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Abstract

Singular Value Decomposition (SVD) is a popular approach
in various network applications, such as link prediction and
network parameter characterization. Incremental SVD ap-
proaches are proposed to process newly changed nodes and
edges in dynamic networks. However, incremental SVD ap-
proaches suffer from serious error accumulation inevitably
due to approximation on incremental updates. SVD restart is
an effective approach to reset the aggregated error, but when to
restart SVD for dynamic networks is not addressed in literature.
In this paper, we propose TIMERS, Theoretically Instructed
Maximum-Error-bounded Restart of SVD, a novel approach
which optimally sets the restart time in order to reduce error
accumulation in time. Specifically, we monitor the margin
between reconstruction loss of incremental updates and the
minimum loss in SVD model. To reduce the complexity of
monitoring, we theoretically develop a lower bound of SVD
minimum loss for dynamic networks and use the bound to re-
place the minimum loss in monitoring. By setting a maximum
tolerated error as a threshold, we can trigger SVD restart auto-
matically when the margin exceeds this threshold. We prove
that the time complexity of our method is linear with respect to
the number of local dynamic changes, and our method is gen-
eral across different types of dynamic networks. We conduct
extensive experiments on several synthetic and real dynamic
networks. The experimental results demonstrate that our pro-
posed method significantly outperforms the existing methods
by reducing 27% to 42% in terms of the maximum error for
dynamic network reconstruction when fixing the number of
restarts. Our method reduces the number of restarts by 25% to
50% when fixing the maximum error tolerated.

1 Introduction

Many methods have been proposed for network analysis,
aiming to unlock the power of network data. Among them,
Singular Value Decomposition (SVD) (Eckart and Young
1936) is a major player and proven to be successful in vari-
ous network applications, such as link prediction (Ou et al.
2016) and network parameter characterization (Chen and
Tong 2015).

Most of the existing SVD methods, such as the widely
used Lanczos Algorithm (Lanczos 1950), are designed for
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static networks. In real world, however, networks are dy-
namic in nature. New nodes and edges may be added
and existing nodes and edges may be deleted at any
time. These dynamic changes make the previous SVD re-
sults unreliable. Incremental SVD methods (Brand 2006;
Chen and Tong 2015) are proposed to update previous
SVD results to incorporate the changes without restarting
the algorithm. However, as they all make some approxi-
mations in the incremental updating process, error accu-
mulation is inevitable as the number of dynamic changes
keeps increasing. In order to overcome serious deviation
from the optimal SVD, incremental SVD methods still need
to restart SVD at some points (Chen and Candan 2014;
Chen and Tong 2015). Surprisingly, the problem of when
to restart SVD for dynamic networks largely remains open in
literature. This problem is critical because the effectiveness
and efficiency of SVD restarts heavily depend on the restart
timing. On the one hand, a too early restart results in redun-
dant calculation and a severe waste of computation resources.
On the other hand, a too late restart leads to serious error
accumulation.

How to optimally conduct SVD restart for dynamic net-
works is a challenging problem. The main reason is that
dynamic changes of networks per se are sophisticated, and
different changes have different impacts on SVD results,
causing non-uniform error accumulation in different time pe-
riods or different batches of changes (as shown in Figure 1).
Therefore, this problem cannot be straightforwardly settled
by heuristic methods, such as restarting after a certain time
interval or a certain number of changes (as shown in Figure
2). (Chen and Candan 2014) propose to monitor the recon-
struction loss and restart SVD when the loss exceeds a preset
threshold. However, the reconstruction loss is constituted
by both the intrinsic loss in SVD model and the accumu-
lated error caused by approximations in incremental updates.
Because the intrinsic loss in SVD model is not related to
incremental updates and still exists even after restarting, it
is the second part of the loss that should be used to instruct
SVD restart, rather than the whole reconstruction loss.

To solve this problem, we propose TIMERS1 (for Theoret-
ically Instructed Maximum-Error-bounded Restart of SVD),
a novel approach to optimally set the restart time in order to

1The code is available at http://nrl.thumedia.org/
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Figure 1: Preliminary study results. We calculate error accumulation in different time periods given the length of interval for
calculating the error is fixed. Colored lines are the average and black error bars indicate the standard derivation. The results show
that while the average error increases monotonously with the length of the interval, the variation also increases dramatically,
suggesting non-uniform error accumulation in different time periods. See Section 3.1 for details.
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Figure 2: Preliminary study results. We reproduce the real evolving process of the network and restart SVD using the true error.
Three measurements used in baselines are calculated between two consecutive restart time points: the number of edge changes,
the time interval and the change of reconstruction loss. No obvious pattern is observed, suggesting that no simple correlation
between the baselines and the true error can be induced. See Section 3.1 for details.

reduce error accumulation in time. Instead of monitoring the
overall reconstruction loss (Chen and Candan 2014), we pro-
pose a novel framework to monitor the margin between the
reconstruction loss and the minimum loss in SVD model. We
term this margin as error, which exactly measures the extra
loss caused by incremental updates if we do not restart SVD.
In order to avoid computing SVD minimum loss at each time
slice as its complexity is the same as SVD restart, we theo-
retically explore a lower bound of the minimum loss based
on matrix perturbation, and use the bound to calculate the
error. In this way, the complexity of monitoring error is only
linear with respect to the number of local dynamic changes.
Finally, we implement the maximum-error-bounded restart
by setting a threshold to trigger SVD restarts automatically if
the margin exceeds this threshold. We show that TIMERS has
several desired merits including scalability, general applica-
bility on different types of dynamic networks and flexibility
to cooperate with current incremental SVD methods.

We demonstrate the effectiveness and efficiency of our
method by conducting extensive experiments on several
real and synthetic networks of different types, including
weighted/unweighted, signed/unsigned ones. The results in
dynamic network reconstruction demonstrate that, when fix-
ing the number of restarts, TIMERS has a much lower max-
imum error (27% to 42%) and, when fixing the maximum
error, TIMERS can significantly reduce the number of restarts
(25% to 50%) over the existing methods. We also demonstrate
that these improvements subsequently boost performance in
dynamic network applications, such as link prediction and
network parameter characterization.

The contributions of our paper are summarized as follows:
• We solve the critical open problem of when to restart SVD

for dynamic networks by proposing TIMERS, a novel
approach to optimally set the restart time in order to reduce
error accumulation in time.

• We theoretically explore a lower bound of SVD minimum
loss on dynamic networks based on matrix perturbation,
which can be efficiently calculated in linear time complex-
ity. Based on the bound and setting a maximum tolerated
error as a threshold, we implement TIMERS with theoreti-
cal foundation.

• The experimental results demonstrate that our proposed
method reduces 27% to 42% in terms of the maximum
error when fixing the number of restarts, and reduces the
number of restarts by 25% to 50% when fixing the maxi-
mum error tolerated.
The rest of the paper is organized as follows. In Section 2,

we briefly review related works. We report observations of
preliminary studies and formulate the problem in Section 3.
In Section 4, we introduce TIMERS, our proposed approach.
The experimental results are reported in Section 5. Finally,
we conclude our findings in Section 6.

2 Related Work

Many methods have been proposed for network analysis
(Ou et al. 2015; Wang, Cui, and Zhu 2016; Wang et al. 2017).
Among them, Singular Value Decomposition (SVD) is proven
to be successful in many important network applications.
For example, the singular vectors of an adjacency matrix or
its variations, such as the transition matrix, can be used to
represent nodes in the network (Ou et al. 2016). Spectral
analysis usually involves calculating SVD on the Laplacian
matrix of a network (Belkin and Niyogi 2001). The singular
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values, or the equivalent eigenvalues for undirected networks,
are associated with the network parameters (Chen and Tong
2015).

Incremental SVD methods have been proposed in matrix
perturbation literature for decades and a brief summary of
early works can be found in (Brand 2006). Basically, all early
methods suffered from the problem of high time complexity
or low accuracy. Later, more specific methods are proposed,
for example, the algorithm to process data with low-rank mod-
ifications (Brand 2006). Until now, incremental SVD remains
an active research direction. Incremental SVD has been ap-
plied to multiple areas, such as recommendation (Sarwar et al.
2002), image processing (Brand 2002) and network analysis
(Chen and Tong 2015). However, all methods accumulate er-
ror inevitably because some approximations have to be made
in the incremental updating process (Chen and Candan 2014;
Chen and Tong 2015).

When to restart SVD, which is critical to incremental
SVD, largely remains open in literature. Besides some heuris-
tic methods that are commonly used in industry, such as
restarting after a certain time interval or a certain number of
changes, (Chen and Candan 2014) propose to restart SVD
based on the overall reconstruction loss. As the overall con-
struction loss includes the loss caused by the SVD model
itself, this method is not suitable to set the SVD restart time.

Matrix sketching is another series of studies aiming to re-
duce the dimensionality of dynamic matrices (Liberty 2013;
Cohen et al. 2015). The essential idea is to maintain a low di-
mensional “sketch” matrix to approximate the original matrix
in certain properties. However, they usually require the di-
mensionality strictly much larger than the rank of the original
matrix for theoretical guarantee (Cohen et al. 2015), which
is not suitable for network data because the rank of the ad-
jacency matrix is not rigorously low due to the power-law
distribution (Xu, Tao, and Xu 2016). In addition, most matrix
sketching methods are based on the row-model (i.e. rows of
the matrix come in stream) and thus cannot be applied to
the setting of dynamic networks, whose elements change in
arbitrary order (Liberty 2013). Our method, to the contrary,
is especially designed for SVD restart problem on dynamic
networks.

3 Observations and Problem Formulation

3.1 Preliminary Study and Observations

In this section, we report some preliminary study results to
investigate whether the existing approaches can solve the
problem of SVD restart for dynamic networks. We summa-
rize all currently available SVD restart methods, including
two heuristic methods and one previously proposed method:
• Heu-FL: restart SVD after a fixed number of edges

changed
• Heu-FT: restart SVD after a fixed amount of time passed
• LWI2 (Chen and Candan 2014): restart SVD whenever the

reconstruction loss exceeds a preset threshold
First, we show the fact that error accumulation is not uni-

form in different time periods in a dynamic network. Five
real networks (see Section 5.1 for detail) are used. For each

network, we divide the dynamic changes into T = 100 time
slices with an equal number of changes. Then, we set a start-
ing time slice t0 to run SVD and calculate error accumulation
after a fixed interval Δ of time slices, i.e. restart at time slice
t0 and calculate the error at time slice t0 +Δ (refer Eqn (1)
for error calculation). We slide t0 from 1 to T − Δ to get
the error in different time periods and report its mean value
and standard deviation. The results of varying Δ from 1 to
10 are plotted in Figure 1. While the average error increases
monotonously with the interval length, the variation also
increases dramatically, suggesting that error tends to vary
greatly in different time periods. We get similar observations
when using equal time duration in dividing time slices.

Next, we show that the problem of setting SVD restart time
for dynamic networks cannot be well solved by the afore-
mentioned methods. Specifically, we first run SVD in each
time slice as the ground truth. Then, we reproduce the real
evolving process of the network by gradually adding the dy-
namic changes into the static network and restart SVD using
the ground truth, i.e. when the true error exceeds a threshold.
Three measurements are calculated between two consecu-
tive restarts: the number of edges changed, the time interval
and the change of reconstruction loss, corresponding to three
baselines. From Figure 2, no obvious pattern can be induced
for any measurement. For example, for the number of edges,
three networks (FACEBOOK, INTERNET, WIKI) have a
clear ascending pattern while one (DBLP) is descending and
the other one (MATH) is unstable. For the time interval, out-
lier values appear in two networks (INTERNET, WIKI). The
reconstruction loss also fails and vibrates violently.

The above observations suggest that the existing methods
cannot work well in finding the appropriate restart time for
dynamic networks. The results also reveal that it is technically
challenging to solve the problem because different dynamic
networks have completely different dynamic patterns.

3.2 Problem Formulation

Notations Suppose we have an undirected network G with
N nodes and M edges. Following the commonly used no-
tations, we use A to denote its adjacency matrix. A (i, :)
and A (:, i) stand for its ith row and column respectively.
A (i, j) is the weight of the edge between i and j. For undi-
rected networks, A is symmetric and A (i, j) = A (j, i).
A (i, j) is 0 or 1 for unweighted networks and any non-
negative number for weighted networks. Negative values
are allowed for signed networks. AT denotes the transpose
of A and tr (A) is the trace. For dynamic networks, we use
subscript on the right to denote the time slice, e.g. At0 , and
the changed part of the network at time slice t is denoted as
ΔAt = At −At−1.

Maximum-Error-Bounded SVD Restart SVD for net-
works aims to find the low rank decomposition of the simi-
larity matrix S = S (A) by minimizing the following recon-
struction loss function:

J = ‖S−U ·Σ ·VT ‖2F , (1)

where S(·) is a symmetric similarity function, U,V ∈
RN×k are unitary matrices, Σ ∈ Rk×k is a non-negative
diagonal matrix and k is the dimensionality of the low-rank
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space. Some commonly used similarity functions include the
high-order proximity, the Laplacian matrix, etc. The mini-
mum loss, which is a function of S and k and denoted as
L (S, k), is proven to be (Stewart 1990)

L(S, k) = min
U,Σ,V

J =

N∑
l=k+1

λ2
l , (2)

where λl are eigenvalues of S in descending magnitude.
For dynamic networks, we have a static network A0 and

its evolving data in T time slices. The evolution of dynamic
networks includes the phenomena of adding or deleting nodes
and edges. As adding or deleting nodes can be simply incor-
porated by setting empty rows/columns in the matrix as in
(Li et al. 2017), here we focus more on adding or deleting
edges, and thus formulate the evolving process as the change
of a fixed-dimension adjacency matrix ΔAt, 1 ≤ t ≤ T .

The goal of SVD on dynamic networks is to efficiently
calculate the low rank decomposition results as networks
evolve, which contains two indispensable parts: incremental
updates and SVD restart (i.e. recalculate optimal SVD). The
former part usually focuses on designing a function F(·) to
efficiently update the results of previous time slice under
certain approximations. Denote the change of the similarity
matrix at time slice t as ΔSt and we have:

[Ut,Σt,Vt] = F ([Ut−1,Σt−1,Vt−1] ,St−1,ΔSt) . (3)

When the network evolves over time, the previous SVD re-
sults need to be updated accordingly. Although incremental
SVD methods are proposed to address this issue by induc-
ing approximations, error aggregation is inevitable in these
methods, which necessitates restarting SVD at certain points.

The most important question of SVD restart on dynamic
networks is: what are the appropriate time points. Intu-
itively, we hope to reduce the number of restarts while keep-
ing a low aggregated error. Here we transform the goal into a
constrainted optimization problem. We set a tolerance thresh-
old Θ on the error and then minimize the total number of
restarts. Formally, we denote the error evaluation function
as G(·) and whether to restart at time slice t as ct ∈ {0, 1}.
Then the optimization objective is:

min
c1,...,cT

T∑
t=1

ct

s.t. G (S0...ST , [Ut,Σt,Vt] , 1 ≤ t ≤ T ) ≤ Θ

[Ut,Σt,Vt] =

{
Results of SV D on St if ct = 1

F ([Ut−1,Σt−1,Vt−1] ,St−1,ΔSt) else,
(4)

where F(·) is the updating function derived from incremen-
tal SVD methods. For the function G(·), one approach is
to directly use J (t), the reconstruction loss at time slice t.
However, J (t) is constituted by both the minimum loss in
SVD L(S, k), and the aggregated error induced by incremen-
tal updates. Since L(S, k) is intrinsic in SVD and cannot be
reduced by SVD restart, L(S, k) should not be counted to
guide SVD restart. Instead, the error induced by incremental
SVD methods, i.e. the margin between the reconstruction
loss and the SVD minimum loss, should be the right measure
to guide SVD restart. As most applications are sensitive to
the maximum error, here we define G(·) as:

G = max
1≤t≤T

J (t)− L(St, k)

L(St, k)
, (5)

where J (t) is the reconstruction loss at time slice t. Putting
Eqs. (4)(5) together, we have the formulation of maximum-
error-bounded SVD restart on dynamic networks.

4 TIMERS: The Proposed Method

4.1 The Framework for Error Monitoring

It is easy to see that

max
1≤t≤T

J (t)− L(St, k)

L(St, k)
≤ Θ

⇔J (t)− L(St, k)

L(St, k)
≤ Θ ∀1 ≤ t ≤ T.

(6)

To ensure the above equation satisfied, one straightforward
way is to monitor the error and restart whenever the error
exceeds Θ. Intuitively, the total number of restarts is reduced
because we only restart when the error reaches the threshold.
However, this is still problematic because directly calculat-
ing L(St, k) has the same time complexity as SVD restart.
Alternatively, if we can find a lower bound B(t) > 0 so that

L(St, k) ≥ B(t) ⇒ J (t)− L(St, k)

L(St, k)
≤ J (t)−B(t)

B(t)
. (7)

Then, we can relax Eq. (6) to
J (t)−B(t)

B(t)
≤ Θ ∀1 ≤ t ≤ T. (8)

After that, we can monitor Eq. (8) instead and restart SVD
whenever it is not satisfied. The remaining question is how to
find B(t) that can be efficiently calculated.

4.2 A Lower Bound of SVD Minimum Loss

Next, we derive the lower bound based on matrix perturba-
tion.
Theorem 1 (A Lower Bound of SVD Minimum Loss). If S
and ΔS are symmetric matrices, then:

L(S+ΔS, k) ≥ L(S, k) + Δtr2(S+ΔS,S)−
k∑

l=1

λl, (9)

where λ1 ≥ λ2... ≥ λk are the top-k eigenvalues of ∇S2 =
S ·ΔS+ΔS · S+ΔS ·ΔS, and

Δtr2(S+ΔS,S) = tr ((S+ΔS) · (S+ΔS))− tr(S · S).
Proof. Denote Λk(Q) as the sum of the top-k eigenvalues
for any symmetric matrix Q, i.e.

Λk(Q) =

k∑
l=1

λ′l, (10)

where λ′1 ≥ λ′2... ≥ λ′k are the top-k eigenvalues of Q. Then,
we can rewrite L(S, k), defined in Eq. (2), as:

L(S, k) =
N∑
l=1

λ2
l −

k∑
l=1

λ2
l = tr(S · ST )− Λk(S · ST ). (11)

According to matrix perturbation theory (Stewart 1990), for
any two symmetric matrices P and Q, we have

Λk(P+Q) ≤ Λk(P) + Λk(Q). (12)

Let P = S · S, P+Q = (S+ΔS) · (S+ΔS). By putting
Eq. (11) and Eq. (12) together, we finish the proof.
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The theorem shows if we have calculated the minimum
loss for S, without calculating SVD on S + ΔS, matrix
perturbation can lead to a lower bound on the new minimum
loss by treating ΔS as a perturbation of the original similarity
S. From the theorem, we can set:

B(t) =L(St′ , k) + Δtr2(St,St′)− Λk(∇S2), (13)

where ΔS = St−St′ ,∇S2 = St′ ·ΔS+ΔS ·St′ +ΔS ·ΔS
and t′ is the last time when we calculated SVD.

As discussed earlier, efficiency is a key issue. Here we
analyze the time complexity of calculating the bound. First,
we have the following two lemmas (the proofs are omitted
due to limited space):

Lemma 1. The time complexity of calculating L(S, k) after
obtaining the optimal U,Σ,V in SVD is O(M + k), where
M in the number of non-zero elements in S.

Lemma 2. Calculating the change of the reconstruction loss
has the following time complexities:

• O(kMS), if the similarity matrix changes ΔS and MS is
the number of non-zero elements in ΔS;

• O(kdi+k2), if vectors of node i change and di is its degree.

Lemma 1 shows it takes little additional time to compute
the minimum loss if we have calculated the results of SVD.
Lemma 2 shows we can efficiently compute the change of
the reconstruction loss when the network evolves and the
SVD results are incrementally updated. These lemmas ensure
calculating J (t) is not time-consuming. Then, we analyze
the time complexity of calculating B(t).

Theorem 2. The time complexity of calculating B(t) in Eq.
(13) is O(MS +MLk+NLk

2), where MS is the number of
the non-zero elements in ΔS, and NL,ML are the number
of the non-zero rows and elements in ∇S2 respectively.

Proof. Because all matrices are symmetric, we have

Δtr2(S+ΔS,S) =
∑

ΔS(i,j) �=0

[
(S+ΔS)(i, j)2 − S(i, j)2

]
.

Then, we can use numeric methods, such as the Lanczos
algorithm (Lanczos 1950), to calculate the top-k eigenvalues
of ∇S2 , which is known to be O(MLk + NLk

2). Putting
them together leads to the result.

This time complexity includes two parts. The first part is
equal to the number of changed elements in the similarity
matrix. The second part shows that, instead of calculating
the top-k eigenvalues of S+ΔS, we only need to calculate
the top-k eigenvalues of ∇S2 which has the same scale of
non-zero elements as S ·ΔS. When the changed parts only
occupy a tiny fraction of the whole network, S ·ΔS will be
local and have much fewer non-zero elements than S+ΔS.
To make it more clear, we calculate the exact results for two
typical types of networks:

• If every node has a equal probability of adding new edges,
we have: ML ≈ 2davgMS , where davg is the average
degree of the network .

Algorithm 1 TIMERS: Theoretically Instructed Maximum
Error-bounded Restart of SVD
Require: Static Adjacency Matrix A0, Dynamic Changes

ΔA1...ΔAT , Similarity Function S(·), Dimensionality
k, Error Threshold Θ, Incremental SVD method F(·)

Ensure: SVD results in each time slice [Ut,Σt,Vt]
1: Calculate the initial similarity S0 = S(A0)
2: Calculate SVD on S0 to obtain [U0,Σ0,V0]
3: for t in 1:T do
4: Calculate the similarity change in that time slice ΔSt

5: Use F(·) to get updated SVD results [Ut,Σt,Vt]
6: Compute loss J (t) and bound B(t) using (13)
7: if

J (t)−B(t)
B(t) > Θ then

8: Calculate SVD on St to obtain new [Ut,Σt,Vt]
9: end if

10: Return [Ut,Σt,Vt]
11: end for

• For Barabasi Albert model (Barabási and Albert 1999), a
typical example of preferential attachment networks, we
have: ML ≈ 12

π2 [log(dmax) + γ]MS , where dmax is the
maximum degree of the network and γ ≈ 0.6 is a constant.

In short, the complexity of calculating B(t) is only related
to the local dynamic changes but does not involve the whole
network for calculation.

In these theorems, we only require the matrices to be
symmetric and sparse. Therefore, the lower bound is gen-
eral across different types of networks (e.g. weighted or un-
weighted, signed or unsigned), and different dynamic scenar-
ios (e.g. add or delete edges, adjust edge weights).

Algorithm 1 shows the overall method. It is straightforward
to see that our method has no specific requirement on the
updating method, i.e. TIMERS is flexible to cooperate with
any incremental SVD method. The overall time complexity
includes the piecewise linear complexities between restarts
and the complexity of SVD restarts.

5 Experiments

In this section, we conduct extensive experiments to evaluate
our method and demonstrate its advantages through compar-
ative study. Note that the baselines have been introduced in
Section 3.1.

5.1 Datasets

To comprehensively evaluate the effectiveness of TIMERS,
we apply it to five real dynamic networks2 from different do-
mains: three social networks, one co-author network and one
Internet topology network. These networks are of different
types including weighted or unweighted, signed or unsigned
ones, and all of them have real timestamps.
• FACEBOOK, MATH, WIKI: they are online social net-

works in Facebook, MathOverflow and Wikipedia. A node
represents a user and an edge represents the social link be-
tween two users. The edges are unweighted and unsigned

2All networks are publicly available at http://snap.stanford.edu/
or http://konect.uni-koblenz.de/
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Table 1: The Statistics of Datasets
Dataset Nodes Static E Evolving E Type
FACEBOOK 52804 962654 632188 SN
MATH 13586 600000 138408 W
WIKI 28223 1000000 375270 W,S
DBLP 28331 200000 79436 W
INTERNET 32077 111644 196270 W,SN
RANDOM 5000 60000 210000 -
RANDOM-Cel 5000 60000 210000 -
RANDOM-Com 5000 60000 210000 -

W = Weighted, S = Signed, SN = Static Network marked

in FACEBOOK, weighted in MATH and signed in WIKI.
Negative edges exist for representing conflicts between
users, e.g. edit-wars.

• DBLP is a collaboration network of computer science re-
searchers. Since authors can have multiple common publi-
cations, the network is weighted.

• INTERNET is a network of autonomous system connec-
tions. The edges are weighted to indicate the number of
connections between two systems.

To compare the effectiveness of different methods, SVD has
to be conducted in each time slice as the ground truth, which
is very time consuming. Therefore, we sample subsets of the
original networks and the sizes of the sampled networks are
listed in Table 1. For each network, we divide the edges into
static and evolving part according to their timestamp order.
We further divide the evolving edges into 50 time slices with
an equal number of edges to simulate its evolving process.

To get insightful understanding, we also experiment on
three synthetic networks whose structures are controllable.
We simulate some important dynamic characteristics of real
networks with the following methods:

• RANDOM is generated by random graph model (Erdos
and Rényi 1960) where nodes form edges randomly.

• RANDOM-Cel is a variant of RANDOM by simulating
the appearance of celebrities in online social networks.
Specifically, we randomly select a time and a node as the
celebrity. Then, we randomly sample a proportion of all
nodes that connect to the celebrity node, i.e. simulating
that someone suddenly gets the attention of many others.

• RANDOM-Com is another variant of RANDOM where
community structures suddenly form, which often happens
in real world triggered by off-line events. Specifically, we
randomly select a time and assign a proportion of nodes
to some communities, within which the nodes will have
a high probability to form edges. The model is tuned by
three parameters: the proportion of nodes, the number of
communities and the edge forming probability.

We tune the parameters to control the percentage of edges
generated by celebrities and communities to simulate differ-
ent degrees of changes in the network structures.

The statistics of all datasets are summarized in Table 1.
All experiments are conducted in a single PC with 2 i7-6700
CPU and 24GB memory in MATLAB language.
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Figure 3: Dynamic network reconstruction. The number of
restarts needed when fixing the same maximum error.

5.2 Dynamic Network Reconstruction

Experimental Setting The primal objective of SVD on dy-
namic networks is to reconstruct the given similarity matrix
at each time slice. First, we validate different methods in
terms of reconstruction. The procedure of reconstruction is as
follows. At first, all methods calculate SVD on the static net-
work to get the initial results. After that, the evolving edges
of the network come in time slices and different methods
decide whether to restart SVD individually. The loss at time
slice t can be calculated using Eq. (1). Specifically, in our
experiment, we set the similarity matrix to be the adjacency
matrix for simplicity, and k to be 100 as commonly used.
To purely compare the effectiveness of the restart time, no
incremental updating between time slices is adopted unless
stated otherwise. For the evaluation metric, we use relative
error defined as:

rt =
Loss at t−Minimum Loss at t

Minimum Loss at t
=

J (t)− L(St, k)

L(St, k)
.

(14)
L(St, k) is defined in Eq. (2) and calculated by SVD as
ground truth. We further take two measurements: the maxi-
mum error over all time slices max(r) = max1≤t≤T rt and
the average error avg(r) = 1

T

∑T
t=1 rt.

Fixing the Number of Restarts First, we report the results
when fixing the number of restarts for all methods. Specifi-
cally, we directly set the number of restarts for two heuristic
methods. For our method and LWI2, we adjust the threshold
on error, so that all methods have the same number of restarts.
From Table 2, we can observe that our method outperforms
all the baselines on all dynamic networks. For example, in
the largest network FACEBOOK, TIMERS can reduce the
average error by 41.2% and the maximum error by 39.8%.
These results demonstrate that the timing of SVD restart is
indeed crucial for dynamic networks, and our method has
better performance capturing the appropriate restart timing
than heuristic methods. LWI2 fails because the overall recon-
struction loss is not a good measurement.

Fixing the Maximum Error We further report the num-
ber of restarts of each method when the maximum error is
fixed, i.e. we control the threshold in TIMERS and LWI2,
and adjust the number of restarts for heuristic methods, so
that all methods achieve the same maximum error. As shown
in Figure 3, TIMERS greatly reduces the number of restarts
while maintaining the same maximum error. In FACEBOOK,
the reducing rate achieves 50%. This demonstrates that our
method could save lots of computation resources while main-
taining similar SVD accuracy as other methods.
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Table 2: Dynamic network reconstruction. Relative error when fixing the number of restarts.

Dataset avg(r) max(r)
TIMERS LWI2 Heu-FL Heu-FT TIMERS LWI2 Heu-FL Heu-FT

FACEBOOK 0.005 0.020 0.009 0.011 0.014 0.038 0.025 0.023
MATH 0.037 0.057 0.044 0.051 0.085 0.226 0.117 0.179
WIKI 0.053 0.086 0.071 0.281 0.139 0.332 0.240 0.825
DBLP 0.042 0.110 0.053 0.064 0.121 0.386 0.198 0.238
INTERNET 0.152 0.218 0.196 0.961 0.385 0.806 0.647 1.897

The best results are marked bold for each dataset in both measurements.

Table 3: Link Prediction Relative Error of MSE (%)
Dataset TIMERS LWI2 Heu-FL Heu-FT
FACEBOOK 1.54∗ 4.27 2.21 2.81
MATH 1.14∗ 2.68 1.31 1.29
WIKI 1.06∗ 3.44 1.63 4.13
DBLP 0.18∗ 0.32 0.22 0.27
INTERNET 11.27∗ 23.36 16.98 34.30

*: outperform other methods at 0.005 level paired t-test in 10 runs.

Table 4: First Eigenvalue Tracking Error in RMSE
Dataset TIMERS LWI2 Heu-FL Heu-FT
FACEBOOK 0.66 0.94 1.11 1.53
MATH 2.27 5.03 4.92 4.80
WIKI 15.45 18.42 17.73 97.08
DBLP 8.31 11.42 13.92 24.66
INTERNET 4.18 12.56 7.95 57.38

The best result is marked bold for each dataset.

5.3 Dynamic Network Applications

The effectiveness of TIMERS in reconstruction lays the foun-
dation of its gains in applications of dynamic networks. Next,
we conduct experiments on two typical applications: link
prediction and network parameter characterization. The for-
mer focuses on predicting individual edges while the latter
focuses on macroscopical indexes of the network.

Link Prediction Link Prediction is an important dynamic
network application using SVD. Specifically, we randomly
hide 10% of the network and test whether SVD on the rest
of the network can recover them. For the evaluation metric,
because both weighted and signed networks exist and the
dynamic changes include adding new edges and changing
edge weights, some standard metrics in link prediction, such
as precision or AUC, do not fit in our experiment. Here,
we use Mean Square Error (MSE) (Levinson 1946) as a
replacement. In addition, what we aim to evaluate is how well
different methods can approximate the performance of the
optimal SVD. So we calculate the relative error in a similar
way as Eq. (14) using MSE. We report the average results
of 10 runs in Table 3. We can see that TIMERS consistently
outperforms baseline methods.

Network Parameter Characterization Some important
network parameters can be characterized by the top-k eigen-
values of the network. When networks evolve over time, these
parameters need to be tracked. Here, we choose one state-
of-the-art incremental SVD method Trip (Chen and Tong
2015) to incrementally update SVD results between two time
slices. Following their work, the largest eigenvalue of the
adjacency matrix is selected as the target value and rooted
mean square error (RMSE) (Levinson 1946) is adopted as
the measurement. For fair comparison, we fix the number
of restarts for all methods. From Table 4, we can see that
TIMERS achieves the best results on all networks, demon-
strating the effectiveness of our proposed method. On MATH
and INTERNET, we can reduce RMSE by 50%.
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Figure 4: Robustness analysis. Reconstruction error on syn-
thetic networks with varying network structures.

5.4 Analysis

Robustness Analysis Next, we conduct experiments in
synthetic datasets to analyze whether TIMERS is robust and
under what circumstances can it gain more. We vary the per-
centage of edges generated by celebrities and communities
to simulate different network evolving scenarios. From Fig-
ure 4, we can observe that the improvement of TIMERS has
a positive correlation with the percentage of celebrity and
community edges. When 30% of the new edges are caused
by celebrities or communities, TIMERS reports more than 3
times improvement in terms of the maximum error. Similar
results are observed in link prediction and network parameter
characterization tasks but are omitted for brevity.

The generation of celebrities or communities often lays
dramatic influence on the network structure and thus SVD
restart is more demanded to capture such changes. The experi-
mental results show TIMERS is able to detect this change and
then instructs the algorithm to restart in time. It also suggests
TIMERS is robust and able to prevent error accumulation in
unusual situations of network evolution.

Scalability Analysis Now, we analyze the scalability of
TIMERS. We use the same experimental setting and record
the running time when the size of the network grows. Re-
sults of DBLP, whose original size is the largest among our
datasets, are reported in Figure 5. The running time grows
linearly with the network size (number of nodes and number
of edges respectively), showing that our method is scalable.
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Figure 5: Scalability analysis. The total running time of
TIMERS w.r.t. the number of nodes and edges on DBLP.

Parameter Analysis In our experiments, we fix the dimen-
sionality of the low-rank space as k=100, which is widely
used in the existing works. Similar results are observed for
different k but are omitted for the lack of space. The other
important parameter is the error threshold Θ. Qualitatively,
larger Θ will tolerate more error and leads to fewer number
of restarts. The setting of Θ depends on application scenarios.
How to rigorously set Θ to precisely control the number of
restart is left as future work.

6 Conclusion

In this paper, we tackle the problem of SVD restart time for
dynamic networks and propose TIMERS, a novel approach
based on monitoring and bounding the maximum error. By
exploring a lower bound of the SVD minimum loss on dy-
namic networks, we can trigger SVD restart automatically
when the margin between the reconstruction loss and the
lower bound exceeds a preset threshold. We show that our
method is scalable and general across different types of net-
works. Extensive experimental results on synthetic and real
dynamic networks show that TIMERS outperforms the exist-
ing methods in all tasks. One future direction is to generalize
this idea to directed networks and non-square matrices.
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