
Distributed Composite Quantization

Weixiang Hong, Jingjing Meng, Junsong Yuan
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore
{wxhong,jingjing.meng,JSYUAN}@ntu.edu.sg

Abstract

Approximate nearest neighbor (ANN) search is a funda-
mental problem in computer vision, machine learning and
information retrieval. Recently, quantization-based methods
have drawn a lot of attention due to their superior accuracy
and comparable efficiency compared with traditional hash-
ing techniques. However, despite the prosperity of quanti-
zation techniques, they are all designed for the centralized
setting, i.e., quantization is performed on the data on a sin-
gle machine. This makes it difficult to scale these techniques
to large-scale datasets. Built upon the Composite Quantiza-
tion, we propose a novel quantization algorithm for data dis-
tributed across different nodes of an arbitrary network. The
proposed Distributed Composite Quantization (DCQ) decom-
poses Composite Quantization into a set of decentralized sub-
problems such that each node solves its own sub-problem
on its local data, meanwhile is still able to attain consistent
quantizers thanks to the consensus constraint. Since there is
no exchange of training data across the nodes in the learning
process, the communication cost of our method is low. Ex-
tensive experiments on ANN search and image retrieval tasks
validate that the proposed DCQ significantly improves Com-
posite Quantization in both efficiency and scale, while still
maintaining competitive accuracy.

1. Introduction
Nearest neighbor (NN) search has wide applications in com-
puter vision, machine learning and information retrieval,
e.g., image retrieval, object instance search and k-NN clas-
sifier (Shakhnarovich, Indyk, and Darrell 2006), etc. The
straightforward solution, linear scan, is both computation-
ally and memory intensive in large scale high-dimensional
cases, thus is not preferable in practice. Therefore, there
have been a lot of interests in algorithms that perform ap-
proximate nearest neighbor (ANN) search.

ANN search is traditionally addressed with hashing meth-
ods (Wang et al. 2016b; Hong, Yuan, and Das Bhattacharjee
2017; Liu et al. 2017; Hong, Meng, and Yuan 2018), which
have been comprehensively surveyed in (Wang et al. 2017).
However, a family of methods based on vector quantiza-
tion (Jegou, Douze, and Schmid 2011; Babenko and Lem-
pitsky 2015; Heo, Lin, and Yoon 2014; Zhang et al. 2015;

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Wang et al. 2016a; Zhang and Wang 2016) has recently
triggered interests from computer vision, machine learning
and multimedia retrieval communities, due to its superior
accuracy and comparable efficiency compared with hash-
ing techniques. Different from hashing, these methods per-
form ANN search by learning numerous decimal quantizers,
hence do not suffer from the quantization loss from dec-
imal space to binary space, which is the main reason of
their better accuracy compared with hashing. Meanwhile,
quantization-based methods are also efficient thanks to the
smart use of lookup table.

Despite the prosperity of the quantization techniques, they
are all designed for the centralized setting, or in other words,
are single-machine approaches. Nevertheless, due to the ex-
plosion in size and complexity of modern datasets, more
and more real-world applications need to deal with data
distributed across different locations, such as distributed
databases (Corbett et al. 2013), images/videos over the net-
works (Bhattacharjee et al. 2016; Meng et al. 2016), etc. Fur-
thermore, in some applications, the data is inherently dis-
tributed. For example, in video surveillance (Cong, Yuan,
and Liu 2011) and sensor networks (Liang et al. 2014), the
data is collected at distributed sites. In such contexts, the
quantizers should be learned based on the entire dataset in
order to get unbiased quantization codes for the data. One
intuitive way is gathering all data together at a central server
before training, but it is not a feasible option because of the
huge communication overhead. Besides, directly training on
large-scale data is often prohibitive in both time and space,
which further prevents it from practical applications. As a
consequence, it is important to develop quantization algo-
rithms that are both powerful enough to capture the com-
plexity of large scale data, and scalable enough to process
huge datasets in parallel. However, to our knowledge, this
critical and challenging problem has never been explored in
the literature.

This paper proposes Distributed Composite Quantiza-
tion (DCQ) for data which is distributed across different
nodes of an arbitrary network (e.g., Figure 1). Unlike the
conventional centralized methods which require gathering
the distributed data from all nodes to learn common quantiz-
ers, our method learns such quantizers in a distributed man-
ner. Each node learns a set of dictionaries on its local data,
and only exchanges the local dictionaries with other nodes

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

61

(See Section 4.4.2 for details). To this end, we decompose
a centralized quantization model into a set of decentralized
sub-problems with consensus constraints and the alternating
direction method of multipliers (ADMM) (Hestenes 1969;
Powell and Authority 1967). We prove the convergence
of ADMM for our non-convex Lagrangian by reformulat-
ing it as a global consensus problem with sufficiently large
penalty parameter (Hong, Luo, and Razaviyayn 2016), as a
result, these sub-problems can be efficiently solved in paral-
lel within a few iterations, and all the nodes obtain consistent
quantizers learned from the distributed data. The main con-
tributions of this paper can be summarized as follows:
• We raise a challenging problem in quantization, i.e., quan-

tization of distributed data. This problem is essential for
making quantization techniques applicable for real-world
large-scale retrieval systems. However, to our best knowl-
edge, it has never been discussed in any literature.

• We propose Distributed Composite Quantization (DCQ)
to perform quantization on distributed data. Since there
is no exchange of training data across the nodes in the
learning process, the communication cost of our method
is low. Moreover, our approach can adapt to arbitrary net-
work topologies.

• We prove the convergence of ADMM for the non-convex
Lagrangian involved in our DCQ. Although the theoreti-
cal convergence property of the ADMM update rule for
the general non-convex problem is still an open ques-
tion (Bertsekas 1989), ADMM has been proved to con-
verge for a family of non-convex problems under cer-
tain assumptions (Hong, Luo, and Razaviyayn 2016). We
prove that the Lagrangian of our proposed DCQ satis-
fies those required assumptions, as a result, the theoret-
ical convergence of DCQ is guaranteed with a sufficiently
large penalty parameter.

• We conduct extensive experimental evaluations on ap-
proximate nearest neighbor search and image retrieval in
a distributed setting. Experimental results validate that the
proposed method can improve Composite Quantization in
both efficiency and scale, while still maintaining compet-
itive accuracy.

2. Related Work
Vector quantization algorithms can be coarsely classified
into two categories: (1) partition-based quantization such
as PQ (Jegou, Douze, and Schmid 2011), OPQ (Ge et al.
2013), and CKM (Norouzi and Fleet 2013) (2) addition-
based quantization such as AQ (Babenko and Lempitsky
2014), CQ (Zhang, Du, and Wang 2014), and LSQ (Martinez
et al. 2016). Partition-based methods usually devide the data
space into a number of disjoint subspaces and quantizes each
subspace separately, while addition-based approaches typi-
cally approximate a database vector using the addition of
dictionary words selected from different dictionaries.

Generally speaking, addition-based quantization methods
perform better than partition-based ones, because addition-
based quantizations do not decompose data space into or-
thogonal subspaces and thus make no subspace indepen-
dence assumptions. Our approach also goes in this direction.

N1

N2

N3
N5

N7

N10

N9

N8 N6

N4

Figure 1: A randomly generated network with 10 nodes.
Such a network can be modeled with an undirected and con-
nected graph.

To be more specific, we generalize Composite Quantization
(CQ) to the distributed scenarios.

3. Problem Formulation
We start by introducing the Composite Quantization that
works in centralized setteings, then we will extend it to the
distributed settings.

3.1. Composite Quantization
Composite Quantization aims to approximate a vec-
tor x ∈ R

d by the composition of M vectors
{C1k1

,C2k2
, . . . ,CMkM

}, each of which is selected from
a dictionary with K elements, i.e., Cmkm

is the kmth el-
ement in the dictionary Cm, and ∀m ∈ {1, 2, . . . ,M},
Cm = {Cm1,Cm2, . . . ,CmK}.

Let x̄ =
∑M

m=1 Cmkm be the approximation of vector x.
The accuracy of nearest neighbor search relies on the quality
of the distance approximation, i.e., how small is the differ-
ence between the distance of the query q to the vector x and
the distance to the approximation x̄. According to the trian-
gle inequality,

∣∣||q− x||2 − ||q− x̄||2
∣∣ ≤ ||x− x̄||2, the dis-

tance approximation error in ANN search is bounded by the
vector approximation error, which is formulated as follows,

min
Cmkm

∑

x∈X

||x−
M∑

m=1

Cmkm ||22, (1)

where Cmkm is the selected element from the dictionary Cm

for the database vector x.
With the approximation x̄ =

∑M
m=1 Cmkm , we have

||q− x̄||22 =
M∑

m=1

||q− Cmkm ||22

− (M − 1)||q||22 +
M∑

i=1

M∑

j=1,j �=i

CT
iki

Cjkj
.

(2)

Given the query q, the first term can be efficiently com-
puted using lookup table, and the second term is constant
for all database vectors, hence unnecessary to compute for
ANN search. For the third term, we constrain it to be a con-
stant ε, i.e.,

∑M
i=1

∑M
j=1,j �=i C

T
iki

Cjkj = ε, which is referred
as constant inter-dictionary-element-product in Composite
Quantization.

62

Let C = [C1C2 · · ·CM] ∈ R
d×MK be the whole dictio-

nary, B = [bT1 b
T
2 · · · bTN] ∈ R

MK×N be the matrix con-
sisting of all codes. Furthermore, we impose three extra
constraints on B to fully complete the formulation, namely,
bn = [bn1bn2 · · · bnM] ∈ {0, 1}MK , bnm ∈ {0, 1}K and
||bnm||1 = 1. Finally, the optimization problem is formu-
lated as:

min
C,B,ε

||X− CB||2F

s.t.
M∑

i=1

M∑

j=1,j �=i

bTniC
T
i Cjbnj = ε, ∀n = 1, 2, . . . , N.

(3)
By adopting the quadratic penalty method, Composite

Quantization relaxed the optimization problem in Equation
(3) as:

φ(C,B, ε) = ||X−CB||2F + μ
N∑

n=1

(
M∑

i �=j

bTniC
T
i Cjbnj − ε)2,

(4)
where

∑M
i �=j =

∑M
i=1

∑M
j=1,j �=i.

3.2. Distributed Composite Quantization
Next, we generalize Composite Quantization to the dis-
tributed scenarios. In our setting, the data is distributed
across a set of P nodes in a network (e.g., Figure 1). On
the s-th node, there is a local set of Ns data points, denoted
in matrix form as Xs. The global data X = ∪P

s=1X
s is then

a concatenation of the local data matrix. When the data is
distributed across the P nodes in an arbitrary network, the
objective in Equation (4) can be rewritten as:

φ(C,B, ε) =

P∑

s=1

||Xs − CBs||2F

+ μ
P∑

s=1

Ns∑

n=1

(
M∑

i �=j

bsni
TCT

i Cjb
s
nj − ε)2,

(5)

where Bs denotes the composition codes that belongs to the
s-th node. Throughout this paper, we use superscript to de-
note the identity number of each node. We will further use
Cs and εs to denote the local copies of C and ε on the s-th
node.

4. Optimization
In this section, we present a distributed optimization algo-
rithm to learn composite quantization in a decentralized sce-
nario. The problem formulated in Equation (5) is a mixed-
binary-integer program, we use the iterative optimization
technique to iteratively solve it. Each iteration alternatively
updates the composition matrix B, constant inter-dictionary-
element-product constraint ε and dictionary C.

4.1. Update B

Each Bs can be locally updated in parallel on each node. For
example, to update bsn, the codes for the n-th data vector on

the s-th node, the subproblem to tackle is as following:

φ(bsn) = ||Xs
n − Csbsn||22 + μ(

M∑

i �=j

bsni
TCs

i
TCs

jb
s
nj − εs)2,

(6)
where Xs

n denotes the n-th vector on the s-th node. Also
there are three extra constraints for Equation (6): bsn =
[bsn1b

s
n2 · · · bsnM] ∈ {0, 1}MK , bsnm ∈ {0, 1}K and

||bsnm||1 = 1. The problem is essentially a high-order MRF
problem and NP-hard. To efficiently find a feasible local
optimum, we again adopt the alternative optimization tech-
nique to solve the M subvectors {bsnm} in turn. Specifically,
given {bsnl}l �=m fixed, we exhaustively check all the ele-
ments in the dictionary Cs

m, and find the element that mini-
mizes the objective function value in Equation 6, then update
{bsnm} by setting the corresponding entry in bsnm to be 1 and
all the others to be 0.

4.2. Update ε

Given fixed C and B in Equation (5), the objective function
turns out to be quadratic with respect to ε. Under the dis-
tributed setting of this work, the optimal solution to ε can
be solved in a three-step fashion. First, we update each local
copy εs of ε as following:

εs =
1

Ns

Ns∑

n=1

M∑

i �=j

bsni
TCs

i
TCs

jb
s
nj . (7)

Then we can select any node as the coordinator to conduct
the following computation:

ε =
1

N

P∑

s=1

Nsεs. (8)

Finally, the selected coordinator shall boardcast the new ε to
each nodes to replace the previous local copies {εs}.

4.3. Update C

When B and ε are fixed, the dictionary C is shared across all
nodes, which makes the problem hard to tackle. In order to
make the objective separable, we enforce the consensus con-
straints Cs = Ct, for ∀s, t ∈ {1, 2, . . . , P} for {Cs} on all
nodes, thus, we can transform Equation (5) to the following
form without introducing any relaxation.

min
{Cs}

P∑

s=1

||Xs − CsBs||2F

+ μ
P∑

s=1

Ns∑

n=1

(
M∑

i �=j

bsni
TCs

i
TCs

jb
s
nj − εs)2

s.t. Cs = Ct, ∀s, t ∈ {1, 2, . . . , P}.

(9)

The consensus constraint implies that all the local dictio-
naries should be consistent. In this way, the additive objec-
tive in Equation (5) is split into a set of separable objec-
tives. Thanks to the transitivity between neighboring nodes
in a connected graph, we are allowed to consider only the

63

constraints between the neighboring nodes rather than all
the constraints. For example, if the consensus constraints
between all neighboring nodes are satisfied in Figure 1,
then C3 = C6 is naturally satisfied due to the fact that
C3 = C4 = C7 = C6. Based on this observation, Equa-
tion (9) can be equivalently reformulated as:

min
{Cs}

P∑

s=1

||Xs − CsBs||2F

+ μ

P∑

s=1

Ns∑

n=1

(

M∑

i �=j

bsni
TCs

i
TCs

jb
s
nj − εs)2

s.t. Cs = Cs′ , s′ ∈ N (s), ∀s ∈ {1, 2, . . . , P}.

(10)

where N (s) represents the neighbors of the s-th node.
Next we show how the alternating direction method of

multipliers (ADMM) (Zhang and Kwok 2014; Leng et al.
2015; Liu et al. 2016) can be applied to decompose the
global problem (10) into several local subproblems.

4.3.1 Distributed Learning ADMM is a variant of the
augmented Lagrangian scheme that blends the decompos-
ability of dual ascent with the method of multipliers. For our
specific problem (10), the augmented Lagrangian is:

L(Cs,Λs,s′) =
P∑

s=1

||Xs − CsBs||2F

+ μ

P∑

s=1

Ns∑

n=1

(

M∑

i �=j

bsni
TCs

i
TCs

jb
s
nj − εs)2

+
P∑

s=1

∑

s′∈N (s)

tr
(
Λs,s′T (Cs − Cs′)

)

+
ρ

2

P∑

s=1

∑

s′∈N (s)

||Cs − Cs′ ||2F,

(11)
where Λs,s′ is the Lagrangian multipliers corresponding to
the constraints Cs = Cs′ , ∀s ∈ {1, 2, . . . , P} and s′ ∈
N (s). ρ > 0 is the penalty parameter of augmented La-
grangian. ADMM solves a problem of this form by repeating
the following two steps (Liang et al. 2014):

Cs := argmin
Cs

P∑

s=1

||Xs − CsBs||2F

+ μ
P∑

s=1

Ns∑

n=1

(
M∑

i �=j

bsni
TCs

i
TCs

jb
s
nj − εs)2

+
P∑

s=1

∑

s′∈N (s)

tr
(
Λs,s′T (Cs − Cs′)

)

+
ρ

2

P∑

s=1

∑

s′∈N (s)

||Cs − Cs′ ||2F

(12a)

Λs,s′ := Λs,s′ + ρ(Cs − Cs′). (12b)

Despite the algorithm’s elegance in form, the subprob-
lems are still difficult to solve.

4.3.2 Simplification of Lagrange Multipliers Due to the
symmetry of an undirected graph, it is clear that if s′ ∈ N (s)
then s ∈ N (s′). That is to say, every available constraint in
the Equation (10) has been considered at least twice, i.e.,
Cs = Cs′ and Cs′ = Cs, which suggests that we can sim-
plify the update rules in Equation (12). First of all, we can
rewrite the third term of Equation (12a) in another form as:

P∑

s=1

∑

s′∈N (s)

tr
(
Λs,s′T (Cs − Cs′)

)

=
P∑

s=1

∑

s′∈N (s)

tr
(
Λs,s′TCs

)−
P∑

s=1

∑

s′∈N (s)

tr
(
Λs,s′TCs′)

=
P∑

s=1

∑

s′∈N (s)

tr
(
Λs,s′TCs

)−
P∑

s=1

∑

s′∈N (s)

tr
(
Λs′,sTCs

)

=

P∑

s=1

tr
(∑

s′∈N (s)

(Λs,s′ − Λs′,s)TCs
)
.

(13)
In addition, owing to the symmetric characteristics, we can
easily write down the symmetrical counterpart of Equation
(12b) as following:

Λs′,s := Λs′,s + ρ
(
Cs′ − Cs

)
. (14)

For any two adjacent nodes, with Equation (12b) and (14),
we have:

Λs,s′ − Λs′,s :=
(
Λs,s′ − Λs′,s)+ 2ρ

(
Cs − Cs′). (15)

Therefore, by defining P new Lagrange Multipliers Λs as:

Λs =
∑

s′∈N (s)

(Λs,s′ − Λs′,s). (16)

The update rule of ADMM in Equation (12) can be simpli-
fied as:

Cs := argmin
Cs

P∑

s=1

||Xs − CsBs||2F

+ μ
P∑

s=1

Ns∑

n=1

(
M∑

i �=j

bsni
TCs

i
TCs

jb
s
nj − εs)2

+
P∑

s=1

tr
(
ΛsTCs

)

+
ρ

2

P∑

s=1

∑

s′∈N (s)

||Cs − Cs′ ||2F

(17a)

Λs := Λs + 2ρ(Cs − Cs′). (17b)

Obviously, the updates of local variables Cs and Λs in Equa-
tion (17) can be separated into P subproblems, and thus can
be carried out independently in parallel across the nodes.

64

4.3.3 Solution to subproblems At last, we show how to
solve the subproblem on each node. Formally, the s-th sub-
problem on the s-th node can be written as following:

φ(Cs) =

Ns∑

n=1

||Xs
n − Csbsn||2F

+ μ

Ns∑

n=1

(
M∑

i �=j

bsni
TCs

i
TCs

jb
s
nj − εs)2

+ tr
(
ΛsTCs

)
+

ρ

2

∑

s′∈N (s)

||Cs − Cs′ ||2F,

(18)

which is an unconstrained nonlinear optimization prob-
lem with respect to Cs. Following Composite Quantiza-
tion (Zhang, Du, and Wang 2014), we solve it with the L-
BFGS algorithm (Nocedal 1980; Liu and Nocedal 1989), the
limited-memory version of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm. The L-BFGS method approxi-
mates the full Hessian matrix using a few vectors, thus only
needs the function value and function gradient as its inputs.
We use the publicly available implementation of L-BFGS 1.
The partial derivative with respect to Cs

m is as follows:

∂φ(Cs)

∂Cs
m

=

Ns∑

n=1

[
2(

M∑

l=1

Cs
l b

s
nl −Xs

n)b
s
nm

T

+ 4μ(

M∑

i �=j

bs
ni

TCs
i
TCs

jb
s
nj − εs)(

M∑

l �=m

Cs
l bnl)b

s
nm

T]

+ Λs + ρ
∑

s′∈N (s)

(Cs
m − Cs′

m).

(19)
Equation (18) and (19) will serve as the inputs for the L-
BFGS solver.

4.4. Analysis
We have presented the whole procedure of our proposed
DCQ. Note that the update of local Cs, Bs, εs and Λs can
all be conducted in parallel on each node, which is the key
factor for our method to work in a distributed setting.

4.4.1 Analysis on Convergence It is easy to verify that
Equation (5) is lower-bounded (not smaller than 0), and the
updates for B and ε always decrease the value of Equa-
tion (5), hence, the convergence of DCQ is guaranteed if
one can prove the convergence of ADMM for Equation (11),
which is non-convex with respect to C.

For the general non-convex problem, the theoretical con-
vergence property of the ADMM is still an open question
(Bertsekas 1989), nevertheless, ADMM has been proved to
converge for a family of non-convex problems under certain
assumptions (Hong, Luo, and Razaviyayn 2016). Luckily,
our problem Equation (11) satisfies those required assump-
tions, as a result, the theoretical convergence of ADMM for
Equation (11) can be guaranteed with a sufficiently large ρ.
The detailed proof is included in the supplementary mate-
rial.

1http://www.chokkan.org/software/liblbfgs/

4.4.2 Analysis on Communication Complexity Here we
analyze the communication complexity of the proposed dis-
tributed composite quantization. Recall that M denotes the
number of dictionaries, K denotes the number of elements
in each dictionary, d denotes the dimension of data, and Ns

is the number of local samples in the s-th node.
In our algorithm, each node shares the dictionary Cs with

its neighboring nodes, and shares Ns as well as the constant
constraint ε with the coordinator. Supposing the s-th node
has ts neighbors, the communication complexity of sharing
dictionaries is O(tsMKd), while the complexity of shar-
ing ε and Ns can be omitted since they are numbers. There-
fore, the overall communication complexity of each node is
O(tsMKd), which is independent to Ns.

5. Experiments
We evaluate the proposed DCQ on different datasets for
approximate nearest neighbor (ANN) search and image re-
trieval. The training data is randomly distributed to different
nodes in a network. We construct a network with 10 simu-
lated nodes, as shown in Figure 1. Our machine is equipped
with 24 Intel Xeon CPUs E5-2630 (2.30GHz) and 96 GB
memory. We empirically set the penalty parameter ρ = 100
and the number of ADMM iterations I = 5. Note that
ρ = 100 is less than the theoretical threshold in our proof
that guaranntees convergence of ADMM (7.19×1010), how-
ever, the theoretical threshold is sufficient but not necessary
since it is an extremely loose bound. As shown in our sup-
plementary material, ρ = 100 leads to better accuracy and
faster convergence than the theoretical threshold, and we
didn’t observe non-convergence for ρ = 100.

Ideally, the resulting local dictionaries {Cs} among all
the nodes will be consistent because they are learned with
the consensus constraints. However, since the solution ob-
tained by ADMM is not theoretically guaranteed to be the
global optimum (Boyd et al. 2011), the consistency of the lo-
cal dictionaries needs to be verified. Therefore, we come up
with two search strategies for the proposed DCQ. In the first
strategy, each node will keep its local dictionary and compo-
sition codes after the optimization is done. Subsequently, the
distances between the query and database vectors are calcu-
lated using the local lookup table. In the second strategy, we
assign one of the local dictionaries as the final dictionary C,
then update the composition codes {Bs} one more iteration
to finally end the learning. We empirically find the results of
these two variants are very close, which implies the consis-
tency of the learned local dictionaries and the convergence
of ADMM in our algorithm. In the following comparisons,
we simply report the performance of the first strategy.

To our best knowledge, this work is the first attempt to
learn quantization based algorithm in a distributed setting,
therefore we cannot find closely related work to compare
with in this setting. Thus, we compare our Distributed Com-
posite Quantization against several state-of-the-art central-
ized methods, namely, Product Quantization (PQ) (Jegou,
Douze, and Schmid 2011), Optimized Product Quantization
(OPQ) (Ge et al. 2013), Cartesian k-means (CKM) (Norouzi
and Fleet 2013), Composite Quantization (CQ) (Zhang,
Du, and Wang 2014) and iterated Local Search for AQ

65

1 2 5 10 20 50 100

R

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
c
a
ll
@

R

PQ

OPQ

CQ

LSQ

CKM

DCQ

(a) MNIST dataset.

1 2 5 10 20 50 100

R

0

0.2

0.4

0.6

0.8

1

re
c
a
ll
@

R

PQ

OPQ

CQ

LSQ

CKM

DCQ

(b) LabelMe22K dataset.

Figure 2: The recall@R for different algorithms on MNIST
and LabelMe22K datasets with 64-bit codes.

1 2 5 10 20 50 100 200 500 1000

R

0.2

0.4

0.6

0.8

1

re
c
a
ll
@

R

PQ

OPQ

CQ

LSQ

CKM

DCQ

(a) 64-bit codes.

1 2 5 10 20 50 100 200 500 1000

R

0.4

0.5

0.6

0.7

0.8

0.9

1

re
c
a
ll
@

R

PQ

OPQ

CQ

LSQ

CKM

DCQ

(b) 128-bit codes.

Figure 3: The recall@R for different algorithms on SIFT1M
dataset with 64 and 128 bits.

(LSQ) (Martinez et al. 2016). All the algorithms perform
linear scan search using asymmetric distance (Jegou, Douze,
and Schmid 2011).

5.1. Evaluation on ANN Search
We perform the ANN search experiments on three datasets:
MNIST (LeCun et al. 1998), 28 × 28 grayscale images of
handwritten digits, which we treat as 784-dimensional vec-
tors; LabelMe22K (Russell et al. 2008), a corpus of im-
ages expressed as 512-dimensional GIST descriptors; and
SIFT1M (Jegou, Douze, and Schmid 2011), which con-
sists of 1M 128-dimensional SIFT features as base vectors,
100K learning vectors and 10K queries. Following the con-
vention (Zhang, Du, and Wang 2014; Martinez et al. 2016),
we measure the search quality using recall@R, i.e., for vary-
ing values of R, the average rate of queries for which the
1-nearest neighbor is ranked in the top R positions. The
ground-truth nearest neighbors are computed over the origi-
nal features using linear scan.

Figure 2 shows the comparison on MNIST and La-
belMe22K dataset with 64-bit codes. On both datasets, our
method achieves comparable or even higher accuracy com-
pared with centralized baselines. It can be observed that the
performance of our algorithm is very close to that of CQ,
which suggests that learning composite quantizers in a dis-
tributed setting does not compromise much quality com-
pared to the centralized version. Also, our method and CQ
outperform the state-of-the-art partition-based quantization
algorithms such as PQ and OPQ, which validates the advan-
tages of addition-based quantizations.

Figure 3 shows the results on a larger dataset SIFT1M
using 64-bit and 128-bit codes. These results are consistent
with the findings in Figure 2. The curves of our DCQ and
CQ almost overlap, which again validates the efficacy of our

#Bits PQ OPQ CKM LSQ CQ DCQ

Fisher
32 0.451 0.469 0.497 0.505 0.501 0.503
64 0.471 0.492 0.538 0.564 0.560 0.554
128 0.496 0.517 0.568 0.610 0.602 0.595

VLAD
32 0.484 0.493 0.506 0.512 0.508 0.506
64 0.519 0.526 0.548 0.577 0.572 0.575
128 0.538 0.562 0.576 0.619 0.614 0.610

Table 1: The mAP on the Holidays dataset with distractors
using different code lengths.

#Bits PQ OPQ CKM LSQ CQ DCQ

Fisher
32 1.457 1.586 1.899 2.076 2.043 2.017
64 1.637 1.822 2.194 2.354 2.336 2.315
128 1.883 2.031 2.334 2.450 2.434 2.406

VLAD
32 1.639 1.788 1.906 2.172 2.126 2.072
64 1.925 2.030 2.203 2.421 2.357 2.341
128 2.088 2.177 2.349 2.644 2.584 2.587

Table 2: The performance over the UKBench dataset in
terms of scores using different length of codes encoding.

generalization of CQ to the distributed settings.

5.2. Evaluation on Image Retrieval Applications
We also evaluate our method on the application of compact
codes (Perronnin et al. 2010) to image retrieval on the IN-
RIA Holidays dataset (Jegou, Douze, and Schmid 2008) that
contains 500 queries and 991 corresponding relevant im-
ages, and the UKBench dataset (Nister and Stewenius 2006)
that contains 10, 200 images of 2, 550 groups with four im-
ages each. Following common practice (Jegou, Douze, and
Schmid 2008; 2011), we use extra one million MIRFlickr-
1M images (Huiskes and Lew 2008) as distracters.

We follow (Jegou, Douze, and Schmid 2008) to evalu-
ate the performance over the INRIA Holidays dataset with
mean average precision (mAP), i.e., the mean area under
the precision-recall curve; The evaluation metric on the UK-
Bench dataset is provided in (Nister and Stewenius 2006),
which is the score indicating how many of the other im-
ages are in the top-4 rank where one image of each group
is used as query. We use 4096-dimensional Fisher vectors
(Perronnin and Dance 2007) and VLAD vectors (Jégou et
al. 2010) as the image descriptors for both datasets.

The search results are shown in Table 1 and 2. One can
see that the performance of our approach DCQ is competi-
tive and close to CQ, overall better than PQ, OPQ and CKM,
but not as good as LSQ. However, all listed methods except
our DCQ are centralized approaches and cannot work in dis-
tributed case. Also, addition-based approaches like LSQ and
CQ still show superior accuracies to partition-based ones
such as PQ and OPQ, which is consistent to what we have
observed in ANN search experiments in Section 5.1.

5.3. Evaluation on Convergence and Efficiency
Convergence We empirically find that our algorithm is
able to fast converge to a local minima. To show this, we
measure the objective function value of Equation (5) at each
iteration and compare it with the objective function value

66

of Composite Quantization, i.e., Equation (4). We test DCQ
and CQ (Zhang, Du, and Wang 2014) on the SIFT1M dataset
with the same initialization using 64-bit codes. When the
difference of current objective value and last objective value
is less than 1% of current objective value, we consider them
as convergent and stop training. The values of Equation (5)
and (4) are comparable since both of them measure the re-
construction loss plus the constant inter-dictionary-element-
product loss. If our distributed learning algorithm works per-
fectly such that all C across all nodes are equal in each iter-
ation, then Equation (5) and (4) will have the same value.

As shown in Figure 4(a), the objective value of DCQ at
each iteration always decreases, and converges around 20
iterations. Moreover, the objective value of DCQ is not much
higher than that of the original CQ, which demonstrates the
power of the proposed distributed learning scheme.

Efficiency Although both DCQ and CQ require around 20
iterations to converge, our DCQ could largely reduce the
training time by exploiting parallel computation. To quanti-
tatively show the efficiency advantages of DCQ, we evaluate
the training time of DCQ and CQ on the SIFT1M dataset us-
ing different code lengths. We also vary the number of nodes
to see how training time can be shortened with more nodes.
When the same number of nodes are employed, the training
time might be affected by the topology of the network. For
convenience, we choose two representative topologies in this
experiments, i.e., binary tree topology and line topology.

Due to the lack of a real computing cluster, we measure
the training time by simulating each node sequentially on a
single machine. To be more specific, each simulated node
solely occupies the entire machine in turn for training on its
local data, e.g., updating the local dictionaries, and the time
cost for the slowest node to update its local dictionaries will
be regarded as the training time for the simulated cluster to
update all local dictionaries. Similar protocols are also ap-
plied to obtain the time for updating B and ε. The commu-
nication time is neglected due to the small communication
complexity as analyzed in Section 4.4.2.

Figure 4(b) presents the training time under different set-
tings. Roughly speaking, the training time seems to increase
quadratically as the code length increases. Meanwhile, the
more nodes involved in computation, the shorter the train-
ing time. This phenomenon is intuitive. With more nodes
involved in the computation, the size of data distributed to
each node becomes smaller, thus the corresponding training
time is less. Take 128-bit code length as an example, the
training time of DCQ with 16-node binary tree topology is
about 63 minutes on the learning set of SIFT1M of 100, 000
samples, while CQ takes 328 minutes using a single ma-
chine. Also, it could be observed that the line topology takes
a few more minutes to converge than binary tree topology,
but the total training time is still acceptable considering that
line topology is already the most undesiable case among all
topologies. These results demonstrate the potentials of the
proposed DCQ for massive data in real-world applications.

Note that the number of iterations to convergence, the
objective value at convergence, and the recall@R in test-
ing phase are slightly different under different settings. We

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Iteration

1.65

1.7

1.75

1.8

o
b

je
c

ti
v

e
 v

a
lu

e

×10
10

CQ

DCQ

(a) Convergence curves

16 32 64 128

Bits

0

50

100

150

200

250

300

350

T
ra

in
in

g
 T

im
e

 (
m

in
u

te
)

1-node (CQ)

4-node tree

4-node line

8-node tree

8-node line

16-node tree

16-node line

(b) Training time

Figure 4: Convergence and training time on SIFT1M dataset.
(a) The vertical axis stands for the objective function value,
the horizontal axis for the number of iterations. (b) The ver-
tical axis stands for the training time (minute), the horizontal
axis for different code lengths.

No. of nodes / topology 1 4 8 16
tree line tree line tree line

No. of iters to converge 19 22 26 20 24 21 26
objective value (×1010) 1.66253 1.66259 1.66351 1.66303 1.66389 1.66358 1.66344
recall@1 (/%) 54.43 53.27 52.78 53.86 53.45 52.19 52.55

Table 3: The results are obtained on SIFT1M dataset using
128-bit codes.

measure those 3 quantities on SIFT1M dataset using 64 bits
code. As shown in Table 3, those 3 quantities do not vary a
lot with the network topology or the number of nodes, which
demonstrates the robustness of DCQ. For the number of it-
erations to convergence, line topology takes more iterations
to converge than binary tree topology, probably due to the
larger diameter of line topology. However, we didn’t observe
correlations between the objective value at convergence and
the recall@R in testing phase, and the network topology or
the number of nodes.

6. Conclusion
In this paper, we propose Distributed Composite Quantiza-
tion (DCQ) to learn quantizers and composition codes for
distributed data. We cast the centralized Composite Quan-
tization (Zhang, Du, and Wang 2014) into a set of decen-
tralized subproblems with consensus constraints and showed
how these subproblems can be solved in parallel in a dis-
tributed manner. Our method could adapt to arbitrary net-
work topologies with low communication and computa-
tional cost. Extensive experiments on several large-scale
datasets verify the efficacy of our method.

Acknowledgements
This work is supported in part by Singapore Ministry of Edu-
cation Academic Research Fund Tier 2 MOE2015-T2-2-114
and was carried out at the Rapid-Rich Object Search (ROSE)
Lab in the Nanyang Technological University, Singapore.
The ROSE Lab is supported by the National Research Foun-
dation, Singapore, under its Interactive Digital Media (IDM)
Strategic Research Programme. We gratefully acknowledge
the support of NVAITC (NVIDIA AI Technology Centre)
for their donation of a Tesla K80 and M60 GPU used for our
research at the ROSE Lab.

The authors appreciate Xueyan Tang, Ting Zhang and
Jingdong Wang for their kind help!

67

References
Babenko, A., and Lempitsky, V. 2014. Additive quantization
for extreme vector compression. In CVPR.
Babenko, A., and Lempitsky, V. 2015. Tree quantization for
large-scale similarity search and classification. In CVPR.
Bertsekas, D. P. 1989. Parallel and distributed computation:
numerical methods. Prentice hall Englewood Cliffs, NJ.
Bhattacharjee, S. D.; Yuan, J.; Hong, W.; and Ruan, X. 2016.
Query adaptive instance search using object sketches. In
Proceedings of the 2016 ACM on Multimedia Conference.
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein, J.
2011. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations
and Trends R© in Machine Learning.
Cong, Y.; Yuan, J.; and Liu, J. 2011. Sparse reconstruction
cost for abnormal event detection. In CVPR.
Corbett, J. C.; Dean, J.; Epstein, M.; Fikes, A.; Frost,
C.; Furman, J. J.; Ghemawat, S.; Gubarev, A.; Heiser, C.;
Hochschild, P.; et al. 2013. Spanner: Googles globally dis-
tributed database. ACM Transactions on Computer Systems.
Ge, T.; He, K.; Ke, Q.; and Sun, J. 2013. Optimized product
quantization for approximate nearest neighbor search. In
CVPR.
Heo, J.-P.; Lin, Z.; and Yoon, S.-E. 2014. Distance encoded
product quantization. In CVPR.
Hestenes, M. R. 1969. Multiplier and gradient methods.
Journal of optimization theory and applications.
Hong, M.; Luo, Z.-Q.; and Razaviyayn, M. 2016. Conver-
gence analysis of alternating direction method of multipliers
for a family of nonconvex problems. SIAM Journal on Op-
timization.
Hong, W.; Meng, J.; and Yuan, J. 2018. Tensorized projec-
tion for high-dimensional binary embedding. In AAAI.
Hong, W.; Yuan, J.; and Das Bhattacharjee, S. 2017. Fried
binary embedding for high-dimensional visual features. In
CVPR.
Huiskes, M. J., and Lew, M. S. 2008. The mir flickr retrieval
evaluation. In Proceedings of the 1st ACM international
conference on Multimedia information retrieval. ACM.
Jégou, H.; Douze, M.; Schmid, C.; and Pérez, P. 2010. Ag-
gregating local descriptors into a compact image representa-
tion. In CVPR.
Jegou, H.; Douze, M.; and Schmid, C. 2008. Hamming
embedding and weak geometric consistency for large scale
image search. In ECCV.
Jegou, H.; Douze, M.; and Schmid, C. 2011. Product quan-
tization for nearest neighbor search. IEEE Transactions on
Pattern Analysis and Machine Intelligence.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE.
Leng, C.; Wu, J.; Cheng, J.; Zhang, X.; and Lu, H. 2015.
Hashing for distributed data. In ICML.

Liang, J.; Zhang, M.; Zeng, X.; and Yu, G. 2014. Distributed
dictionary learning for sparse representation in sensor net-
works. IEEE Transactions on Image Processing.
Liu, D. C., and Nocedal, J. 1989. On the limited mem-
ory bfgs method for large scale optimization. Mathematical
programming.
Liu, B.; Yuan, X.-T.; Yu, Y.; Liu, Q.; and Metaxas, D. N.
2016. Decentralized robust subspace clustering. In AAAI.
Liu, X.; Li, Z.; Deng, C.; and Tao, D. 2017. Dis-
tributed adaptive binary quantization for fast nearest neigh-
bor search. IEEE Transactions on Image Processing.
Martinez, J.; Clement, J.; Hoos, H. H.; and Little, J. J. 2016.
Revisiting additive quantization. In ECCV.
Meng, J.; Wang, H.; Yuan, J.; and Tan, Y.-P. 2016. From
keyframes to key objects: Video summarization by repre-
sentative object proposal selection. In CVPR.
Nister, D., and Stewenius, H. 2006. Scalable recognition
with a vocabulary tree. In CVPR.
Nocedal, J. 1980. Updating quasi-newton matrices with
limited storage. Mathematics of computation.
Norouzi, M., and Fleet, D. J. 2013. Cartesian k-means. In
CVPR.
Perronnin, F., and Dance, C. 2007. Fisher kernels on visual
vocabularies for image categorization. In CVPR.
Perronnin, F.; Liu, Y.; Sánchez, J.; and Poirier, H. 2010.
Large-scale image retrieval with compressed fisher vectors.
In CVPR.
Powell, M., and Authority, U. K. A. E. 1967. ”A method for
non-linear constraints in minimization problems”. Atomic
Energy Res. Estab. Theoretical Physics Div. ; AERE TP 310.
U.K.A.E.A.
Russell, B. C.; Torralba, A.; Murphy, K. P.; and Freeman,
W. T. 2008. Labelme: a database and web-based tool for
image annotation. International journal of computer vision.
Shakhnarovich, G.; Indyk, P.; and Darrell, T. 2006. Nearest-
neighbor methods in learning and vision: theory and prac-
tice.
Wang, X.; Zhang, T.; Qi, G.-J.; Tang, J.; and Wang, J. 2016a.
Supervised quantization for similarity search. In CVPR.
Wang, Z.; Duan, L.-Y.; Yuan, J.; Huang, T.; and Gao, W.
2016b. To project more or to quantize more: minimizing
reconstruction bias for learning compact binary codes. In
IJCAI.
Wang, J.; Zhang, T.; Sebe, N.; Shen, H. T.; et al. 2017. A
survey on learning to hash. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
Zhang, R., and Kwok, J. 2014. Asynchronous distributed
admm for consensus optimization. In ICML.
Zhang, T., and Wang, J. 2016. Collaborative quantization
for cross-modal similarity search. In CVPR.
Zhang, T.; Qi, G.-J.; Tang, J.; and Wang, J. 2015. Sparse
composite quantization. In CVPR.
Zhang, T.; Du, C.; and Wang, J. 2014. Composite quantiza-
tion for approximate nearest neighbor search. In ICML.

68

