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Abstract

Monaural source separation (MSS) aims to extract and recon-
struct different sources from a single-channel mixture, which
could facilitate a variety of applications such as chord recog-
nition, pitch estimation and automatic transcription. In this
paper, we study the problem of separating vocals and in-
struments from monaural music mixture. Existing works for
monaural source separation either utilize linear and shallow
models (e.g., non-negative matrix factorization), or do not ex-
plicitly address the coupling and tangling of multiple sources
in original input signals, hence they do not perform satisfac-
torily in real-world scenarios. To overcome the above limita-
tions, we propose a novel end-to-end framework for monau-
ral music mixture separation called Deep Representation-
Decoupling Neural Networks (DRDNN). DRDNN takes ad-
vantages of both traditional signal processing methods and
popular deep learning models. For each input of music
mixture, DRDNN converts it to a two-dimensional time-
frequency spectrogram using short-time Fourier transform
(STFT), followed by stacked convolutional neural networks
(CNN) layers and long-short term memory (LSTM) layers to
extract more condensed features. Afterwards, DRDNN uti-
lizes a decoupling component, which consists of a group of
multi-layer perceptrons (MLP), to decouple the features fur-
ther into different separated sources. The design of decou-
pling component in DRDNN produces purified single-source
signals for subsequent full-size restoration, and can signifi-
cantly improve the performance of final separation. Through
extensive experiments on real-world dataset, we prove that
DRDNN outperforms state-of-the-art baselines in the task of
monaural music mixture separation and reconstruction.

Introduction

The problem of monaural source separation (MSS) gen-
erally refers to, given a mixture consisting of a series of
acoustical signals, how to separate and recover the original
sources from the combined signals. MSS is capable to ex-
tract the audio signals of interest from background noises
and facilitate a wide range of real-world applications, for
example, automatic recording and transcription of music
and poly-instruments (Dong and Li 2015), automatic chord
recognition (ACR) (Cheng et al. 2008), and pitch estima-
tion (Signol, Barras, and Lienard 2008; Emiya, Badeau, and
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Figure 1: Illustration of monaural source separation for mu-
sic mixture.

David 2010). Figure 1 gives an illustrative example of utiliz-
ing MSS to separate distinct audio signals (i.e., vocal, drum,
bass and other sources) from a mixture, which is similar to
the cocktail party problem that recognizes what one person
is saying when others are speaking at the same time (Mc-
Dermott 2009).

Generally speaking, MSS is a challenging problem since
only one single channel is available. A common approach
for MSS is to first convert the monaural music mixture into
the form of spectrogram by signal processing transforms,
then factorize the spectral representation by assigning each
time-frequency element of the mixed spectrogram a specific
source (Grais, Sen, and Erdogan 2013; Huang et al. 2014a).
Conventional methods for spectrogram factorization are typ-
ically based on linear matrix factorization methods, for ex-
ample, non-negative matrix factorization (NMF). NMF ap-
proximates a non-negative data matrix X by the product of
non-negative basis matrices W and H , i.e., X ≈ WH (Oze-
rov and Fevotte 2010). Though NMF is effective in learning
hidden representations, it still shows limitations in the field
of MSS, because music mixture is generally complex signal
with non-linear patterns, which cannot be well handled by
such shallow representation learning models due to its linear
structure. Moreover, the coupling and tangling of multiple
signals in music mixture make it even harder for traditional
linear methods to achieve satisfactory results for MSS.

Instead of directly utilizing linear models for spectro-
gram separation, some tentative efforts have considered ap-
plying non-linear mappings from the mixed spectrogram
to multiple sources in MSS. Recently, deep learning based
models are widely used in audio and music processing,
which achieve great success due to their stacked non-linear
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structures. For example, (Nugraha, Liutkus, and Vincent
2016) proposes a framework where deep neural networks
(DNNs) are used to model the source spectra and com-
bined with the classical multichannel Gaussian model to ex-
ploit the spatial information. (Huang et al. 2014a; 2014b;
2015) use deep recurrent neural networks (RNN) to separate
monaural speech signal from mixtures by jointly optimiz-
ing an additional time-frequency masking layer to enforce
reconstruction constraint. Moreover, by treating the spectro-
gram of input mixture as a 2D image, (Han and Lee 2016;
Chandna et al. 2017; Han, Kim, and Lee 2017) propose to
apply deep convolutional neural networks (CNN) for audio
separation by passing the spectrogram through multiple con-
volutional and pooling layers alternately to learn the charac-
teristics of different acoustics.

Though the aforementioned works utilize deep learning
methods and apply non-linear mapping structures to address
MSS problem, none of them finely considers the entan-
gling nature of music mixture. In fact, to explicitly model
the decoupling procedure in MSS is highly desirable, as it
could effectively distill the “active ingredients” from origi-
nal mixture for each specific component and strengthen the
discrimination among different sources on the dense fea-
ture level. Therefore, in this paper, we propose an end-
to-end Deep Representation-Decoupling Neural Networks
(DRDNN) for monaural music mixture separation. The key
idea in DRDNN is to jointly take advantages of traditional
signal processing methods, deep learning approaches, and
decoupling operation in a comprehensive manner. Specifi-
cally, DRDNN consists of five components, namely time-
frequency conversion component, feature extraction com-
ponent, decoupling component, feature restoration compo-
nent, and frequency-time conversion component. End-to-
end training is performed on DRDNN, with the purpose to
minimize the overall reconstruction errors across all sepa-
rated sources.

To evaluate the performance of DRDNN, we conduct ex-
tensive experiments on DSD100 dataset1, which consists
of music mixture of vocals, bass, drums and other instru-
ments, as well as the corresponding separated audios of tar-
get sources. The experiment results demonstrate the signifi-
cant improvements of DRDNN over multi-layer perceptron
model (MLP), deep CNN model (DCNN), and deep RNN
model (DRNN) by 1.6 dB, 0.9 dB and 0.5 dB on average on
source-to-interference ratio (SIR), source-to-distortion ra-
tio (SDR) and source-to-artifact ratio (SAR), respectively.
We attribute the superiority of DRDNN to its well-designed
deep architecture, especially the decoupling component that
explicitly distinguishes different sources in original input.

Problem Formulation

Denote the input sequence of monaural music mixture as
x = {x(1), ..., x(N)} with sampling rate Fs, where x(n) ∈
R and n = 1, ..., N . The original sequence x is mixed by S
different sources, including the target source sequence y, the
sequences of background sources y′s (s = 1, ..., S − 1), and

1https://sisec.inria.fr/home/2016-professionally-produced-
music-recordings/

the noise sequence e, i.e.,

x(n) = y(n) +
∑S−1

s=1 y′s(n) + e(n), n = 1, ..., N. (1)

Our target is to separate sequences of multiple sources from
x and make estimation ỹ that approximates the target source
sequence y as much as possible.

Deep Representation-Decoupling Neural

Networks (DRDNN) Framework

In this section, we introduce the framework of DRDNN in
details. Figure 2 shows the overall architecture of DRDNN,
which consists of five components and each of which is de-
scribed as follows: (1) Time-frequency conversion: Short-
time Fourier transform (STFT) is used to convert the orig-
inal input of music mixture into a two-dimensional time-
frequency spectrogram representation. (2) Feature extrac-
tion: Multiple convolutional neural network (CNN) layers
and long-short term memory (LSTM) are employed to ex-
tract features from the spectrogram of input mixture and
help reduce the feature sizes with respect to frequency and
time dimensionality. (3) Decoupling: Right next to feature
extraction, a decoupling component is specifically devised in
DRDNN, which contains a series of multi-layer perceptrons
(MLP) with non-linear activation function. The purpose of
adding decoupling component is to enhance the dense fea-
ture representation and enforce the insulation between dif-
ferent sources, which can be proven to greatly improve
the performance of final separation. (4) Feature restoration:
Upon decoupling completes, the decoupled dense features
of different sources are handled by another groups of LTSM
and deconvolution layers to restore the full-size spectrogram
representation for each target source. (5) Frequency-time
conversion: Finally, by inverse STFT (ISTFT), the full-size
spectrogram representation of each source can be recovered
to time-domain signal as the ultimate output.

Time-Frequency Conversion

In signal processing, it is common to convert the time-
sequential signal into frequency domain, since the process-
ing in frequency domain can facilitate the operations of de-
noising, signal detection or feature extraction that are diffi-
cult to complete in original time domain. In DRDNN, we
choose STFT for time-frequency conversion, as it consid-
ers both time and frequency resolution (Muller et al. 2011).
Formally,

X ′(k, t) =
∑N

n=1 w(n)x(n+ tH)e−j2πkn/N , (2)

where w(n) is the selected window, x is the input sequence,
H is the hop-size, t ∈ {1, 2, ..., T} and k ∈ {1, ...,K}
indicate the index of time frame and frequency band, re-
spectively. STFT is performed window by window along the
timeline, where two consecutive windows are overlapped by
hop-size H . The outputs for all the windows are overlap-
added in sequential order to produce a 2-D spectrogram
X ′. Therefore, STFT can describe the changes of local fre-
quency information over time, which is superior to the sim-
ple Fourier transform.
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Figure 2: Illustration of architecture of Deep Representation-Decoupling Neural Networks (DRDNN).

The obtained spectrogram X ′ is a two-dimensional time-
frequency representation, in which the time-axis t and the
frequency-axis k indicate time frame and frequency band,
respectively. Each element in X ′ represents the correspond-
ing amplitude of the time-frequency coordinates. The spec-
trogram X ′ contains the information of harmonics2 from vo-
cal and various musical instruments. Besides, the distinctive
timbres3 with different playing styles can be well preserved
in every local patches of the spectrogram (Han, Kim, and
Lee 2017).

Feature Extraction

In feature extraction, the whole spectrogram of input mix-
ture X ′ needs to be divided into a series of overlapped
spectrogram batches first. Afterwards, they are processed by
CNN layers for feature dimension reduction. The reduced
feature maps output from CNNs are further processed by
LSTM to extract the time-dependent feature representation.

Dimension Reduction on Frequency Bands Considering
the original spectrogram X ′ is relatively large, in DRDNN,
we segment X ′ into small batches along time axis t, with
two consecutive batches partially overlapped. In this way,
the whole spectrogram is reorganized as a pile of batches
with the size of Q×K×M , where Q is the number of total
batches, K and M are the number of frequency bands and
time frames within a batch, respectively. Remind that the
original spectrogram X ′ has T time frames. If we assume
the length of overlap between two consecutive batches is P
time frames, then Q can be calculated as Q = �T/(M−P )�,
where �·� is the floor operation. We use X to denote the
stacked 3-D spectrogram, Xn to denote the n-th batch in the
stacked 3-D spectrogram, and Xn,k,t to denote the element

2Harmonics: when a single note is played by an instrument, the
sound is in fact the composition of multiple frequencies, where the
fundamental frequency of a note f0 is the lowest frequency har-
monic.

3Timbre: the character of a musical sound that is distinct from
its pitch and intensity.
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Figure 3: Convolution for frequency-dimension reduction.

of the k-th frequency band and the t-th time frame in the
n-th batch of X .

Note that when computing STFT, if the FFT size of each
window is N ′ (N ′-point FFT), the number of frequency
bands of the spectrogram will be N ′ + 1. To avoid param-
eter explosion while capturing the structural information of
the two-dimensional input, we use CNN to reduce the size of
frequency band before further processing, because CNN is
proven to show advantages in parameter reduction and fea-
ture learning in image processing due to its stacked and al-
ternated structure of convolutional layers and pooling lay-
ers (LeCun et al. 1998; Alex, Sutskever, and Hinton 2012).
In DRDNN, we use a variant of CNN, which consists of
multiple convolutional layers and activation layers without
pooling layers. This is due to the consideration that either
max-pooling or average-pooling leads to information loss.
In CNN component, the n-th batch in the l-th convolution
layer, denoted by X l

n, can be computed as the convolution
of the n-th batch in the (l − 1)-th layer X l−1

n with filter kl:

X1
n = f(Xn ∗ k1 + b1),

X l
n = f(X l−1

n ∗ kl + bl), l = 2, ..., Lc,
(3)

where ∗ represents the convolution operator, Lc is the num-
ber of convolutional layers, f is the activation function, and
bl is the bias parameter.

We discuss the effect of feature dimension reduction by
CNN as follows. As illustrated in Figure 3, in DRDNN, the
filter is with size of K

2 ×1 and strides of (1, 1), where K is the
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number of frequency bands. That is, the filter convolves with
a half of the total frequency bands, but only spans across
one time frame. Due to such rectangular shape filters, the
frequency features are fused and reduced in dimension, but
the number of time frames remains the same. For each batch,
the feature dimension is approximately downsized by 1/2
after passing through a convolution layer.

Feature Extraction across Time Frames After convolu-
tion, a pile of batches Xn’s are converted into the same num-
ber of reduced size feature maps XLc

n ’s with decreasing in
frequency dimension. For each feature map, though the di-
mension of frequency is reduced, the dimension of time re-
mains the same as the original batch. Therefore, to capture
the high-level correlations over different time frames, we
use LSTM to further process the compressed feature maps,
which is a variant of recurrent neural networks (RNNs)
(Hochreiter and Schmidhuber 1997). LSTM specializes in
addressing the long time dependency of features due to
the structure of special designed hidden units, i.e., memory
cells, which acts like gated leaky units controlling when and
how much extent to forget the previous state (Jozefowicz,
Zaremba, and Sutskever 2015).

Specifically, for the n-th input feature map XLc
n , we de-

fine the LSTM units at time t (t = 1, ...,M ) as a forget gate
fn,t, an input gate in,t, an output gate on,t, a memory cell
cn,t and a hidden state hn,t, where fn,t, in,t, on,t ∈ [0, 1].
Then LSTM transition equations are the following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

in,t = σ(WXi
XLc

n,t +Whi
hn,t−1 + bi),

fn,t = σ(WXf
XLc

n,t +Whf
hn,t−1 + bf ),

on,t = σ(WXoX
Lc
n,t +Whohn,t−1 + bo),

C̃n,t = tanh(WXc
XLc

n,t +Whc
hn,t−1 + bc),

Cn,t = fn,t ⊗ Cn,t−1 + in,t ⊗ C̃n,t,
hn,t = on,t ⊗ tanh(Cn,t).

(4)

where XLc
n,t is the t-th strip of XLc

n along the time-frame
axis, σ(x) = 1

1+exp(−x) is the sigmoid function and ⊗ de-
notes element-wise multiplication. In DRDNN, we adopt a
bi-directional LSTM to fuse the features of time, and use
the hidden state in the last time frame, i.e., h1st−level

n,M , n =

1, ..., Q, as the final outputs of 1st-level LSTM network.

Decoupling

To enhance the separating ability of DRDNN and provide
effective guidances for subsequent processing, we design
a decoupling component in DRDNN after the feature ex-
traction component. Decoupling component consists of a
group of multi-layer perceptrons (MLP) with non-linear ac-
tivation function, each of which corresponds to a specific
source at the output end. Such multi-layer structures enable
the DRDNN to capture complex and highly non-linear rela-
tionships between inputs and outputs.

We discuss the decoupling component in detail as follows.
After feature extraction component, we obtain the latent
representations of the music mixture, i.e., h1st−level

n,M , n =
1, ..., Q. To decouple the above latent representations, for

each feature map with index n, we design S MLPs corre-
sponding to the S sources that we aim to separate from the
original input mixture. Formally, the hidden representation
for the n-th feature map in the l-th layer MLP targeting the
s-th source.

Z1
n,s = f

(〈W 1
n,s, h

1st−level
n,M 〉+ b1

)
,

Zl
n,s = f

(〈W l
n,s, Z

l−1
n,j 〉+ bl

)
, l = 2, ..., Lm,

(5)

where W and b are weight and bias parameters, 〈·, ·〉 denotes
the inner product, Lm is the number of layers in MLP, and
f is a non-linear activation function.

Previous studies (Hinton et al. 2012) reveal the effective-
ness of MLP in acoustic signal modeling. Compared with
directly separating the time-feature representation of music
mixture into different sources, adding a decoupling layer can
greatly strengthen separating ability of DRDNN and enforce
the discrimination among different sources. We will further
justify the design of decoupling component and demonstrate
the achieved performance gains by conducting comparison
test in the experiment part.

Feature Restoration

After decoupling, the entangled features of different sources
are separated, and we would like to recover the spectrograms
for each source. Since we utilize convolutional layer and
LSTM to extract the condensed features from the input spec-
trogram, we need to perform the reverse operation of con-
volution and LSTM respectively for spectrograms restora-
tion. Specifically, we first use another group of LSTM to
restore the two-dimensional time-feature relation from the
condensed feature representation of MLPs, and the time-
expanded feature representation output from each LSTM is
further enlarged by deconvolution to restore the original size
feature map.

Similar to the 1st-level LSTM network, the 2nd-level
LSTM in feature restoration takes the output of decoupling
layer ZLm

n,s (Lm is the number of layers in decoupling) as the
input, and the corresponding output of the n-th feature map
for the s-th source can be denoted as h2nd−level

n,M,s .
Contrary to convolution, deconvolution maps a single in-

put activation to multiple outputs (Noh, Hong, and Han
2015), which is realized by a convolution-like operation by
multiplying with a filter. Formally, for the l-th layer of de-
convolution, the restored feature map Ŷ l

n,s is obtained by
convolving the (l − 1)-th feature map Ŷ l−1

n,s with filter gl

(Zeiler et al. 2010):

Ŷ 1
n,s = f(h2nd−level

n,M,s ∗ g1 + b1),

Ŷ l
n,s = f(Ŷ l−1

n,s ∗ gl + bl), l = 2, ..., Lc,
(6)

where gl is the counterpart filter of kLc+1−l in the (Lc+1−
l)-th convolution layer (Lc is the total number of convolution
or deconvolution layers), and bl is the bias parameter.

After restoration, we obtain the output of deconvolution in
the last layer Ŷ Lc

n,s , which, hopefully, could be used to train
the whole DRDNN:

L = 1
2 ||Ŷ Lc

n,s − Yn,s||22, (7)
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where Yn,s is the ground truth, i.e., the real spectrogram of
the n-th feature map for the s-th source. However, we find
that optimizing Eq. (7) is not satisfactory in practice, be-
cause the magnitude of separated signals learned by Eq. (7)
cannot well match the ground truth in real scenarios. Be-
ing aware of this, we alternatively use soft time-frequency
masking to predict the spectrogram of separated sources.

Soft Time-Frequency Masking In DRDNN, soft time-
frequency masking is used to estimate the proportion of a
specific source in the original mixture. Different from learn-
ing separated spectrograms directly, soft masking enforces
a constraint that the sum of all prediction results equals
the original mixture (Huang et al. 2014b). This can effec-
tively reduce the artifacts introduced during source separa-
tion. Each element in the soft mask for the s-th source is
calculated as

Ms(n, k, t) =
|Ŷ Lc

n,s(k, t)|∑S
i=1 |Ŷ Lc

n,i (k, t)|
, (8)

where Ŷ Lc
n,s(k, t) is the value of index (k, t) in n-th restored

full size feature map for source s (Huang et al. 2014a). Once
the soft time-frequency masks are obtained, the estimation
of reconstructed spectrogram of the s-th source Ỹs is com-
puted as

Ỹs(n, k, t) = Ms(n, k, t)⊗Xn,k,t, (9)

where ⊗ is the element-wise multiplication operator and
Xn,k,t is the element of the n-th batch, the k-th frequency
band and the t-th time frame in spectrogram (Huang et al.
2014a). Batch integration is performed to form the complete
spectrogram Ỹs by overlap-adding all Ỹs(n) in chronical or-
der (n = 1, 2, · · · , Q, and Q is the total number of batches).
The audio signal ỹs in time domain can be reconstructed
from the estimated spectra Ỹs based on inverse short-time
Fourier transform (ISTFT).

Learning Objectives

In DRDNN, we propose a jointly end-to-end supervised
training method, in which only one model is required to be
optimized for all different sources at the same time. The goal
of joint optimization is to minimize objective functions, such
as mean squared error (MSE).

Given Ỹs and Ys, the estimation and the ground truth of
the spectrogram of the s-th source, respectively. Thus the
learning objectives with respect to MSE can be described as

JMSE =
∑S

s=1 ||Ỹs − Ys||22, (10)

However, one of the goals in source separation is to improve
the signal-to-noise (SIR) ratio. In music mixture source ex-
traction, all the instruments other than the desired target
source are regarded as background noise. Hence, we do
not only need to minimize the difference between the esti-
mated spectrogram and the ground truth for the same source,
but also maximize the difference between different sources.
Hence the discriminative learning objective (DIS) (Huang et

al. 2015) is introduced to enhance the SIR, i.e.,

JDIS =
∑S

s=1 ||Ỹs − Ys||22 − β
∑S

i,j=1,i �=j ||Ỹi − Yj ||22,
(11)

where β is a weighting parameter between 0 and 1.

Experiments

In this section, we present the details of experiments on
DRDNN. We first introduce the dataset and evaluation met-
rics in experiments, and show the results of DRDNN as well
as baselines for mixture separation.

Dataset

We use the public Demixing Secrets Dataset 100 (DSD100)
to evaluate our DRDNN model. DSD100 consists of 100
full-track songs of different genres, which stems from the
“Mixing Secrets” Free Multitrack Download Library. This
dataset is publicly released on the purpose of helping re-
searchers and scholars to evaluate their source separation
methods from music recordings. For each song in the
dataset, it includes professional synthesized mixtures and
the original sources for four tracks, namely vocals, drums,
bass and other instruments.

Evaluation Metrics

In our experiments, the evaluation metrics include source to
interference ratio (SIR), source to distortion ratio (SDR) and
source to artifacts ratio (SAR). SIR indicates the suppression
of interference, SAR reflects the artifacts introduced by the
separation and SDR evaluates the overall performance. Ac-
cording to the blind source separation (BSS) Eval toolbox
(Vincent, Gribonval, and Fevotte 2006), the evaluation met-
rics can be computed as⎧⎨

⎩
SIR = 10 log(||Star||22/||ei||22),
SDR = 10 log(||Star||22/(||ei + en + ea||22)),
SAR = 10 log((||Star + ei + en||22)/||ea||22),

(12)

where Star is the target separated source and ei, en, ea
are the corresponding interference, noise and artifacts. SIR,
SDR and SAR are all measured by dB. Higher values of SIR,
SDR and SAR means better separation quality.

Experiment Setup

In the experiment, we select Blackman-Harris window to
perform STFT, which has large side lobes compared to other
common windows. The window size is set to 1024 samples.
For each window, we use the 1024-point fast fourier trans-
form (1024-point FFT), and the hop-size H is set to 256. In
spectrogram segmentation, the whole spectrogram are split
into batches, and the length of each batch is 50 time frames,
with 30% overlaps between two consecutive batches.

The dataset is partitioned into training set and test set with
9 : 1 ratio. We use leave-one-out policy in experiments, i.e.,
in each round of training, 10 sound mixtures are selected
for test and the reaming 90 sound mixtures are for training,
while in another round, 10 other audio mixtures are selected
as the test set. The SIR, SDR and SAR are computed by
averaging the values over all rounds of training.
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Table 1: Comparison of SIR, SDR and SAR for different
separated sources between DRDNN and baselines.

MLP DCNN DRNN DRDNN
SIR 6.46 7.50 8.34 9.39

Vocal SDR 1.62 2.05 3.02 3.15

SAR 6.09 6.88 6.96 7.66

SIR 2.56 3.26 2.88 3.14
Bass SDR 1.33 2.25 2.81 3.41

SAR 5.72 6.48 6.78 7.17

SIR 5.76 6.81 6.84 7.35

Drum SDR 2.12 2.18 3.27 3.23
SAR 4.97 5.98 6.62 6.59
SIR 1.17 1.38 1.37 1.97

Other SDR 1.57 1.24 1.77 1.87

SAR 3.49 5.05 5.64 6.81

Results

In experiments, we use the following methods as baselines:

• MLP: Multi-layer perceptron neural network model.

• DCNN: Deep convolutional neural network model.

• DRNN: Deep recurrent neural network model.

Case Study of Spectrograms and Latent Feature Repre-
sentation We conduct a case study to gain intuitive under-
standing on the spectrograms and latent representations of
the input mixture and separated sources, respectively

• The spectrograms are visualized in Figure 4. As shown in
Figure 4a, the spectrogram of input music mixture con-
sists of all frequency components across time frames. In
Figure 4b, the spectrogram of separated vocal reserves
characteristics of human voice spanning over wide range
frequency bands starting from about 20 Hz up to 8000 Hz,
and intermittent pauses can be observed clearly. In Fig-
ure 4c, it is evident that the spectrogram of bass mainly
distributes over the low frequency band (below 256 Hz),
which implies that the sound of bass is quite deep. Fig-
ure 4d describes the timbre of drums, in which the reg-
ular vertical lines indicate a strong sense of rhythm. The
spectrogram of “other” source illustrated in Figure 4e is
usually from piano, violin and other instruments, which
mainly exists in the low and middle frequency bands.

• The visualization of latent feature representations in dif-
ferent stages of feature learning process is presented in
Figure 5. We randomly pick a reorganized mixed batch
as input shown in Figure 5a. In Figure 5b, we can see
that the feature dimension is reduced and features are
vertically merged after convolution. Figure 5c illustrates
the time-feature representation learned by LSTM before
decoupling, in which features are further fused horizon-
tally across time axis. Figure 5d and 5e represent the
condensed feature representations after decoupling and
restored feature maps after deconvolution of different
sources, respectively.

Comparison of Models We compare DRDNN and base-
lines with respect to the SIR, SDR and SAR of all sources in
Table 1, from which we have the following observations:
• In general, among the results in Table 1, DRDNN

achieves the best performance compared with all base-
lines, which strongly proves the effectiveness of our pro-
posed DRDNN model. In addition, the performance rank-
ing for baselines is DRNN > DCNN > MLP.

• SIR for bass is relatively low for all models because: (1)
The sound of bass is inherently low and deep so that it
is submerged in background instruments; (2) Bass nor-
mally serves as accompaniment in play, which is easily
submerged in other instruments.

• All models perform unsatisfactorily in separating “other”
component. Our explanation is that the “other” source is
produced by some accompaniment of musical instruments
such as piano and violin, and its ingredients may vary in
different music mixtures. For example, the component of
“other” could be piano for one mixture and flute for an-
other. Hence, there is no explicit pattern in “other”, and
it’s difficult to capture the characteristics using a small
training set with only 100 music mixtures.

• The result of drum is higher than bass and “other” sources
by a large margin, since the drum’s timbre shows the pat-
tern of strong rhythm (regular vertical lines demonstrated
in Figure 4d), and such obvious characteristics can be eas-
ily learned by DRDNN and baselines.

Comparison of DRDNN and Its Variants To validate the
efficacy of the decoupling and feature extraction component,
we compare DRDNN with its two variants: DRDNN without
decoupling (DRDNN-wDCP) and DRDNN without dimen-
sion reduction (DRDNN-wDR). DRDNN-wDCP drops the
decoupling layer and connects the feature extraction part and
restoration part directly. DRDNN-wDR removes the convo-
lution and deconvolution layers.

Specifically, the comparison results of SIR and training
time is plotted in Figure 6, where the blue bar is the achieved
SIR for separated sources, and the red bar is the training time
for 3,000 iterations on DSD100 dataset:
• DRDNN in the middle achieves performance on par with

DRDNN-wDR on the right, which proves the effective-
ness of the feature extraction component. In fact, DRDNN
not only achieves well-content performance, but also re-
duce the training time by around 1/4 revealed by the red
bars. This is due to processing features with much smaller
dimensions by DRDNN, which could greatly accelerate
the learning procedure and reduce the model complexity.

• DRDNN in the middle outperforms DRDNN-wDCP by
a large margin on the left. For example, the decoupling
component achieves about 3 dB SIR gain for vocal source
at the cost of only 28% additional time overhead. In ad-
dition, from Figure 7 that compares the training loss be-
tween DRDNN and DRDNN-wDCP, we can observe that
DRDNN-wDCP suffers underfitting that the training loss
stops at around 0.6 in terms of MSE after 500 iterations.
But DRDNN can further converge to and remain at the
level of 0.003 after 3000 iterations.
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(a) Input music mixture (b) Separated vocal (c) Separated bass (d) Separated drum (e) Separated others

Figure 4: The visualized spectrograms of the input music mixture and the separated spectrograms of different sources.
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(d) Decoupled condensed latent feature maps of
different sources
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(e) Restored feature maps of different sources

Figure 5: The visualized latent feature representation of different stages in feature learning process.
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Impact of Soft Time-Frequency Masking Furthermore,
we compare the performance of DRDNN with time-
frequency masking (DRDNN-Mask) and without time-
frequency masking (DRDNN-noMask) and plot the results
in Figure 8. Remember that soft time-frequency masking
assigns each element from the mixed spectrogram different
sources proportionally to their weights of magnitude in the
predicted spectrograms. In contrast, DRDNN-noMask di-
rectly learns the spectrograms according to Eq. (7).
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Figure 8: Impact of time-frequency masking.

From Figure 8, we can observe that DRDNN-Mask shows
superior performance over DRDNN-noMask. For example,
DRDNN-Mask achieves 9.39 dB and 7.35 dB SIR for vocal
and drum, respectively, which is 3.46 dB and 2.83 dB higher
than DRDNN-noMask. DRDNN-Mask exhibits even more
advantages in terms of SAR, achieving 4.67 dB and 3.60
dB SAR gain over DRDNN-noMask for vocal and other
sources, respectively. Based on the results in Figure 8, we
can reach the following conclusions:

• DRDNN-Mask is more effective and adaptable than
DRDNN-noMask, since timbres vary for different music
mixtures and the learnt absolute values of the spectrogram
for a specific source by DRDNN-noMask may not appli-
cable to other mixtures.

• Time-frequency masking enforces an implicit constraint
that the sum of all estimated sources equals to the mag-
nitude of the original spectrogram, which can reduce the
artifacts introduced during source separation.
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Conclusion

In this paper, we propose Deep Representation-Decoupling
Neural Networks(DRDNN), a novel end-to-end framework
addressing the monaural source separation (MSS) problem
for music mixture. The design of DRDNN takes advantages
of both traditional signal processing method as well as pop-
ular deep learning models. More importantly, we explicitly
introduce a decoupling component to extract effective infor-
mation for every single source and strengthen the discrim-
inativeness among different sources on dense feature level.
Extensive experiments suggests that decoupling component
is powerful to disentangle the complex and non-linear struc-
ture of music mixture.
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