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Abstract

We investigate the ride-sharing assignment problem from an
algorithmic resource allocation point of view. Given a num-
ber of requests with source and destination locations, and a
number of available car locations, the task is to assign cars to
requests with two requests sharing one car. We formulate this
as a combinatorial optimization problem, and show that it is
NP-hard. We then design an approximation algorithm which
guarantees to output a solution with at most 2.5 times the op-
timal cost. Experiments are conducted showing that our algo-
rithm actually has a much better approximation ratio (around
1.2) on synthetically generated data.

Introduction

The sharing economy is estimated to grow from $14 bil-
lion in 2014 to $335 billion by 2025 (Yaraghi and Ravi
2017). As one of the largest components of sharing econ-
omy, ride-sharing provides socially efficient transport ser-
vices that help to save energy and to reduce congestion.
Uber has 40 million monthly active riders reported in Oc-
tober 2016 (Kokalitcheva 2016) and Didi Chuxing has more
than 400 million users(Tec 2017). A large portion of the rev-
enue of these companies comes from ride sharing with one
car catering two passenger requests, which is the topic inves-
tigated in this paper. A typical scenario is as follows: There
are a large number of requests with pickup and drop-off lo-
cation information, and a large number of available cars with
current location information. One of the tasks is to assign the
requests to the cars, with two requests for one car. The as-
signment needs to be made socially efficient in the sense that
the ride sharing does not incur much extra traveling distance
for the drivers or and extra waiting time for the passengers.

In this paper we investigate this ride-sharing assignment
problem from an algorithmic resource allocation point of
view. Formally, suppose that there are a set R of requests
{(si, ti) ∈ R

2 : i = 1, . . . ,m} where in request i, an agent
is at location si and likes to go to location ti. There are also
a set D of taxis {dk ∈ R

2 : k = 1, . . . , n}, with taxi k
currently at location dk. The task is to assign two agents i
and j to one taxi k, so that the total driving distance is as
small as possible. The distance measure d(x, y) here can be
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Manhattan distance (i.e., �1-norm), Euclidean distance (i.e.,
�2-norm), or distance on graphs if a city map is available.
Here for any fixed tuple (k, {i, j}), the driver of taxi k has
four possible routes, from the combination of the following
two choices: he can pick agent i first or agent j first, and
he can drop agent i first or drop agent j first. We assume
that the driver is experienced enough to take the best among
these four choices. Thus we use the total distance of this
best route as the driving cost of tuple (k, {i, j}), denoted by
cost(k, {i, j}). We hope to find an assignment

M = {(k, {i, j}) : 1 ≤ i, j ≤ m, 1 ≤ k ≤ n}
that assigns the maximum number of requests,
and in the meanwhile with the cost(M) =∑

(k,{i,j})∈M cost(k, {i, j}), summation of the driving
cost, as small as possible. Here an assignment is a matching
in the graph in the sense that each element in R∪D appears
at most once in M .

In this paper, we formulate this ride-sharing assignment
as a combinatorial optimization problem. We show that the
problem is NP-hard, and then present an approximation al-
gorithm which, on any input, runs in time O(n3) and out-
puts a solution M with cost(M) at most 2.5 times the opti-
mal value. Our algorithm does not assume specific distance
measure; indeed it works for any distance1. We conducted
experiments where inputs are generated from uniform dis-
tributions and Gaussian mixture distributions. The approxi-
mation ratio on these empirical data is about 1.1-1.2, which
is much better than the worst case guarantee 2.5. In addition,
the results indicate that the larger n and m are, the better the
approximation ratio is. Considering that n and m are very
large numbers in practice, the performance of our algorithm
may be even more satisfactory for practical scenarios.

Related Work

Ridesharing has become a key feature to increase urban
transportation sustainability and is an active field of re-
search. Several pieces of work have looked at dynamic
ridesharing (Caramia et al. 2002; Fabri and Recht 2006;
Agatz et al. 2012; Santos and Xavier 2013; Alonso-Mora
et al. 2017), and multi-hop ridesharing (Herbawi and We-
ber 2011; Drews and Luxen 2013; Teubner and Flath 2015).

1That is, the algorithm only needs that d is nonnegative, sym-
metric and satisfies the triangle inequality.
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Another closely related optimization problem is known as
the dial-a-ride problem (Cordeau 2006), where the task is
to transport people between pickup and delivery locations
with different transportation constraints, such as time win-
dow and maximum ride time limits. Many variants of the
dial-a-ride problem were proposed depending on the spe-
cific applications. See (Cordeau and Laporte 2007; Parragh,
Doerner, and Hartl 2010) for an overview.

Our model is also closely related to the three-dimensional
assignment problem(3DA) (Crama and Spieksma 1992;
1992; Pferschy, Rudolf, and Woeginger 1994). Given three
disjoint sets of points, each with size n, the problem asks
to find a minimum-weight collection of n triangles covering
each point exactly once, where the weight of a triangle is
defined as either the sum of lengths of its sides or the sum
of the length of the two shortest sides. There are two main
differences between the 3DA problem and our model: (1) in
the 3DA problem every triangle must contain one point from
each set, while in our model every driver-requests matching
contains one driver and two ride requests; (2) we further gen-
eralize the 3DM problem by considering a pickup and a drop
off location for each ride request.

Mechanisms for ridesharing have also been studied (Ka-
mar and Horvitz 2009; Kleiner, Nebel, and Ziparo 2011;
Shen, Lopes, and Crandall 2016), where the goal is to de-
sign incentive compatible mechanisms that provide fair and
efficient assignment solutions.

Besides ridesharing, the problem of allocating shareable
resources has also been studied in other applications, such as
high dimensional stable matching (Boros et al. 2004; Eriks-
son, Sjöstrand, and Strimling 2006; Huang 2007), and the
roommate assignment problem (Abdulkadiroğlu, Sönmez,
and Ünver 2004; Chan et al. 2016; Huzhang et al. 2017).

Preliminaries

For an positive integer n, we adopt the notation [n]
def
=

{1, . . . , n}. For a set S, the set of unordered pairs of ele-
ments from S is denoted by

(
S
2

)
.

A weighted graph G is a tuple (V,E,w), where V is the
vertex set, E is the edge set and w : E → R is the edge
weight function. We often drop E when E =

(
V
2

)
. In this pa-

per the weight w can be any metric satisfying non-negativity
(w(x, y) ≥ 0), symmetry (w(x, y) = w(y, x)) and the trian-
gle inequality (w(x, y)+w(y, z) ≥ w(x, z)). In practice, the
distance function can be �2, �1, or distance on a road graph.
We extend the weight notation to paths:

w(a1, a2, . . . , ak) =
k−1∑
i=1

w(ai, ai+1).

A perfect matching M in a graph is a maximal set
of vertex-disjoint edges. A minimum matching M in a
weighted graph is a perfect matching with minimum total
weight. A minimum matching M in a weighted graph of n
vertices can be found in time O(n3) (say, by reducing it to a
maximum weight matching) (Gabow 1990).

Problem formulation. Suppose that we have a set of m
requests R = {1, . . . ,m}, where each request i contains a

dk
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(a) d → si → sj → ti → tj

dk
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ti
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(b) d → sj → si → ti → tj
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tj

(c) d → si → sj → tj → ti

dk

si

sj

ti

tj

(d) d → sj → si → tj → ti

Figure 1: Four possible routes for driver k to serve requests
i and j.

pickup location si and a drop-off location ti. We also have
a set of n available drivers D = {1, . . . , n}, with driver k
at location dk. We would like to pair up requests and also
match drivers to the paired requests. More precisely, we aim
to find an allocation M = {(k,Rk) : k ∈ D}, where
Rk ⊆ R and R1, R2, . . . Rn are mutually disjoint subsets
of requests. For each driver k ∈ D, this allocation assigns k
to serve all requests in Rk. Given the low-capacity nature of
ride-sharing applications, in this paper we restrict ourselves
to the case with |Rk| ≤ 2 for every k.

Next we define a cost function cost(k,Rk) for single-
driver routing. This function returns the distance of the
shortest distance that driver k needs to travel to serve Rk.
It is easy to see that when Rk has only one request i,
cost(k,Rk) = w(dk, si) + w(si, ti). When Rk has two re-
quests i and j, there are four routes one can choose, corre-
sponding to different orders to pick up and drop off the two
passengers (Figure 1). Thus

cost(k, {i, j}) = min{w(dk, si, sj , ti, tj),
w(dk, si, sj , tj , ti),

w(dk, sj , si, ti, tj),

w(dk, sj , si, tj , ti)}
The cost of an allocation M is in turn defined as

cost(M) =
∑

(k,Rk)∈M

cost(k,Rk).

Given input weighted graph G = (V,E,w), the pickup and
drop-off locations LR = {(si, ti) ∈ V 2 : i ∈ R} and the
driver locations LD = {dk ∈ V : d ∈ D}, the ride-sharing
problem asks to find an allocation that assigns the maximum
number of requests with the minimum total cost.

Remark. When defining the possible routes for driver k to
pick up requests i and j, there are two additional routes that
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can be taken into consideration:

(dk → si → ti → sj → tj) and
(dk → sj → tj → si → ti).

Note that both of these routes complete one request before
serving the other, hence they do not fit into the “rideshar-
ing” category in a strict sense. Nevertheless, our results can
be easily generalized to include these two possibilities. The
only changes are to add these two routes to the definition of
cost function, and to Step (2) and (3) of Algorithm 1 de-
scribed later. All proofs and analysis remain unchanged.

NP Hardness

In this section we will show that the ride-sharing problem
defined in the last section is NP-hard.

Theorem 1 The ride-sharing problem is NP-hard.

Proof We show a reduction from the 3-dimensional perfect
matching problem (3DM), which is known to be NP-hard
(Garey and Johnson 1990). Recall that 3DM is as follows:
Given three finite and disjoint sets I, J,K, each of size n,
and a subset T ⊆ I×J×K with size m ≥ n (i.e. T consists
of triples (i, j, k) such that i ∈ I, j ∈ J , and k ∈ K), the
3DM problem asks if there exists a subset M ⊆ T with n
triples, such that every element in I∪J∪K occurs in exactly
one triple of M .

Consider a 3DM problem instance I = {I0, J0,K0, T0}.
We construct a ride-sharing problem instance as follows.
There are n+ 3m drivers

D = K0 ∪ {ki(e), kj(e), kr(e) : e ∈ T0},
where ki(e), kj(e), kr(e) are (the IDs of) three new drivers
introduced with each edge e, and 2n+ 6m requests

R =I0 ∪ {i0(e), i1(e) : e ∈ T0} ∪
J0 ∪ {j0(e), j1(e) : e ∈ T0} ∪
{r0(e), r1(e) : e ∈ T0}.

where i0(e), i1(e), j0(e), j1(e), r0(e), r1(e) are (the IDs of)
the new requests introduced for each edge e.

For each request i ∈ R, we assume that si = ti, and
will show that even for this degenerate case, the allocation
problem is still NP-hard. Note that now we have

cost(k, {i, j}) = min{w(dk, si) + w(si, sj),

w(dk, sj) + w(sj , si)}.
The distance function w are defined by a graph G that

contains all locations of drivers and requests as vertices.
More specifically, G consists of m subgraphs G(e), indexed
by elements e = (i, j, k) ∈ T0. Each G(e) is represented
in Figure 2. For any two locations �1, �2 ∈ G, we let
w(�1, �2) = 1 if (�1, �2) is an edge in G, and w(�1, �2) = 2
otherwise. It is easily seen that the triangle inequality is sat-
isfied for this weight function.

Given this construction, we will next show that the 3DM
problem has perfect matching if and only if the ride-sharing
problem has an optimal allocation with total cost 2n + 6m.
First, if the 3DM problem has a perfect matching M , then

i1(e) j1(e) kr(e)

ki(e) kj(e) r0(e)
i0(e) j0(e) r1(e)

i j k

Figure 2: Component Ge.

there is an optimal allocation for the ride-sharing problem
consisting of

{(kr(e), {i1(e), j1(e)}), (ki(e), {i0(e), i}),
(kj(e), {j0(e), j}), (k, {r0(e), r1(e)})}

for each e = (i, j, k) ∈ M (demonstrated in Figure 3a), and

{(ki(e), {i0(e), i1(e)}), (kj(e), {j0(e), j1(e)}),
(kr(e), {r0(e), r1(e)})}

for each e = (i, j, k) ∈ T0\M (demonstrated in Figure 3b).
The total cost of this allocation is 2n + 6m, which is the
smallest over all possible allocations.

i1(e) j1(e) kr(e)

ki(e) kj(e) r0(e)
i0(e) j0(e) r1(e)

i j k

(a) e = (i, j, k) ∈ M

i1(e) j1(e) kr(e)

ki(e) kj(e) r0(e)
i0(e) j0(e) r1(e)

i j k

(b) e = (i, j, k) ∈ T0\M

Figure 3
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On the other hand, if the ride-sharing problem admits an
allocation of total cost 2n + 6m, it is not hard to see that
the allocation must be of the above format, from which we
can derive a perfect matching for the 3DM problem. This
completes the NP-hardness proof. �

Algorithm

In this section, we present an approximation algorithm for
the ride sharing problem. For simplicity, we assume that
m = 2n at this stage.

The algorithm takes a two-phase greedy approach. In the
first phase, it matches the 2n requests into n pairs based
on the shortest distance to serve any request pair but on the
worse pickup choice. In the second phase, we assign drivers
to the pairs formed in the previous phase, under the assump-
tion that the distance from a driver k to a pair of requests is
distance from dk to the nearer pickup location of the two.

The algorithm is given in Algorithm 1. Recall that R =
{1, . . . ,m}, D = {1, . . . , n}, and that the input consists of
the weighted graph G = (V,E,w), the pickup and drop-off
locations LR = {(si, ti) ∈ V 2 : i ∈ R} and the driver
locations LD = {dk ∈ V : d ∈ D}.

Algorithm 1 Allocation(G,LR, LD)

Input: A nonnegative weighted graph G = (V,E,w),
request locations LR = {(si, ti) ∈ V 2 : i ∈ R},
driver locations LD = {dk ∈ V : d ∈ D}.

Output: An allocation M = {(k, {i, j}) : k ∈ D, i, j ∈
R}.

1: for i, j ∈ R do
2: uij = min{w(si, sj , ti, tj), w(si, sj , tj , ti)}

// the shortest route that picks up request i first

3: uji = min{w(sj , si, ti, tj), w(sj , si, tj , ti)}
// the shortest route that picks up request j first

4: v1({i, j}) = max{uij , uji}.
5: end for
6: Find a minimum weight perfect matching M1 in the

weighted graph G1
def
= (R, v1).

7: for k ∈ D and {i, j} ∈ M1 do
8: v2(k, {i, j}) = min{w(dk, si), w(dk, sj)}.
9: end for

10: Find a minimum weight perfect matching M2 in the
weighted bipartite graph G2

def
= (D,M1, v

2).
11: Output M = M2

Analysis

Theorem 2 On any input, Algorithm 1 runs in time O(n3)
and outputs a solution M with cost(M) at most 2.5 times
the optimal value.

To prove Theorem 2, we further introduce the following
notation. Fix an optimal solution M∗ = {(k,Rk = {i, j}) |
the optimal solution assigns driver k to pick up i and j}, and
let M∗

R = {Rk | (k,Rk) ∈ M∗}.

For every k ∈ D and Rk ⊆ R, recall that cost(k,Rk)
is the shortest distance for driver k to serve requests in Rk.
Note that cost(k,Rk) consists of two parts. We let

cost(k,Rk) = costD(k,Rk) + costR(k,Rk),

where costD(k,Rk) is the distance from dk to the first
pickup location in the optimal route, and costR(k,Rk) is the
distance from the first pickup location to the last drop-off in
the optimal route. Given an allocation M , we then define
costR(M) =

∑
(k,Rk)∈M costR(k,Rk).

The following two lemmas relate the total costs of M1

and M2 (in the algorithm) to their corresponding parts in
M∗. By slight abuse of notation, in the following we use
v1(M1) to denote

∑
Rk∈M1

v1(Rk) and v2(M2) to denote∑
(k,Rk)∈M2

v2(k,Rk).

Lemma 3 v1(M1) ≤ costR(M
∗) +

∑
{i,j}∈M∗

R

w(si, sj)

Proof Consider any (k,Rk = {i, j}) ∈ M∗.
Assume without loss of generality that in the
optimal solution, driver dk picks up passenger
i at si first. That is, costR(k,Rk) = uij =
min{w(si, sj , ti, tj), w(si, sj , tj , ti), w(si, ti, sj , tj)}.
Consider two possibilities:
• v1({i, j}) = uij = costR(k, {i, j});
• v1({i, j}) = uji. By triangle inequality, it is not hard to

see that v1({i, j}) ≤ costR(k, {i, j}) + w(si, sj).
Adding above (in)equalities together for every (k,Rk) ∈

M∗ gives v1(M∗
R) ≤ costR(M

∗) +
∑

{i,j}∈M∗
R
w(si, sj).

Next note that M1 is the minimum weight matching with
regard to v1, hence

v1(M1) ≤ v1(M∗
R) ≤ costR(M

∗) +
∑

{i,j}∈M∗
R

w(si, sj).

�

Lemma 4 v2(M2)≤ 1

2

∑
(k,{i,j})∈M∗

(w(dk, si)+w(dk, sj)).

Proof Consider graph

G′ = (V,M1 ∪ {({i, k}, {j, k}) : (k, {i, j}) ∈ M∗}).
Note that every vertex has degree 2 in graph G′.
Thus G′ consists of a collection of disjoint cycles.
Pick an arbitrary such cycle C, C can be written as
(i1, j1, k1, i2, j2, k2, . . . , it, jt, kt, i1), where {ia, ja} ∈ M1

and ka ∈ D for each 1 ≤ a ≤ t. Thus C can be partitioned
into 3 matchings
• MC

1 = M1 ∩ C

• MC
2 = {{j1, k1}, {j2, k2}, . . . , {jt, kt}}

• MC
3 = {{k1, i2}, {k2, i3}, . . . , {kt, i1}}.

Combining all cycles together, we have M1 =
⋃

C∈G′ MC
1 .

Let MG′
2 =

⋃
C∈G′ MC

2 and MG′
3 =

⋃
C∈G′ MC

3 , then
both are perfect matchings in G2 = (D,M1, v

2). Recall
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that M2 is a minimum weight perfect matching in G2 =
(D,M1, v

2), and v2 is so defined that

v2(k, {i, j}) ≤ w(dk, si), and v2(k, {i, j}) ≤ w(dk, sj).

Therefore, we have both

v2(M2) ≤
∑

{j,k}∈MG′
2

w(dk, sj)

and
v2(M2) ≤

∑
{k,i}∈MG′

3

w(dk, si).

Thus

v2(M2) ≤ 1

2

⎛
⎜⎝

∑

{j,k}∈MG′
2

w(dk, sj) +
∑

{k,i}∈MG′
3

w(dk, si)

⎞
⎟⎠

=
1

2

∑
(k,{i,j})∈M∗

(w(dk, si) + w(dk, sj)).

�

Lemma 5 The total cost of M∗ satisfies

cost(M∗) ≥ 1

2

∑
(k,{i,j})∈M∗

(w(si, sj) + w(dk, si) + w(dk, sj))

Proof Suppose that for driver k to serve requests i and j, the
best route is to first pick up i (the other case is symmetric).
Then

cost(k, {i, j}) = w(dk, si) + uij

≥ w(dk, si) + w(si, sj). (1)

By triangle inequality, we have w(dk, si) ≥ w(dk, sj) −
w(si, sj). Plugging this into Eq.(1) gives

cost(k, {i, j}) ≥ w(dk, sj). (2)

Adding Eq.(1) and Eq.(2) and dividing by 2 proves the
lemma as desired. �

Now we are ready to prove Theorem 2.
Proof [of Theorem 2]

Let M be the allocation returned by the algorithm. We
have

cost(M)

=
∑

(k,{i,j})∈M

min{w(dk, si) + uij , w(dk, sj) + uji}

≤
∑

(k,{i,j})∈M

min{w(dk, si), w(dk, sj)}+ v1({i, j})

= v1(M1) +
∑

(k,{i,j})∈M

min{w(dk, si), w(dk, sj)}

= v1(M1) + v2(M2)

Next we plug in Lemma 3 and Lemma 4 to replace
v1(M1) and v2(M2). This gives us

v1(M1) + v2(M2)

≤ costR(M
∗) +

∑
{i,j}∈M∗

R

w(si, sj)

+
1

2

∑
(k,{i,j})∈M∗

(w(dk, si) + w(dk, sj))

= costR(M
∗) +

1

2

∑
{i,j}∈M∗

R

w(si, sj)

+
1

2

∑
(k,{i,j})∈M∗

(w(si, sj) + w(dk, si) + w(dk, sj))

≤ costR(M
∗) +

1

2

∑
{i,j}∈M∗

R

w(si, sj) + cost(M∗)

(by Lemma 5)

≤ cost(M∗) +
1

2
cost(M∗) + cost(M∗)

=
5

2
cost(M∗)

�

Remark. In this algorithm we assume m = 2n, i.e., the
number of requests is exactly twice the number of drivers.
A natural open question is to relax this assumption and con-
sider more general conditions. When m < 2n, the solution
would allow some drivers to serve only one or even zero
request. When m > 2n, the problem becomes to find 2n
requests among the m requests for the drivers to serve with
minimum total cost. We conjecture that some natural vari-
ants of Algorithm 1 could solve these problems with simi-
lar approximation guarantees. The performance of one such
variant to handle the case with m > 2n is demonstrated in
the following section.

Experiments

We conducted several experiments to show that empirically
our algorithm has a better approximation ratio than the the-
oretic guarantee of 2.5 in the worst case in the last section.
We consider region C

def
= [0, B] × [0, B] for a big num-

ber B (such as 100). We tested two distance measures: �1-
norm and �2-norm. The inputs {si, ti, dk : i ∈ R, k ∈ D}
in two ways. In the first, we generate all si, ti, dk indepen-
dently from uniform distribution on C. The second distri-
bution for inputs si, ti, dk is Gaussian mixture, where we
have a number of centers {μ1, . . . , μc} and covariance ma-
trices Σ1, . . . ,Σc. Each si = (xs

i , y
s
i ) is drawn in a two-step

procedure: First sample a j ∈ [c] from a probability distribu-
tion p over [c], and then sample si from the two-dimensional
Gaussian N(μj ,Σj). For simplicity, we take p to be uniform

and Σj =

(
σ, 0
0, σ

)
for some positive parameter σ.
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n = 10 n = 20 n = 30 n = 40 n = 50
B=10 �1: 1.23 �1: 1.18 �1: 1.16 �1: 1.14 �1: 1.10

�2: 1.21 �2: 1.20 �2: 1.15 �2: 1.14 �2: 1.12
B=50 �1: 1.23 �1: 1.19 �1: 1.17 �1: 1.16 �1: 1.15

�2: 1.19 �2: 1.18 �2: 1.18 �2: 1.17 �2: 1.16
B=100 �1: 1.24 �1: 1.21 �1: 1.20 �1: 1.21 �1: 1.18

�2: 1.21 �2: 1.22 �2: 1.18 �2: 1.16 �2: 1.16

Table 1: Approximation ratios for uniform distribution

1 center 5 centers 10 centers
σ = 1 �1: 1.19 �1: 1.14 �1: 1.15

�2: 1.17 �2: 1.16 �2: 1.15
σ = 5 �1: 1.16 �1: 1.14 �1: 1.16

�2: 1.16 �2: 1.13 �2: 1.17
σ = 10 �1: 1.15 �1: 1.14 �1: 1.17

�2: 1.18 �2: 1.14 �2: 1.17

Table 2: Approximation ratios for Guassian mixture distri-
bution

As finding the exact optimal value OPT is NP hard, we
can only compare the output of our algorithm with a lower
bound L of the optimal value. The lower bound we use is
the following. Take a minimum weight perfect matching
M ′

1 in graph G1 = ([m], costmin) where costmin(i, j) =
min{uij , uji}. Then take a minimum weight bipartite per-
fect matching M ′

2 in G2 = (R,D,w). It is not hard to see
that L def

= costmin(M
′
1) + w(M ′

2) is a lower bound of the
optimal value OPT . Indeed, as the optimal solution can be
partitioned into two parts, M∗

1 and M∗
2 , where M∗

1 is a per-
fect matching in G1 and M∗

2 is a bipartite perfect match-
ing in G2. As M ′

1 and M ′
2 are the minimum weight perfect

matchings in G1 and G2 respectively, so

L = costmin(M
′
1) + w(M ′

2)

≤ costmin(M
∗
1 ) + w(M∗

2 )

≤ cost(M∗
1 ) + w(M∗

2 )

≤ OPT,

and therefore

α′ def
=

cost(M)

L
≥ α

def
=

cost(M)

OPT
. (3)

In other words, for any output allocation M , the quantity α′
defined as cost(M)/L is an upper bound of the true approx-
imation ratio α of this solution M . And we will show that
even this α′ is empirically very small.

The results for inputs drawn from the uniform distribution
are illustrated in Table 1, with different parameter values of
B, n tested. The results for Gaussian mixture are illustrated
in Table 2, with different parameter values of σ, c tested (and
B fixed to 100, n fixed to 50).

From these results, we can observe the following.

1. Though the theoretic upper bound is 2.5 as shown in the
previous section, even the upper bound α′ of the approxi-
mation ratio is only about 1.1-1.2 on empirical data.

1 center 5 centers 10 centers
σ = 1 �1: 1.91 �1: 1.95 �1: 1.89

�2: 1.91 �2: 1.86 �2: 1.96
σ = 5 �1: 1.89 �1: 1.88 �1: 1.89

�2: 1.92 �2: 1.94 �2: 1.87
σ = 10 �1: 1.87 �1: 1.89 �1: 1.91

�2: 1.85 �2: 1.88 �2: 1.93

Table 3: Approximation ratios for Guassian mixture distri-
bution when m = 3n

2. The empirical approximation ratio upper bound α′ varies
little with parameters B, c, σ and choice of norms (�1 or
�2), but it does decrease with n. Considering that in prac-
tice the number of requests and the number of taxis are
huge, our algorithm likely exhibits even better approxi-
mation ratio.

We also demonstrate the performance of a variant of Al-
gorithm 1 for the case m > 2n, i.e., the number of requests
is more than twice the number of drivers. Our goal is to as-
sign 2n out of the m requests to the n drivers to serve with
minimum total cost. To handle this case, we change Step (6)
of Algorithm 1 to “Find a minimum weight matching of size
n”. The rest parts of Algorithm 1 remain the same. We test
this algorithm on inputs drawn from a Gaussian mixture dis-
tribution. All parameters are the same as in Table 2, except
that we set n = 50 and m = 150. The results are illus-
trated in Table 3. We observe that the upper bound for the
approximation ratio drops to around 1.8-1.9 for most cases.
Note that the upper bound itself is worse than the case of
m = 2n, because now with more requests, the minimum
weight matching have a lower cost. Therefore, the appar-
ently worse ratio of 1.8-1.9 does not necessarily mean that
the algorithm is bad in the case of m > 2n; it may be our
analysis is looser. How to further improve the analysis, the
performance of these algorithms, and prove that they deliver
similar approximation guarantees remain as interesting open
questions for future studies.

Concluding Remarks and Open Questions

In this work, we formulate the ride-sharing as a combina-
torial optimization problem, and show that it is NP-hard.
We design an approximation algorithm which guarantees to
output a solution with at most 2.5 times the optimal cost,
and the algorithms runs in polynomial time. Experiments are
conducted showing that our algorithm actually has a much
better approximation ratio (around 1.1-1.2) on synthetically
generated data, and the ratio decreases as m and n increase.

Our results lead to many future working directions. One
open question, as we discussed earlier, is to relax the m =
2n assumption and consider more general conditions. An-
other interesting direction is to add time constraints to the
model and study the dynamic real-time assignment problem.
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Room assignment-rent division: A market approach. Social
Choice and Welfare 22(3):515–538.
Agatz, N.; Erera, A.; Savelsbergh, M.; and Wang, X. 2012.
Optimization for dynamic ride-sharing: A review. European
Journal of Operational Research 223(2):295–303.
Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.;
and Rus, D. 2017. On-demand high-capacity ride-sharing
via dynamic trip-vehicle assignment. Proceedings of the Na-
tional Academy of Sciences 201611675.
Boros, E.; Gurvich, V.; Jaslar, S.; and Krasner, D. 2004.
Stable matchings in three-sided systems with cyclic prefer-
ences. Discrete Mathematics 289(1):1–10.
Caramia, M.; Italiano, G. F.; Oriolo, G.; Pacifici, A.; and
Perugia, A. 2002. Routing a fleet of vehicles for dynamic
combined pick-up and deliveries services. In Operations Re-
search Proceedings 2001, 3–8. Springer.
Chan, P. H.; Huang, X.; Liu, Z.; Zhang, C.; and Zhang, S.
2016. Assignment and pricing in roommate market. In
AAAI, 446–452.
Cordeau, J.-F., and Laporte, G. 2007. The dial-a-ride prob-
lem: models and algorithms. Annals of operations research
153(1):29.
Cordeau, J.-F. 2006. A branch-and-cut algorithm for the
dial-a-ride problem. Operations Research 54(3):573–586.
Crama, Y., and Spieksma, F. C. 1992. Approximation al-
gorithms for three-dimensional assignment problems with
triangle inequalities. European Journal of Operational Re-
search 60(3):273–279.
Drews, F., and Luxen, D. 2013. Multi-hop ride sharing. In
Sixth annual symposium on combinatorial search.
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