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Abstract

We present a novel method for automated segmentation of
overlapping cytoplasm in cervical smear images based on
contour fragments. We formulate the segmentation problem
as a graphical model, and employ the contour fragments gen-
erated from cytoplasm clump to construct the graph. Com-
pared with traditional methods that are based on pixels, our
contour fragment-based solution can take more geometric in-
formation into account and hence generate more accurate pre-
diction of the overlapping boundaries. We further design a
novel energy function for the graph, and by minimizing the
energy function, fragments that come from the same cyto-
plasm are selected into the same set. To construct the energy
function, our fragments-based data term and pairwise term
are measured from the spatial relation and shape prior, which
offer more geometric information for the occluded boundary
inference. Afterwards, occluded boundaries are inferred us-
ing the minimal path model, in which shape of each individ-
ual cytoplasm is reconstructed on the selected fragments set.
Constructed shape is used as a constraint to locate the search-
ing area, and curvature regulation is enforced to promote the
smoothness of inference result. The inference result, in turn,
is used as the shape prior to construct a high-level shape reg-
ulation energy term of the built graph, and then graph energy
is updated. In other words, fragments selection and occluded
boundary inference are iterative processed; this interaction
makes more potential shape information accessible. Using
two cervical smear datasets, the performance of our method
is extensively evaluated and compared with that of the state-
of-the-art approaches; the results show the superiority of the
proposed method.

Introduction
Cervical cancer has a global health impact second in women
(WHO 2013), and cytology-based screening is the most pop-
ular test in clinical to screen this disease at its early stage
(Davey et al. 2006). But high expertise is required for manu-
ally screening, which is also a labor-intensive task (Kitch-
ener et al. 2011); therefore, population-wide screening is
still inaccessible in most developing countries (Saslow et al.
2012). To the end, automatic screening is highly demanded
in clinical practice.
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Figure 1: (a) Illustrate the strong intensity confusions in the
occluded boundaries. Parts of the boundary of the cytoplasm
indicated by the green circle is heavily occluded by the cy-
toplasm indicated by the red circle. Its ground truth is shown
in the top left corner. (b) Illustrate our motivation of the pro-
posed approach.

Accurate segmentation of cervical cells plays an essen-
tial role for the developing of the automatic screening sys-
tem. Although extensive research has been devoted to this
task (Kitchener et al. 2011; Guan, Zhou, and Liu 2015;
Lu et al. 2017; Zhang et al. 2014; 2017a; Song et al. 2017;
Tareef et al. 2017; Zhang et al. 2016), segmenting overlap-
ping cytoplasm is still an open and challenging problem.
The overlaps decrease intensity contrast or even hide partial
boundaries of cytoplasm, which leads to difficulty of per-
ceiving the whole boundary of each individual cytoplasm
even for experienced histologists (an example is illustrated
in Fig. 1 (a)).

In this paper, we present a novel algorithm for segmenting
overlapping cervical cytoplasm. To better explain our moti-
vation, please consider the image in Fig. 1 (b) where only
parts of boundary information are given. It seems relatively
easy for human to identify the whole object’s boundary even
though certain contour parts of the object are missing (Sid-
diqi, Tresness, and Kimia 1996). And intensity or color in-
formation seems to be not playing a significant role in this
ability (De Winter and Wagemans 2004). Similarly, in our
task, the occluded boundaries of cytoplasm can be regarded
as the missing parts of contours, like those of the person or
horse in the Fig. 1 (b).

To imitate this ability, first, we need to identify contour
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parts of individual object from the image. For example, in
the Fig. 1 (b), there are contour parts of a person and a
horse, but when we attempt to identify the person we just
take the contour parts of the person into consideration while
excluding any part of the horse, and vice versa. The pro-
posed method achieves this through two steps: fragments
generation and fragments selection. Fragments generation
cuts clumps’ boundary into line segments (we refer to as
fragments). This step is to identify the crossing points where
different cytoplasm are meeting. Cutting clump boundary
at these points can help to reduce the ambiguousness when
identifying the contour parts of individual cytoplasm. Since
a fragment with crossing points theoretically can belong to
different cytoplasm, this step ensures each fragment only
coming from one cytoplasm. Fragments selection groups
fragments that come from the same cytoplasm, which is re-
alized using a graph model. After that, we infer the gaps
between two contour parts. The proposed method achieves
this via finding a path connecting two neighboring fragments
on which the designed energy function is minimized. More-
over, human seem to jointly identify contour parts and infer
the gaps (Wagemans et al. 2012). Therefore, we use infer-
ence result as the shape constraint to reconstruct a high-level
energy term into the graph and as the shape prior to update
the graph’s energy. We then select fragments again until the
result of fragments selection is unaltered.

Related Work
Automatic cervical cancer screening has attracted a lot of
computer researchers’ interest and attention, and great ad-
vances have been made (Lu, Carneiro, and Bradley 2015;
Zhang et al. 2016; Guan, Zhou, and Liu 2015; Zhang et al.
2014). This task generally consists of three steps. The first
step is to segment cytoplasm and nuclei regions, assigning
each pixel to background, cytoplasm, or nuclei regions. The
second step is to segment overlapping cytoplasm, which is
the task we address in this paper. The third step is to detect
cancer cells as well as their cancerous stage. With the signif-
icant advance of machine learning techniques, especially the
deep learning model, the first and third steps have obtained
substantial progress (Song et al. 2015; Zhang et al. 2017a;
2017b; Taha, Dias, and Werghi 2017). However, most learn-
ing models cannot be directly applied to overlapping cyto-
plasm segmentation, in which pixels in the overlapping re-
gions have to be given multiple outputs. For the same input
sample, learning methods usually only can predict one reli-
able result.

Therefore, there are mainly two categories of meth-
ods to segment the overlapping cytoplasm. One is marker-
controlled approaches (Sulaiman et al. 2010; Lee and Kim
2016; Plissiti, Vrigkas, and Nikou 2015), including region
growing or watershed. In these methods, nuclei are usu-
ally used as the markers, and then markers are growing un-
til they are meeting. Therefore, this type of methods only
can partition the overlapping regions; that is, they can-
not provide any inference of occluded boundaries. Another
type of approaches is level set-based models (Lu, Carneiro,
and Bradley 2015; Song et al. 2017; Tareef et al. 2017;
Nosrati and Hamarneh 2015; Song et al. 2016). These meth-

ods commonly resort to shape information, and certain infer-
ence of occluded boundaries can be accessible. Nonetheless,
as the strong appearance confusions around the overlapping
region and cytoplasm in the same clump often with different
sizes, this type of methods is sensitive to the initialization. In
addition, there is usually a great number of overlapping cy-
toplasm in a cervical smear image, level set-based methods
thus demand heavy computational resource and time.

Contributions
Compared with most existing methods, the advantages of
the proposed method are summarized below. (1) It directly
works on fragments rather than pixels. Fragments not only
can provide orientation and space relation information of cy-
toplasm, operating them as the basic processing units to rep-
resent cytoplasm outline also reduces the computational cost
by several orders of magnitude. (2) In the inference of oc-
cluded boundaries, apart from appearance information, cur-
vature regulation is also integrated into the new energy func-
tion of the minimal path model, and searching area is as-
sumed around the boundary of its reconstructed shape. As a
result, the negative effect caused by appearance distracters is
largely minimized. (3) We incorporate the inference results
as the shape constraint to correct the error in the fragments
selection caused by the deficient observations of overlapped
objects. With the sufficient interaction, certain potential cues
are exploited, which compensate the deficiency of observa-
tions to some extent. Proposed approach has been tested on
two cervical smear datasets with different staining ways. Its
performance is also compared with several state-of-the-art
methods. The proposed approach outperforms these meth-
ods in terms of both accuracy and computational efficiency.

Methodology
Fig. 2 illustrates the overview of the proposed approach. It
begins with contour fragments generation, and then an undi-
rected graph is established based on these fragments. We
cluster these fragments, and infer the occluded boundaries
simultaneously and interactively by minimizing the energy
function of the undirected graph.

Fragments Generation
In order to generate the contour fragments, we first obtain
the boundary of the whole cytoplasm clump and the nuclei
using a multi-scale convolutional neural network (Song et
al. 2015). We then obtain the initial set of contour fragments
based on the following two steps. First, we compute the cur-
vature of each point on the boundary of the whole cytoplasm,
and set the points with the local extremum of curvature as
the separation points between fragments, as these points are
more likely located at the places where two cytoplasm meet.
Second, due to the heavy overlapping of cytoplasm, it is dif-
ficult to distinguish all crossing points between cells only us-
ing curvature information. In this regard, we limit the length
of each fragment to avoid that one fragment across two cells.
In our implementation, we limit the length of each fragment
to 30 pixels.
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Figure 2: Illustration of the proposed approach. Given a
source image (a), we generates the fragments (b) and estab-
lishes the graph, in which we jointly select the fragments’
set and infer the occluded parts of the cytoplasm’s boundary
(c). In segmentation result (d), for the better viewing, nu-
clei are also depicted using the same color of its cytoplasm
boundary.

Graph Construction
Once the contour fragments are generated, an undirected
graph G = (V , E) is established, where V represents the graph
nodes and E is the graph edges connecting nodes. Our graph
has three types of nodes. The first class of nodes is to rep-
resent contour fragments and we call them F-node. The F-
nodes are connected by the F-edges in case that the two frag-
ments are neighboring fragments. The second class of nodes
is called N-node, which is used to denote the nuclei and ini-
tially connected to all the F-nodes in the same clump by the
N-edges. The third class is called T-node, representing the
terminal node of a clump, and each clump only has one ter-
minal node. The T-node is also initially connected to all F-
nodes in the clump. A graphical representation of our graph
model is shown in Fig. 3.

In order to capture the probabilistic attributes of the frag-
ments, we define the energy function of the graph as fol-
lows:
E(x;Ψ) =

∑
n∈N

(
∑
i∈F

Li(x
n
i ; Ψ

n) +
∑

(i,j)∈NF

Lij(x
n
i , x

n
j ; Ψ

n)

+ Ln(xn; Ψn)), (1)
where F is the set of fragments and N is the set of nuclei
in the image. The binary variables x ∈ B

F×N, we index as
xni over fragment i ∈ F and over nucleus n ∈ N, and we
interpret xni = 1 to mean that fragment i comes from the cy-
toplasm with nucleus n. The notation xn denotes fragments’

Figure 3: A graphical illustration of our graph model. For
clarity, we only show the connections on two clumps, and
assume left clump only having 4 fragments and 2 nuclei,
while the right has 3 fragments and 2 nuclei.

set of the cytoplasm with the nucleus n. The shape parame-
ter Ψ is initialized from the pre-trained shape reference, and
then is updated from the inference results. The shape of cy-
toplasm with the nucleus n is represented as Ψn, consisting
of the selected fragments’ set xn and the inference results
among xn. The NF represents the spatial neighboring re-
lation among fragments in the same clump; it is assumed as
the nearest fragments measured using the minimal Euclidean
distance among endpoints of the fragments. Each fragment
therefore has two neighboring fragments.

The first energy term Li(x
n
i ; Ψ

n) is usually called data
term or unary term, measuring the cost of a fragment i
coming from a cytoplasm with the nucleus n, encouraging
agreements between an N-node corresponding to the nucleus
n and the local evidence of fragment i. The second term
Lij(x

n
i , x

n
j ; Ψ

n) is known as pairwise term, corresponding
to the cost of assigning two neighboring fragments i and j to
the same nucleus n, increasing the likelihood of that neigh-
boring fragments i and j come from the same cytoplasm to
be selected into the same group. The last term Ln(xn; Ψn)
is the introduced high-level shape regulation energy term,
prompting the consistency between inference results and the
clump evidence, to encode the potential shape context into
the graph by considering the space and shape cues of all cy-
toplasm in the clump.

Different with traditional graph models, in which shape
parameter Ψ is accessible before the energy minimization, in
our task, we have to estimate the shape parameter Ψ during
the energy minimization. As shape parameter Ψ depends on
the result of fragments selection, which is obtained after the
minimizing of the graph’s energy. In addition, with the new
shape parameter Ψ, graph’s energy is changed, and thus it
has to be minimized again. That is to say, we are addressing
the problem of jointly estimating x∗, the optimal fragments
selection, and Ψ∗, the optimal shape parameter:

{x∗,Ψ∗} = argmin
x,Ψ

E(x;Ψ). (2)
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Graph Energy Optimization
Energy terms computation: Our graph has three energy
terms. The first term is the data term Li(x

n
i ; Ψ

n), and it is
used for measuring the cost of a fragment i that belongs to
the cytoplasm with the nucleus n. Our data term is derived
from the combination of the space and shape constraints. It
is observed that fragments usually have a relatively small
space distance with the nucleus they come from, and also
a relatively small shape distance with the shape of its cyto-
plasm.

Specifically, supposing that fragment i has m edge pixels,
denoted by ei = {p1, · · · , pm}, the space distance with the
nucleus n is measured as

g(i, n) = min
pk∈ei

gk(pk, n), (3)

where gk(pk, n) is the Euclidean distance between edge
pixel pk and the centroid of nucleus n, if the line from the
centroid to pk entirely resides within the clump and if this
line does not across other nuclei; otherwise, its value is set
as ∞. The shape distance is counted as:

h(i, n) =
1

m

∑
pk∈ei

||gk(pk, n)− gk(p
′
k, n)||, (4)

where p′k is the corresponding boundary point with pk in
the Ψn, the estimated shape of cytoplasm with nucleus n.
Consequently, our data term is obtained by summing these
two items (both have been normalized to the range in [0,1])
with a balance parameter α, that is,

Li(x
n
i ; Ψ

n) = αg(i, n) + (1− α)h(i, n). (5)
The second term is the pairwise term Lij(x

n
i , x

n
j ; Ψ

n),
which estimates how likely two neighboring fragments i and
j come from the same cytoplasm. We use the same measure
of the data term to compute it, but here i and j are treated as
one new fragment ij, that is,

Lij(x
n
i , x

n
j ; Ψ

n) = αg(ij, n) + (1− α)h(ij, n). (6)
This measure is also effective for pairwise term computa-
tion. If two neighboring fragments do come from the same
cytoplasm, the combined new fragment is like one with
longer length, hence more evidences available to capture its
probability distribution. By contrast, if they belong to differ-
ent cytoplasm, there is no any shape fitting them both well,
and they have two relatively equal space distances with their
nuclei, so that there is a smaller value to any cytoplasm.

Throughout this paper, parameter α is set as 0.5 for
equally weighting space and shape distances. And without
the inference result, the shape parameter Ψn is unavailable.
To address this, we select a set of manual labeled shape sam-
ples and then group them into K possible sets using k-means
algorithm. And in each set, the sample with the minimal
inner-class distance is selected as the shape reference. Next,
shape distances between fragment i to all shape references
are computed after the alignment. And the minimal shape
distance is selected as the final shape distance of fragment i.

Third, the high-level shape regulation term Ln(xn; Ψn), it
is a clump-level constraint, and is to constrain the segment-
ing result. That is, the segmented result cannot overflow the
clump, and at the same time all pixels in the clump have to
be contained at least one cytoplasm. Therefore, it is defined

as:
Ln(xn; Ψn) = ξcard(∪n∈NΨ

n \ C+ C \ ∪n∈NΨ
n), (7)

where C represents the set of pixels in the clump. ∪n∈NΨ
n \

C is the set of background pixels that are segmented into
certain cytoplasm. This error is caused in the occluded
boundaries inference in which these background pixels are
wrongly recognized as the cytoplasm pixels. Inversely, C \
∪n∈NΨ

n is the set of those cytoplasm pixels that are seg-
mented into background pixels after the inference process.
And card represents the number of elements in a set, while
ξ is the parameter to control the rate of the cost penalty.
Energy optimization: To minimize the energy of our graph,
we first compute pairwise term to assign F-edges and data
term to assign the N-edges and T-edges. Different with tra-
ditional graph model, our T-edge is assigned as

Wi,T = max
n′∈N\{n}

Li(x
n′
i ; Ψn′

), (8)

that is, the maximal value of data term of fragment i with all
nuclei but n in the clump. Then, an expanded min-cut solu-
tion (Delong et al. 2012) is implemented to optimize graph’s
energy, which aims to assign each fragment to its cytoplasm.
Based on the selected fragments of cytoplasm with the nu-
cleus n, occluded boundaries inference is then implemented
to obtain its new shape parameter Ψn. Once the shape pa-
rameter is updated, we update graph’s energy terms and op-
timize it again until the selection result is stable.

Occluded Boundaries Inference
In order to infer the occluded boundary parts of each indi-
vidual cytoplasm, we first reconstruct its shape using the se-
lected fragments. Although reconstructed shape has certain
shape loss in local details, it can provide the rough position
of those occluded boundaries. We hence use it as a constraint
of our minimal path model, to narrow the searching area of
the path.

Specifically, we first compute the mean shape μs and the
covariance matrix

∑
s of the selected manual labeled shape

samples, and we assume any new reconstructed shape C fol-
lowing a Gaussian distribution with μs and

∑
s, that is,

C ≈ μs + λb, (9)
where λ is the eigenvectors of

∑
s, and b is the projection

vector of C onto the principle components in shape space
ΩR2 . Under this assumption, given a selected fragments set
xn, its corresponding location on its shape Cn represents Ln,
the shape reconstruction problem can be formulated through
finding the most probable compete shape C∗

n, that is,
C∗
n = argmax

Cn∈ΩR2

p(Cn|xn, Ln;μs,
∑

s). (10)

Due to the complexity of computing Eqn. 10, we imple-
ment this Maximum a Posterior problem by finding the op-
timal projection vector b∗n, that is,
b∗n = argmax

bn∈ΩR2

(bTn
∑−1

s bn + ω||L′
n + λ′bn − xn||), (11)

where bTn and
∑−1

s are the transpose of bn and the inverse
matrix of

∑
s, respectively. And L′

n is the corresponding lo-
cation of Ln on the mean shape, while λ′ is the correspond-
ing submatrix of λ. The weight parameter ω is to balance
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the global prior and local observation. The global prior is to
constrain xn close to the mean shape μs as much as possible,
while the local observation is for prompting the matching ac-
curacy between xn and its corresponding location L′

n. Eqn.
11 is then approached by the approach described in (Duchi
et al. 2008). And, once b∗n is obtained, the shape C∗

n is recon-
structed using the Eqn. 9.

We now present how to infer the gaps between two neigh-
boring fragments. For an arbitrary pair of neighboring frag-
ments, two endpoints that the path γ travelling are denoted
as ps and pe, the best inference of the gap is assumed when

E(γ) = min
γ∈ps→pe

∫
γ

f(γ(s))ds, (12)

where s is the arc length parameter, and f is the potential
function that takes a lower value when γ near the real path.
In this paper, potential function f is integrated with the color
cues, shape cues and the curvature regulation, that is,

f(γ(s)) = −ω1||�I(s)||+ ω2||�C(s)||+ k2(s), (13)
where ||�I|| is the gradient magnitude of intensity at the arc
s, while ||�C|| is the pixel-wise distance between s and the
boundary of the reconstructed shape C. And we only search
the points where ||�C|| < 10 to exclude the intensity noisy
points. k represents the curvature, while ω1 and ω2 are the
proportionality constants.

As Eqn. 13 is not a first-order non-linear partial differen-
tial equation, Eqn. 12 does not satisfy the Eikonal equation,
so traditional minimal path model is unable to optimize the
Eqn. 12. However, in the image plane, the path from ps to
pe consists of the pairs of neighboring pixel points. In other
words, the point at the path γ must be connected with its
neighboring points. Therefore, we approach Eqn. 12 via first
computing the minimal action map using a front propagation
from ps to pe and then a back propagation from pe to ps only
considering the neighboring points.

Once the inference is finished, graph’s energy is updated
and we begin to optimize the graph again until the result of
fragments selection is stable.

Experiment
Datasets
To evaluate the effectiveness of the proposed approach, we
conduct experiments on two cervical smear datasets with
different stains. One is prepared by Papanicolaou (Pap) stain
and the stack data have been converted into the Extended
Depth of Field (EDF) images. This dataset is obtained from
the website of ISBI 2015 Overlapping Cervical Cytology
Image Segmentation Challenge. For 8 public available im-
ages, there are 20∼60 cells in each of them, distributing 11
clumps with 3.3 cells per clump on average. Another dataset
is stained by Hematoxylin and Eosin (H&E), collected from
Shenzhen Sixth People’s Hospital, Shenzhen, China; con-
sists of 21 images with 30∼80 cells per image, distributing
7 clumps with 6.1 cells per clump on average.

Evaluation Metrics
A commonly used metric to evaluate segmentation perfor-
mance is the Dice similarity coefficient which measures

the similarity of two binary regions as: DC = 2|Rs ∩
Rg|)/(|Rs|+|Rg|) (Rs and Rg denote the segmented region
and its ground truth). However, this is an area-based met-
ric; it is less likely to measure the shape similarity. Hence,
we add two metrics based on shape smoothness S(R) and
roundness O(R) computed as

S(R) =

∮
p∈∂R

|dθ(p)|, (14)

O(R) =

∫
p∈R

dp/(

∮
p∈∂R

dp)2, (15)

where ∂R is the boundary of region R, while θ and |·| repre-
sent the change of the tangent angle at boundary point p and
absolute value. These two terms characterize non-concave
degree and compactness of the region shape respectively,
and are invariant to scaling and rotation. The smoothness
similarity coefficient SC and roundness similarity coeffi-
cient RC are then defined as

SC = 1− |S(Rs)− S(Rg)|/S(Rg), (16)
RC = 1− |O(Rs)−O(Rg)|/O(Rg). (17)

In addition, we also use true positive rate TPR to evaluate
the performance, and here it is computed as TPR = |Rs ∩
Rg|/(|Rs ∩Rg|+ |Rg \Rs ∩Rg|).

Parameters Selection
The proposed method has four parameters: penalty rate ξ
in Eqn. 7, weight parameter ω in Eqn. 11, and two propor-
tionality constants ω1 and ω2 in Eqn. 13. All these four pa-
rameters are optimized by the cross validation procedure on
a small training dataset, and our experimental findings of
these parameters are follows.

When using a small value of penalty rate ξ, the role of
this energy term is diminished; however, when using a large
value of it, it is more likely to lead to turbulence of graph’s
energy, so that graph’s convergence cannot be reached. It
is set as 1.5 in both datasets. The value of ω roughly de-
pends on the overlapping degree in the dataset; the higher
overlapping degree, the larger value. In our experiments, we
set it to 7 in the Pap stain dataset, and to 10 in the H&E
dataset. The values of ω1 and ω2 rely on imaging quality and
overlapping degree. When images with high imaging quality
and low overlapping degree, they both should be set a larger
value; otherwise, curvature’s role should be stressed greater.
They are set as 1 and 0.2 in the Pap dataset, and as 0.7 and
0.4 in the H&E dataset, respectively.

Comparisons
To evaluate proposed method, we employ six algorithms on
both datasets for comparison. We implemented approaches
reported in (Lu, Carneiro, and Bradley 2015) and in (Song
et al. 2017), and they are termed as LSF and MCL in this
paper respectively. We also conduct experiments to demon-
strate the importance of color cues, shape cues, and curva-
ture regulation in our task by only using one of them to infer
occluded boundaries, termed as CS-A, CS-S and CS-K, re-
spectively. The importance of joint selecting fragments and
inferring occluded boundaries is also demonstrated; in this
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experiment, inference result does not be returned to guide
fragments’ selection, called as CS-1.

Results
Table 1 summaries the performance of comparisons accord-
ing to overlapping degree. The overlapping degree is mea-
sured according to the ratio of occluded boundaries’ length
against the length of the object”s whole boundary. Note that
the number of cytoplasm in the clump is not a direct factor
of evaluating the algorithms’ performance. Although perfor-
mance is generally worse with the increasing of the num-
ber of cytoplasm, it is more a matter of overlapping degree
increasing in this case. Therefore, performance reported in
Table 1 is organised by overlapping degree rather than the
number of cytoplasm in the clump.

According to Table 1, performance of all methods de-
creases with the increasing of overlapping degree. All these
algorithms seem to be insensitive of test dataset; dominant
performance in either dataset has not been observed. The
performance difference among comparisons is also not sig-
nificant when overlapping degree less than 0.3, but the per-
formance of proposed approach becomes superior to others
with the increasing of overlapping degree. Compared with
LSF and MCL, proposed approach obtains an obvious per-
formance improvement, except for RC result when overlap-
ping degree is with a small value. CS-S gets a slightly better
performance than CS-A, while their performances are both
not exceeding ours in the most cases. Although CS-K and
CS-1 have similar results with ours when overlapping de-
gree less than 0.3, the proposed method acquires a compet-
itive results against theirs when cytoplasm are overlapping
more heavily.

For better comparing the proposed method with different
approaches and discussing the reasons causing the differ-
ences among them, some result samples are selected in Fig.
4. The first row is a sample where overlapping cytoplasm are
with different sizes. LSF is affected by the noise indicated by
red arrow, while MCL and CS-A get the unnatural bound-
aries. The second and fourth rows are the samples in which
the number of cytoplasm is over 6 and some of them are
heavily overlapped. With the increasing of the number of cy-
toplasm in the clump, LSF shows the unnatural results, while
the results of MCL shows sufficient smoothness, shape sim-
ilarity coefficients SC and RC are lower. CS-A and CS-K
also only get a coarse result. CS-1 and ours have similar re-
sults, but when cytoplasm is occluded more and the frag-
ments are less discriminative (see these cells indicted by red
arrows), CS-1 shows its inability in this case. The sample in
third row is with lower color contrast affected by poor illu-
mination. MCL and CS-A only show limited shape capture
ability, while the result of LSF tends to be an ellipse. CS-K
also shows this tend when cytoplasm are overlapping very
heavy (see the cell indicted by red arrow in the third row).

All experiments are conducted on a PC with a 2.20 GHz
Intel Core i5 CPU and 4.00 GB of RAM, and they are all
implemented in MATLAB. The processing time is related to
the number of cells in the clump. We found that, for a clump
with 5 cells, the average processing times are 12 minutes of
LSF, 8 minutes of MCL, and 5 minutes of proposed method,

respectively. Therefore, computational efficiency of the pro-
posed method also outperforms that of previous approaches.

Conclusion
For automatic screening of cervical cancer, accurate seg-
mentation of cervical cells is required. However, cytoplasm
overlapping makes the observation of each individual cy-
toplasm deficient, hindering the identification of the whole
boundary. In this paper, we have presented a method to seg-
ment overlapping cytoplasm via exploring the contour frag-
ments, which offers more geometric information than pixels.
In order to segment individual cytoplasm from the clump, it
groups fragments that come from the same cytoplasm using
an undirected graph. It then resorts to statistical shape model
and minimal path theory to infer the occluded boundaries
of cytoplasm. We have also demonstrated its capability, and
compared its performance with the related approaches. The
experimental results show that our method achieves the ob-
vious improvement in terms of both segmentation accuracy
and computational efficiency in comparison with previous
methods.
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Table 1: Splitting results of the algorithms according to overlapping degree
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Pap Stain H&E Stain Pap Stain H&E Stain Pap Stain H&E Stain
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Ours 0.82 0.84 0.87 0.91 0.80 0.83 0.85 0.89 0.80 0.82 0.84 0.89 0.77 0.80 0.83 0.86 0.78 0.80 0.77 0.85 0.76 0.78 0.75 0.83

Figure 4: Result samples, first tow rows come from Pap stain dataset, while last two rows are from H&E stain dataset. From left
to right column: source images, results of LSF, MCL, CS-A, CS-S, CS-K, CS-l, and ours, respectively, and ground truth. Note
that samples’ sizes have been scaled for better viewing.

cervical cytology (mavaric): a randomised controlled trial.
The lancet oncology 12(1):56–64.
Lee, H., and Kim, J. 2016. Segmentation of overlapping cer-
vical cells in microscopic images with superpixel partition-
ing and cell-wise contour refinement. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 63–69.
Lu, Z.; Carneiro, G.; Bradley, A. P.; Ushizima, D.; Nosrati,
M. S.; Bianchi, A. G.; Carneiro, C. M.; and Hamarneh, G.
2017. Evaluation of three algorithms for the segmentation of
overlapping cervical cells. IEEE journal of biomedical and
health informatics 21(2):441–450.
Lu, Z.; Carneiro, G.; and Bradley, A. P. 2015. An improved
joint optimization of multiple level set functions for the seg-
mentation of overlapping cervical cells. IEEE Transactions
on Image Processing 24(4):1261–1272.
Nosrati, M. S., and Hamarneh, G. 2015. Segmentation of
overlapping cervical cells: A variational method with star-
shape prior. In Biomedical Imaging (ISBI), 2015 IEEE 12th
International Symposium on, 186–189. IEEE.
Plissiti, M. E.; Vrigkas, M.; and Nikou, C. 2015. Seg-
mentation of cell clusters in pap smear images using inten-

sity variation between superpixels. In Systems, Signals and
Image Processing (IWSSIP), 2015 International Conference
on, 184–187. IEEE.
Saslow, D.; Solomon, D.; Lawson, H. W.; Killackey, M.; Ku-
lasingam, S. L.; Cain, J.; Garcia, F. A.; Moriarty, A. T.; Wax-
man, A. G.; Wilbur, D. C.; et al. 2012. American cancer so-
ciety, american society for colposcopy and cervical pathol-
ogy, and american society for clinical pathology screening
guidelines for the prevention and early detection of cervical
cancer. CA: a cancer journal for clinicians 62(3):147–172.
Siddiqi, K.; Tresness, K. J.; and Kimia, B. B. 1996. Parts of
visual form: Psychophysical aspects. Perception 25(4):399–
424.
Song, Y.; Zhang, L.; Chen, S.; Ni, D.; Lei, B.; and Wang,
T. 2015. Accurate segmentation of cervical cytoplasm and
nuclei based on multiscale convolutional network and graph
partitioning. IEEE Transactions on Biomedical Engineering
62(10):2421–2433.
Song, Y.; Cheng, J.-Z.; Ni, D.; Chen, S.; Lei, B.; and Wang,
T. 2016. Segmenting overlapping cervical cell in pap smear
images. In Biomedical Imaging (ISBI), 2016 IEEE 13th In-
ternational Symposium on, 1159–1162. IEEE.

174



Song, Y.; Tan, E.-L.; Jiang, X.; Cheng, J.-Z.; Ni, D.; Chen,
S.; Lei, B.; and Wang, T. 2017. Accurate cervical cell seg-
mentation from overlapping clumps in pap smear images.
IEEE transactions on medical imaging 36(1):288–300.
Sulaiman, S. N.; Isa, N. A. M.; Yusoff, I. A.; and Othman,
N. H. 2010. Overlapping cells separation method for cer-
vical cell images. In Intelligent Systems Design and Ap-
plications (ISDA), 2010 10th International Conference on,
1218–1222. IEEE.
Taha, B.; Dias, J.; and Werghi, N. 2017. Classification
of cervical-cancer using pap-smear images: A convolutional
neural network approach. In Annual Conference on Medical
Image Understanding and Analysis, 261–272. Springer.
Tareef, A.; Song, Y.; Cai, W.; Huang, H.; Chang, H.; Wang,
Y.; Fulham, M.; Feng, D.; and Chen, M. 2017. Au-
tomatic segmentation of overlapping cervical smear cells
based on local distinctive features and guided shape defor-
mation. Neurocomputing 221:94–107.
Wagemans, J.; Elder, J. H.; Kubovy, M.; Palmer, S. E.; Pe-
terson, M. A.; Singh, M.; and von der Heydt, R. 2012. A
century of gestalt psychology in visual perception: I. percep-
tual grouping and figure–ground organization. Psychologi-
cal bulletin 138(6):1172.
WHO. 2013. Information centre on hpv and cervi-
cal cancer (hpv information centre), human papillomavirus
and related diseases report in china. [online]. available:
www.who.int/hpvcentre.
Zhang, L.; Kong, H.; Ting Chin, C.; Liu, S.; Fan, X.; Wang,
T.; and Chen, S. 2014. Automation-assisted cervical cancer
screening in manual liquid-based cytology with hematoxylin
and eosin staining. Cytometry Part A 85(3):214–230.
Zhang, J.; Hu, Z.; Han, G.; and He, X. 2016. Segmenta-
tion of overlapping cells in cervical smears based on spatial
relationship and overlapping translucency light transmission
model. Pattern Recognition 60:286–295.
Zhang, L.; Lu, L.; Nogues, I.; Summers, R.; Liu, S.; and
Yao, J. 2017a. Deeppap: Deep convolutional networks for
cervical cell classification. IEEE Journal of Biomedical and
Health Informatics.
Zhang, L.; Sonka, M.; Lu, L.; Summers, R. M.; and Yao, J.
2017b. Combining fully convolutional networks and graph-
based approach for automated segmentation of cervical cell
nuclei. In Biomedical Imaging (ISBI 2017), 2017 IEEE 14th
International Symposium on, 406–409. IEEE.

175


