in Table 1.

We have the following observations: (1) Figure 2(a) shows
that more cores lead to larger model capability and higher
accuracy, but the gains are diminishing; (2) Figure 2(b) and
2(c) illustrate that well-proportioned shapes of input/output
tensor perform better than ill-proportioned ones; (3) Fig-
ure 2(d) suggests that more cores result in worse encod-
ing efficiency, and the encoding time appears to increase
quadratically with respect to TT-rank, which agrees with the
symbolic computational complexity in Section 3.3.

Besides, we notice that TT-1 with 2 cores and TT-8 with
6 cores in Table 1 have similar numbers of tunable parame-
ters 4096 and 4224, while the mAP of TT-1 is almost 50%
lower than that of TT-8. This phenomenon suggests that,
with the same budget for tunable parameters, one should
seek for more cores and higher rank to increase the model
capacity, while the input/output shapes can be small. Based
on these observations, we fix the TT-rank to 4 to balance the
accuracy and efficiency in all following experiments. Since
8 cores does not perform much better then 6 cores, we re-
shape a 4096-dimensional input vector to the 6-dimensional
tensor of the size 4× 4× 4× 4× 4× 4.

Comparison with State-of-the-art In Figure 3(a), we
show how mAP changes w.r.t code length b. The proposed
TP achieves competitive mAP on the short codes, and out-
performs other state-of-the-art methods on long codes, i.e.,
bit lengths comparable to or longer than feature dimension.

As shown in Figure 3(b), the encoding time for computing
binary codes does not increase linearly to b. The proposed
TP takes the least encoding time among all state-of-the-art
methods. The results also validate that longer codes in gen-
eral achieve better performance than shorter ones (Sánchez

32  64  128 256 512 1024 2048 4096 8192

bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
A

P TP

SP

BP

CBE

ITQ

FBE

KBE

(a) mAP vs. bits

512 1024 2048 4096 8192

bits

0

0.5

1

1.5

2

2.5

3

3.5

4

E
n

c
o

d
in

g
 T

im
e
 /
 m

s

TP

SP

BP

CBE

ITQ

FBE

KBE

(b) encoding time vs. bits

Figure 4: Comparison results on GIST-960 dataset. (a) The
change of mAP w.r.t bits. (b) The change of encoding time
w.r.t bits. For clarify, we only show the encoding time below
4ms.

bits 32 128 512 2048 8192

Shape of TP Output 2×2×2×2×2 2×2×4×4×2 4×4×4×4×2 4×4×8×4×4 4×8×8×8×4

Table 3: The shapes of output tensor for GIST feature.

mAP Storage
(relative)

Encoding time
(ms)

raw deep feature (4096-d) 49.5% 1 -

1024 bits

BP 44.5% 1/128 0.41
CBE 44.3% 1/128 1.52
SP 44.9% 1/128 0.47

FBE 45.6% 1/128 1.88
KBE 45.0% 1/128 0.92

TP (Ours) 45.9% 1/128 0.45

4096 bits

BP 46.4% 1/32 1.64
CBE 46.6% 1/32 1.52
SP 47.1% 1/32 3.12

FBE 47.2% 1/32 1.88
KBE 47.2% 1/32 2.18

TP (Ours) 47.6% 1/32 1.17

8192 bits

CBE 47.8% 1/16 2.63
SP 48.5% 1/16 6.68

FBE 49.3% 1/16 3.19
KBE 48.8% 1/16 3.55

TP (Ours) 49.3% 1/16 1.73

Table 4: Image retrieval performance on Holidays+1M.

and Perronnin 2011). We also compare the number of pa-
rameters of our proposed algorithm and those of the base-
lines in Table 2. Although KBE requires even fewer param-
eters than ours when producing binary codes of the same
length, its mAP and encoding time are inferior to the pro-
posed TP, as shown in Figure 3 and 4. The last row in Table 2
elaborates the shapes of output tensor for various bits.

6.1.2. Experiments on traditional features To validate
the effectiveness of TP, besides deep features, we also eval-
uate our method on a dataset of tranditional features, i.e.,
GIST-960 (Jegou, Douze, and Schmid 2008) dataset, which
contains one million 960-dimensional GIST features (Oliva
and Torralba 2001) and 10, 000 queries. We reshape a 960-
dimensional GIST feature to 3 × 4 × 4 × 4 × 5, the shapes
of output tensor for GIST feature are listed in Table 3.

As shown in Figure 4, the proposed TP still outperforms
state-of-the-art methods on long codes in terms of both accu-
racy and encoding time. The experimental results on GIST
features demonstrate again the potential of the TT-format to
high-dimensional visual features.

74



6.2. Image Retrieval

We evaluate the performance of binary embedding for
the image retrieval task on the Holidays + MIRFlickr-1M
dataset (Jegou, Douze, and Schmid 2008). This dataset con-
tains 1,419 images in 500 different scenes, with extra one
million MIRFlickr-1M images as distracters. Another 500
query images are provided along with their ground truth
neighbors under the same scene category. In light of the
good performances with DNN features as image descriptors
(Bhattacharjee et al. 2016; Meng et al. 2016; Tu et al. 2016;
Yu, Meng, and Yuan 2017; Yu, Wang, and Yuan 2017), we
represent each image by the 4096-dimensional response of
the second fc layer of AlexNet. In this experiment, we use
the same input/output shapes as elaborated in Section 6.1.

Following previous practices (Jegou et al. 2012), we treat
image retrieval as an ANN search problem of the encoded
features, while the ground truth neighbors are defined by
scene labels. Given a query image, we perform Hamming
ranking and evaluate mAP using the semantic ground truth.

Table 4 shows the results on the Holidays+1M dataset.
As a baseline of using the raw features, the mAP of 4096-
dim deep features is 49.5%. Our method can lead to the best
mAP among all compared methods. In case of 8192 bits, our
method has almost no degradation (49.4% mAP) compared
with the use of the raw deep learning features. However, we
do not observe better performance when using 16384 bits.

Table 4 also lists the storage required for the database.
Without encoding, each 4096-dim raw feature requires
16384 bytes (131,072 bits), so the database of raw features
requires around 16 GB memory. The binary encoding meth-
ods can significantly reduce this cost.

6.3. Image Classification

We further evaluate the binary codes as compact features
for image classification on CIFAR-10 dataset (Krizhevsky
2009). We extract the 4096-dimensional responses of second
fc layer in AlexNet as image features. We first fine-tune the
pre-trained model provided by Caffe (Jia et al. 2014) on the
training set of CIFAR-10, then we use the fine-tuned model
to generate features for both training images and testing im-
ages. We then learn the hashing parameters on the features of
CIFAR-10 training set. In this experiment, we use the same
input/output shapes as elaborated in Section 6.1.

We use one-vs-rest linear SVM as classifier as we ob-
serve that one-vs-rest linear SVM achieves 82.6% classifi-
cation accuracy on the raw feature, which is higher than that
from the softmax layer (78.9%). We perform the compar-
isons with 1024 ∼ 16384 bits. We do not see significant
performance gains when further increasing the bit length.

Table 5 shows the comparison result. With 4096 bits or
more, the proposed TP performs better than other state-of-
the-art methods with the same number of bits. Note that even
when the number of bits is more than the input dimension
4096, these representations are still more compact than the
original features, e.g., 16,384 bits require only 1/8 storage
cost of a raw 4096-dimensional feature of real numbers.

Classification
accuracy

Storage
(relative)

Encoding time
(ms)

raw deep feature (4096-d) 82.6% 1 -

1024 bits

BP 76.6% 1/128 0.41
CBE 76.3% 1/128 0.85
SP 77.8% 1/128 0.47

FBE 79.7% 1/128 1.88
KBE 78.3% 1/128 0.92

TP(Ours) 79.3% 1/128 0.45

4096 bits

BP 77.5% 1/32 1.64
CBE 77.4% 1/32 1.52
SP 78.6% 1/32 3.12

FBE 80.7% 1/32 1.88
KBE 79.3% 1/32 2.18

TP(Ours) 81.2% 1/32 1.17

8192 bits

CBE 78.1% 1/16 2.63
SP 79.5% 1/16 6.68

FBE 81.6% 1/16 3.19
KBE 80.5% 1/16 3.55

TP(Ours) 82.0% 1/16 1.73

16384 bits

CBE 78.6% 1/8 4.66
SP 80.2% 1/8 13.4

FBE 82.4% 1/8 5.54
KBE 81.0% 1/8 5.96

TP(Ours) 82.6% 1/8 3.11

Table 5: Classification accuracy on CIFAR-10 dataset.

6.4. Discussion

In the above experiments, we observe that the binary code
length b required to achieve graceful degradation (compared
with no encoding) is usually around b ∼ O(d) for high-
dimensional features, which justifies the rationale of using
long binary codes for high-dimensional data. Short binary
codes have considerable degradation in accuracy, thus in
practice, it is desirable to have a feasible and accurate so-
lution to high-dimensional binary embedding.

7. Conclusion

To compress high-dimensional visual features, we have pro-
posed a novel binary embedding approach Tensorized Pro-
jection (TP). Compared with state-of-the-art methods, our
proposed TP uses the fewest parameters of the projec-
tion matrix to achieve the fastest binary encoding of high-
dimensional features. Moreover, due to the decrease of tun-
able parameters, the ultimate projection matrix would have
restricted freedom, which could lead to good generalization
performance. We evaluate our TP on three tasks, including
approximate nearest neighbor search, image retrieval, and
image classification. Experimental results validate the effi-
ciency and accuracy of TP.

Acknowledgements

This work is supported in part by Singapore Ministry of Edu-
cation Academic Research Fund Tier 2 MOE2015-T2-2-114
and was carried out at the Rapid-Rich Object Search (ROSE)
Lab in the Nanyang Technological University, Singapore.
The ROSE Lab is supported by the National Research Foun-
dation, Singapore, under its Interactive Digital Media (IDM)
Strategic Research Programme. We gratefully acknowledge
the support of NVAITC (NVIDIA AI Technology Centre)
for their donation of a Tesla K80 and M60 GPU used for our
research at the ROSE Lab.

The authors appreciate Sergey Dolgov, Dmitry
Savostyanov and Ivan Oseledets for valuable discussions!

75



References

Bhattacharjee, S. D.; Yuan, J.; Hong, W.; and Ruan, X. 2016.
Query adaptive instance search using object sketches. In
Proceedings of the 2016 ACM on Multimedia Conference,
1306–1315. ACM.
Courant, R. 1943. Variational methods for the solution
of problems of equilibrium and vibrations. Bulletin of the
American Mathematical Society 49(1):1–23.
Dolgov, S. V., and Savostyanov, D. V. 2014. Alternating
minimal energy methods for linear systems in higher dimen-
sions. SIAM Journal on Scientific Computing 36(5).
Gong, Y., and Lazebnik, S. 2011. Iterative quantization: A
procrustean approach to learning binary codes. In CVPR,
817–824. IEEE.
Gong, Y.; Kumar, S.; Rowley, H. A.; and Lazebnik, S. 2013.
Learning binary codes for high-dimensional data using bi-
linear projections. In CVPR, 484–491.
Gower, J. C., and Dijksterhuis, G. B. 2004. Procrustes prob-
lems. Number 30. Oxford University Press.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Holtz, S.; Rohwedder, T.; and Schneider, R. 2012. The al-
ternating linear scheme for tensor optimization in the ten-
sor train format. SIAM Journal on Scientific Computing
34(2):A683–A713.
Hong, W.; Yuan, J.; and Das Bhattacharjee, S. 2017. Fried
binary embedding for high-dimensional visual features. In
CVPR.
Huiskes, M. J., and Lew, M. S. 2008. The mir flickr re-
trieval evaluation. In Proceedings of the 1st ACM interna-
tional conference on Multimedia information retrieval.
Jegou, H.; Perronnin, F.; Douze, M.; Sánchez, J.; Perez, P.;
and Schmid, C. 2012. Aggregating local image descriptors
into compact codes. TPAMI.
Jegou, H.; Douze, M.; and Schmid, C. 2008. Hamming
embedding and weak geometric consistency for large scale
image search. In ECCV, 304–317. Springer.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the 22nd ACM international conference on
Multimedia, 675–678. ACM.
Kressner, D., and Tobler, C. 2011. Preconditioned low-
rank methods for high-dimensional elliptic pde eigenvalue
problems. Computational Methods in Applied Mathematics
Comput. Methods Appl. Math.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 1097–1105.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images.
Le, Q.; Sarlós, T.; and Smola, A. 2013. Fastfood: approxi-
mating kernel expansions in loglinear time. In ICML.
Lowe, D. G. 2004. Distinctive image features from scale-
invariant keypoints. IJCV.

Meng, J.; Wang, H.; Yuan, J.; and Tan, Y.-P. 2016. From
keyframes to key objects: Video summarization by repre-
sentative object proposal selection. In CVPR, 1039–1048.
Novikov, A.; Rodomanov, A.; Osokin, A.; and Vetrov, D.
2014. Putting mrfs on a tensor train. In ICML, 811–819.
Novikov, A.; Podoprikhin, D.; Osokin, A.; and Vetrov, D. P.
2015. Tensorizing neural networks. In NIPS, 442–450.
Oliva, A., and Torralba, A. 2001. Modeling the shape of
the scene: A holistic representation of the spatial envelope.
IJCV.
Oseledets, I. V. 2011. Tensor-train decomposition. SIAM
Journal on Scientific Computing.
Rohwedder, T., and Uschmajew, A. 2013. On local con-
vergence of alternating schemes for optimization of convex
problems in the tensor train format. SIAM Journal on Nu-
merical Analysis.
Sánchez, J., and Perronnin, F. 2011. High-dimensional sig-
nature compression for large-scale image classification. In
CVPR, 1665–1672. IEEE.
Shakhnarovich, G.; Darrell, T.; and Indyk, P. 2006. Nearest-
neighbor methods in learning and vision: Theory and prac-
tice.
Stoudenmire, E., and Schwab, D. J. 2016. Supervised learn-
ing with tensor networks. In NIPS, 4799–4807.
Tu, Z.; Cao, J.; Li, Y.; and Li, B. 2016. Msr-cnn: applying
motion salient region based descriptors for action recogni-
tion. In ICPR, 3524–3529.
Wang, Y.; Yang, J.; Yin, W.; and Zhang, Y. 2008. A
new alternating minimization algorithm for total variation
image reconstruction. SIAM Journal on Imaging Sciences
1(3):248–272.
Wang, Z.; Duan, L.-Y.; Yuan, J.; Huang, T.; and Gao, W.
2016. To project more or to quantize more: minimizing re-
construction bias for learning compact binary codes. In IJ-
CAI, 2181–2188. AAAI Press.
Wang, J.; Zhang, T.; Sebe, N.; Shen, H. T.; et al. 2017. A
survey on learning to hash. PAMI.
Xia, Y.; He, K.; Kohli, P.; and Sun, J. 2015. Sparse projec-
tions for high-dimensional binary codes. In CVPR, 3332–
3339.
Yang, Z.; Moczulski, M.; Denil, M.; de Freitas, N.; Smola,
A.; Song, L.; and Wang, Z. 2015. Deep fried convnets. In
ICCV, 1476–1483.
Yu, F.; Kumar, S.; Gong, Y.; and Chang, S.-F. 2014. Circu-
lant binary embedding. In ICML, 946–954.
Yu, T.; Meng, J.; and Yuan, J. 2017. Is my object in this
video? reconstruction-based object search in videos. In IJ-
CAI.
Yu, T.; Wang, Z.; and Yuan, J. 2017. Compressive quantiza-
tion for fast object instance search in videos. In ICCV.
Zhang, X.; Yu, F. X.; Guo, R.; Kumar, S.; Wang, S.; and
Chang, S.-F. 2015. Fast orthogonal projection based on
kronecker product. In ICCV.

76


