
Synthesis of Programs from Multimodal Datasets

Shantanu Thakoor∗
Stanford University
Stanford, CA 94305

thakoor@cs.stanford.edu

Simoni Shah
IIT Bombay

Mumbai, 400076, India
simonisamirshah@gmail.com

Ganesh Ramakrishnan
IIT Bombay

Mumbai, 400076, India
ganesh@cse.iitb.ac.in

Amitabha Sanyal
IIT Bombay

Mumbai, 400076, India
tas@cse.iitb.ac.in

Abstract

We describe MultiSynth, a framework for synthesizing
domain-specific programs from a multimodal dataset of ex-
amples. Given a domain-specific language (DSL), a dataset
is multimodal if there is no single program in the DSL that
generalizes over all the examples. Further, even if the ex-
amples in the dataset were generalized in terms of a set of
programs, the domains of these programs may not be dis-
joint, thereby leading to ambiguity in synthesis. MultiSynth is
a framework that incorporates concepts of synthesizing pro-
grams with minimum generality, while addressing the need
of accurate prediction. We show how these can be achieved
through (i) transformation driven partitioning of the dataset,
(ii) least general generalization, for a generalized specifica-
tion of the input and the output, and (iii) learning to rank,
for estimating feature weights in order to map an input to the
most appropriate mode in case of ambiguity. We show the ef-
fectiveness of our framework in two domains: in the first case,
we extend an existing approach for synthesizing programs for
XML tree transformations to ambiguous multimodal datasets.
In the second case, MultiSynth is used to preorder words for
machine translation, by learning permutations of productions
in the parse trees of the source side sentences. Our evaluations
reflect the effectiveness of our approach.

1 Introduction and Related Work

Programming by Example (PBE) has been a widely stud-
ied research area with applications in program synthesis in
general, and domain-specific program synthesis in particu-
lar. Given a dataset of input-output pairs (or examples), we
say that a program P in some program space P covers the
example e = (i,o) if P predicts some output for the input i.
On the other hand, we say that P satisfies the example e, if
P correctly predicts its output o on input i. The dataset is
multimodal with respect to P if there is no single program
in P that satisfies all the examples, else it is unimodal. On
the other hand, the dataset is confused with respect to P if
there does not exist a subset of programs from P such that
each example of the dataset is satisfied by every program
that covers it, and is covered by at least one program. An

∗Work done while at IIT Bombay
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

extreme case is that of an inherently confused dataset (i.e.
confused with respect to any P) where two examples with
the same input are mapped to different outputs. For exam-
ple, consider the machine translation domain, where a sen-
tence may be translated in more than one way. Given a mul-
timodal and confused dataset, we wish to synthesize a set
of programs that satisfies each example in the dataset as ac-
curately as possible. Additionally, we would like the set of
programs to be as simple as possible (Blumer et al. 1987;
Ellis, Solar-Lezama, and Tenenbaum 2015; 2016), in or-
der to minimize the uncertainty of its applicability on test
data; that is, to ensure that the predictive capability of the
program set generalizes well on the test data. Applications
for such synthesis include: (i) Semi-automating repetitive
data transformations using examples (Gulwani 2011; Raza,
Gulwani, and Milic-Frayling 2014; Le and Gulwani 2014;
Barowy et al. 2015; Kini and Gulwani 2015) (obtained
through logs represented as XML). (ii) The more general
problem of Data Wrangling1 (Gulwani 2016), which is the
process of transforming the data from a somewhat unstruc-
tured format to a visually appealing and structured format
that is more suitable for analysis (iii) Word preordering for
machine translation (Bisazza and Federico 2016).

Approaches to PBE vary with the nature of the example
dataset. In the case of a dataset and program space, such that
there exists at least one program that satisfies all examples
in the dataset, the synthesis algorithm searches the program
space for the (set of) such programs and ranks them based
on some criteria. The reader may refer to (Kitzelmann 2011;
Gulwani 2016) for some of the recent efforts in this direc-
tion. In another case, the dataset may have some outliers
(noise), and the synthesis algorithm must disregard such
points, after detecting them, while assuming that a single
best program satisfies all the other (non-noise) examples.
A recent work (Raychev et al. 2016), addresses the prob-
lem of supervised learning of programs from noisy datasets,
by detecting outliers. Their approach involves the use of an
iterative feedback mechanism between a program genera-
tor and a noise-eliminator. On the other hand, (Ellis, Solar-
Lezama, and Tenenbaum 2016) present unsupervised learn-
ing of programs from noisy observations based on find-

1Supposedly takes up 80% of the time of data scientists

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

184

ing (compressed) data representations that need to be de-
scribed by programs with small lengths. The idea of bias-
ing program sampling using (small) description lengths has
also been explored for supervised program synthesis (Ellis,
Solar-Lezama, and Tenenbaum 2015). In this paper, we ad-
dress the somewhat different problem of program synthe-
sis from a multimodal dataset of examples, that is, a dataset
which can be satisfied only using two or more programs
from the program space. We focus on maximizing accuracy
of prediction on the training data by learning to rank the
programs for each input in order to minimize errors owing
to ambiguity.

(Kitzelmann 2010; 2011) employ Least General Gener-
alization (LGG) (Plotkin 1971a) to learn a functional pro-
gram for a given incomplete specification, in the form of set
of input and output example-pairs. Their system learns the
desired program also in terms of user defined functions that
may be provided as background knowledge. This system ini-
tially treats each input-output example pair as a grounded
function and progressively combines all of them into a sin-
gle generalized function using their LGG. The use of LGGs
for programming by examples has found use in domains
such as XML transformations (Raza, Gulwani, and Milic-
Frayling 2014), string manipulations (Raza, Gulwani, and
Milic-Frayling 2015), etc. A restrictive assumption about the
dataset made therein is that it is possible to find a single pro-
gram via LGG, that satisfies every example in the training set
that it covers. Effective search of program space and ranking
of the satisfying programs in order to find the simplest pro-
gram are the key problems that have been addressed there.
Our Contributions: All of the above mentioned works ad-
dress the problem of program synthesis either from a uni-
modal dataset or from a multimodal dataset in the absence of
any uncertainty or confusion. To the best of our knowledge,
our domain-agnostic framework for program synthesis (ab-
breviated as MultiSynth) is the first to address programming
by example, while accounting for both the confusion and the
uncertainty integral to a multimodal dataset. We design an
efficient and effective algorithm for program set synthesis
that provably minimizes confusion measured through pro-
gram generality. Further, we leverage prior work on learn-
ing optimal ranking functions to maximize accuracy in the
presence of confusion. We demonstrate the effectiveness of
MultiSynth in two diverse problem settings, viz., (a) learning
XML tree transformations and (b) learning preordering rules
for machine translation.

The outline of the rest of the paper is as follows: In Sec-
tion 2 we provide notations and definitions for the rest of the
paper. Section 3 describes the MultiSynth framework. The
two applications of MultiSynth are described in Sections 4
and 5. Section 6 presents the results of our experiments on
the two applications. Finally, Section 7 concludes the paper.

2 Preliminaries
We consider the problem of program synthesis in the context
of a given domain-specific language (DSL) (Raza, Gulwani,
and Milic-Frayling 2014). A DSL provides us with mecha-
nisms to represent elements of the input or output space, and
transformations between the two.

In particular, the DSL provides us with syntax for express-
ing subsets of the input (or output) space. When a subset
of the input (or output) space can be represented by a DSL
expression, that expression is called a generalization of the
subset, and elements of the subset are instances of the gen-
eralization. Each such subset of instances is said to be sub-
sumed by the generalization. When it is clear from the con-
text, we shall blur the distinction between a generalization
and its instance set and use them interchangeably. An elab-
oration of a specific DSL for XML tree transformations and
the associated subsumption relation can be found in (Raza,
Gulwani, and Milic-Frayling 2014).

Let E denote a subset of either the input or output space.
A generalization g is the Least General Generalization
(LGG) (Plotkin 1971b) of a set of subsets {E1, . . .En} of
the input (or output) space if (i) each Ei is subsumed by g,
and (ii) for any DSL expression g′ such that each Ei is sub-
sumed by g′, g (or more accurately, its instance set) is also
subsumed by g′. For example, in Figure 1, g1 represents a
generalization of slides containing an arbitrary number of
textboxes, each with arbitrary text of any size, but of red
color. Thus, i1 and i2 are subsumed by g1. In fact, g1 would
be the LGG of i1 and i2. It is easy to see that g2 is also a
generalization of i1 and i2 (although not their LGG), while
g3 does not generalize them. Note, in passing, the use of
variables (e.g. X, Y and Z) in the generalization.

A set E is said to be generalizable, if there exists a gen-
eralization g in the given DSL which subsumes E. For ex-
ample, in Figure 1, i1 and i2 are generalizable, but i1 and o1
are not, since our DSL does not allow for a slide to general-
ize with a list. Intuitively, generalizing a set of elements may
be thought of as giving it a shorter, simpler description than
listing all of them.

MultiSynth makes the following assumptions about the
generalization mechanism provided by the DSL: (i) general-
izability is reflexive, symmetric, and transitive (ie, DSL ex-
pressions generalizable together form an equivalence class)
(ii) a generalization of a set of DSL expressions (all be-
longing a particular equivalence class) belongs to the same
equivalence class (iii) Two DSL expressions x and y which
are generalizable must have an LGG. As we shall see in the
following sections, these properties are shared by most nat-
urally encountered DSLs.

A program is a pair of generalizations (g,G) . The do-
main of P is the instance set of its input generalization g.
We say that P covers an input i if g subsumes i. The output
of a program P for i is obtained by matching g with i, ob-
taining bindings for variables in g, and instantiating G with
those bindings. We also define a notion of a generality mea-
sure (GM) on programs, where GM((g,G))> GM((g′,G′))
when g subsumes g′ and G subsumes G′. We can further re-
strict it to be a submodular 2 function: making a more gen-
eral program cover a new example should increase GM less
than making a less general program cover it. It is clear that

2Recall that a set function f(.) is said to be submodular if for
a given set V and any element v ∈ V and sets A ⊆ B ⊆ V \ {v},
f(A∪{v})− f(A)≥ f(B∪{v})− f(B). This is called the diminish-
ing returns property.

185

Figure 1: A set of DSL expressions from the XML domain, which will be referred to throughout the paper to provide examples

the LGG of a set of programs has a higher generality mea-
sure than that of any in the set.

For example, if our dataset of example transformations
is {(i1,o1),(i2,o2)} from Figure 1, a program performing
those transformation may be (g1,g4). Note that X , Y , and I
are variables which acquire bindings from the input and are
used in the output.

Given a dataset D and a set of programs S = {P1 . . .Pk},
we define sat(S) as the fraction of examples e = (i,o) ∈ D,
such that there exists a program Pj ∈ S such that Pj(i) = o
(that is, Pj satisfies e). Clearly, sat is a monotone submodular
function. We call S = {P1 . . .Pk} as a candidate set for the
dataset, if sat(S) = 1.

(i) In general only candidate sets with k ≥ 1 exist, and we
call the dataset multimodal. In the special case where one
with k = 1 exists, we have a unimodal dataset.

(ii) We briefly also consider a more general definition that
could account for noise level of upper bound (1− θ) in D:
Given θ ∈ [0,1], S is a θ-candidate set if sat(S)≥ θ.

It is important to note that because of generalization, there
may be cases in which S , while good in other respects, does
not partition the input space. Hence, there may be inputs ly-
ing in domains of multiple programs that possibly map these
inputs to different outputs. Such inputs are said to be con-
fused with respect to S . Further, an input is said to be uncer-
tain with respect to a set of programs, if it does not belong to
the domain of any of the programs. Note that by definition,
points which belong to the dataset cannot be uncertain with
respect to a candidate set.

Figure 2 gives a pictorial representation of a multimodal
scenario, with confusion and uncertainty. Programs P1 and
P2 have domains that are intersecting. Inputs i1, i2, i3, i4 lie
exclusively in either of the domains, and are deterministi-
cally mapped to their corresponding outputs o1,o2,o3,o4.
However, test inputs t1 and t2 are confused, since they lie
in both domains. Their outputs may be either t ′1 or t ′′1 , and t ′2
or t ′′2 respectively. The input s1 is said to be uncertain since
the transformation on it is not entirely subsumed by the gen-
eralizations of either P1 or P2, which take s1 to s′1 and s′′1
respectively.

A synthesis algorithm should aim to provide the best pos-

Figure 2: Multimodal Dataset with Confusion and Uncer-
tainty.

sible trade-off between confusion and uncertainty. For ex-
ample, in the limiting case of generating a separate program
for each example data point, accuracy on the training set will
be high and confusion will be minimum; however, uncer-
tainty will be very high. This may also be interpreted as a
kind of overfitting. On the other hand, when we make the
programs more general by generalizing their domains, un-
certainty decreases at the cost of increasing confusion. As
we shall see later, we use LGGs to limit generalization and
ranking to handle any residual ambiguity; thus we strike a
balance between confusion and uncertainty.

In this paper, we consider a framework for dealing with
multimodal datasets which are not free from confusion with
respect to a (otherwise desirable) candidate set of programs
S . Our framework, called MultiSynth, describes a general
method for synthesizing a set of programs. We use machine
learning concepts of generalization, partitioning, and learn-
ing feature weights for ranking.

3 The MultiSynth Framework

In order to handle the multimodal nature of the dataset, Mul-
tiSynth associates a program with each mode, and maps
each input to the most appropriate mode using a function.
More specifically, MultiSynth synthesizes a set of programs
S∗ = {P1 . . .Pk} ∈ 2P , and a function f ∗ which serves as
a mapping function. Here 2P is the power set of the pro-
gram space P . Given an input i, f ∗(i) returns the index of

186

the program from S∗ that would best transform i and is im-
plemented as a ranking function over elements of S∗. Hence,
the transformation brought about by our model, given an in-
put i, is Pf ∗(i)(i). Thus, our task reduces to finding a set of
programs S∗ and a function f ∗.

We aim to strike a balance between confusion and uncer-
tainty. Confusion is central to the multimodal setting, while
uncertainty can apply even with unimodality. Most datasets
are multimodal, and hence there are many potential transfor-
mations for a given point, leading to confusion. On the other
hand, uncertainty is the problem of a point corresponding to
none of the available modes - not multiple, which is the cen-
tral problem of multimodal program synthesis. Hence, we
motivate a preference in this trade-off, for minimizing con-
fusion rather than uncertainty.

Assuming an upper bound (1−θ) on the noise level, we
restrict S∗ to be a θ-candidate set. Further, given our prefer-
ence for minimizing confusion, we restrict S∗ to have mini-
mal value of the generality measure GM. We define the GM
of a set of programs S as the sum of GM(Pl) over all Pl ∈ S .

We model the ranking function f using a weighted lin-
ear combination wT ψ(i,Pl), where ψ(i,Pl) ∈ ℜm is a vector
of domain specific features and w ∈ ℜm is a vector of cor-
responding weights. Note that each feature is a function of
the input i and the program being ranked Pl . As for learn-
ing the parameters w, one natural choice is to minimize the
regularized RankSVM loss (Joachims 2002). Therefore, our
optimization formulation can be stated as as

(S∗,w∗) = argmin
S ,w

RankSVMLoss(fw;D,S)

subject to S ∈ argmin
sat(S ′)≥θ

GM(S ′)
(1)

Specifically, the subproblem in the constraint on S is
a case of submodular minimization under cardinality con-
straints, which is a known NP-Hard problem. A special case
is when θ = 1, that is we restrict the search space of S to
candidate sets. This amounts to assuming that the dataset is
noise-free. For this special case, there exists a unique opti-
mal solution {S∗, f ∗} which MultiSynth synthesizes in time
polynomial in the size of the dataset. Next, we outline the
two steps of the algorithm, viz., first identifying the optimal
feasible set S∗ and then determining the parameters w∗ of
the optimal ranking function f ∗w.
Identifying the optimal feasible set S∗:

(i) Partitioning: The training dataset is partitioned, such
that for each partition, its set of inputs (and set of outputs) is
generalizable. This step identifies the modes and the set of
points associated with each mode.

(ii) Generalization and Synthesis: The ith partition is gen-
eralized to program Pi which is expressed as the LGG (as
per the DSL) of the inputs in that partition transformed to
the LGG of the corresponding outputs.

Given the assumptions on the mechanism for general-
ization, we note that the partitions created must consist of
points all belonging to the same equivalence class (see Sec-
tion 2). In the special case of θ= 1, we know that every point
in D must belong to some partition.

Lemma: Let θ = 1. Partitioning the dataset into equivalence
classes based on the generalizable relation, leads to our opti-
mal S∗. This can be done in O(n∗ p) generalizability checks
where n is the size of the dataset and p is the number of
modes present.
Proof of Lemma: Assume that there exists an S 	= S∗ such
that GM(S) ≤ GM(S∗). By definition, the set of examples
in each partition must be generalizable. Thus, S must con-
sist of programs synthesized on partitions that were neces-
sarily subsets of the equivalence classes used in S∗. Fur-
ther, the union of the examples in each partition in S and
S∗ must be equal, as they must both cover each example in
the dataset. Hence, the programs in S must be defined on
a partition of the dataset which is a refinement of the par-
tition of the dataset used in S∗. Recall that for any positive
submodular function f and disjoint sets X and Y on which
it is defined, f (X)+ f (Y) > f (X ∪Y). Using this property,
we claim that for any program P defined on a set of exam-
ples E in S∗, GM(P)< ΣiGM(Pi) where Pi are the programs
defined on the subsets of E in S . Hence, it must be that
GM(S∗) < GM(S), which contradicts our earlier assump-
tion. Therefore, S∗ is the unique minimizer of the subprob-
lem in the constraint. Further, it is easy to see that partition-
ing of the dataset into equivalence classes can be achieved in
O(n∗ p) calls to a domain dependent subroutine that checks
if a given pair of expressions is generalizable - we simply
start with an empty set of partitions, and one by one either
place an example into the unique partition to which it be-
longs, or create a new partition if it does not generalize with
the examples in any existing partition. �

Note that for most applications, we expect p to be much
smaller than n, thus letting us find the optimal partition in
time almost linear in the size of the dataset. The time re-
quired for checking generalizability for a given pair of DSL
expressions will be dependent on the DSL.

The process of generalization can give rise to confusion
during prediction and we illustrate this point through an ex-
ample. With respect to Figure 1, consider a dataset contain-
ing blue paragraphs being changed to green textboxes, and
paragraphs of size 10 being changed to tables of size 12. The
partitioning step would recognize these as distinct transfor-
mations, and create two partitions for the datapoints. After
generalization, the programs learned would be (g5,g6) and
(g7,g8). Now, i3 would be a confused datapoint with respect
to the two programs learned. This confusion could be re-
solved by the ranking function fw through the design of an
appropriate ψ(i,Pl) vector consisting of features such as the
number of datapoints in partition Pl , the extent of similarity
between i3 and input points in Pl , and so on. Based on the
model f ∗w obtained via learning to rank, we can then decide
whether to transform i3 to o3 or o4. Hence, we try to remove
confusion through minimizing generality.
Determining the ranking function f ∗w:

(i) Designing & Computing Feature Vector ψ(i,Pl): The
domain-specific features may be properties of the input or
the partition alone, or measures of the extent of “matching”
between the input and the partition.

(ii) Learning to Rank: We learn weights on the
above features by leveraging an existing cutting-plane

187

algorithm (implementation) for the convex regularized
RankSVM (Joachims 2002) formulation.
Additional Notes: In addition to handling confused data-
points, we can handle uncertain inputs by testing whether
the input is “partially subsumed” by the input generalization
of some program, and choosing to transform by the “best”
of those partially subsuming programs. For example, if we
have a program that takes blue text of size X font and con-
verts it to size X + 2; red text of size 10 would be partially
subsumed in the input space, but since the output depends
on X and not on the color blue, we can still transform it to
red text of size 12. While (Singh and Gulwani 2016) provide
the capability to partition the data based on the existence of
LGG on the input side, such a strategy does not guarantee
the existence of LGG on the corresponding set of outputs.
We take care of this by design, through partitioning based on
transformations. Further, generalization/partitioning on the
input can also lead to confusion as pointed out in Figure 2,
something we handle in this work.

4 Program Synthesis for XML

Transformations

We now describe the domain-specific parts of our framework
used in the XML transformation domain. These include the
DSL and generalization mechanisms, and the features for
ranking.
DSL & Generalization: We use the DSL in (Raza, Gul-
wani, and Milic-Frayling 2014) and summarize it here. A
rooted tree expression, denoted as (e,φ)[τ], consists of a
node e (eg. textbox, table, paragraph, etc.) and a list of trees
[τ] that form its children. In addition, the node also contains
a map φ from the attributes of e to their values. Generaliza-
tion of trees is achieved by (i) allowing some nodes in the
tree to be iterators, which represent an arbitrary number of
instances of a particular tree expression (ii) allowing φ to
map a field name to a don’t care value denoted by a variable.
For example, in Figure 1, g3 represents a slide containing
an arbitrary number of textboxes, each containing some red
colored text of size 10.

A concrete tree τc is said to match a tree expression τ, if τc
can be obtained from τ through a substitution that replaces
variables by concrete trees and iterators by other substitu-
tions. The matching relation can be generalized to subsump-
tion over tree expressions: A tree expression τ subsumes τ′
if τ′ can be obtained from τ by substituting variables with
tree expressions (instead of concrete trees) and iterators by
substitutions.

Once the dataset is partitioned and the inputs and outputs
of each partition are generalized to their respective LGGs,
the synthesis algorithm then infers relationships (Raza, Gul-
wani, and Milic-Frayling 2014) between the variables and
iterators of the input and output tree expressions. A program
is successfully synthesized if the output tree expression only
contains variables and iterators from the input tree expres-
sion.
Features: The features used when deciding which pro-
gram to use for a given input are as follows: (i) number
of datapoints in the partition, (ii - v) the number of itera-

tors/variables in the partition LGG before/after generalizing
with the input, (vi, vii) the number of literals and variables
that matched between the LGG and the input.

5 Program Synthesis for Machine

Translation

Approaches to Machine Translation (MT) have been known
to benefit from preordering (ie, permuting the words of a
source-side sentence before translation), using both learned
models (Genzel 2010) as well as hand-written rules
(Collins, Koehn, and Kučerová 2005). Rule and memory
based MT systems depend heavily on their algorithms for
(a) matching chunks from the input sentence with those in
their glossary or rules and (b) aligning the translations of
these chunks. Many of these approaches, however, treat the
input sentences either as plain text or as Part-Of-Speech tag
sequences at best.

We explore the problem of preordering as a tree trans-
formation problem, by learning rules for transforming the
parse tree of the input sentence. We view the preordering
rule extraction problem as a problem of program synthe-
sis from examples, and employ MultiSynth for the same. In
other words, the problem of learning preordering rules for
source language sentences, is perceived as that of learning
a deterministic program that preorders the input sentence’s
parse tree so that it more faithfully represents the ordering
of words in the target sentence.

While such a preordering involves a variety of tree trans-
formations, in order to demonstrate the effectiveness of Mul-
tiSynth in preordering for MT, we restrict the scope of the
problem to that of learning transformations at the production
level of the parse tree; i.e., permutation of children at ev-
ery node of the source-side parse tree. Such a program takes
a production in a given parse tree as input, and returns the
permutation of the RHS of the production as output. Such
tree-based transformations of the source-side sentence are
known to be effective means of preordering and have been
well studied (Genzel 2010; Lerner and Petrov 2013).

We illustrate the extent of multimodality and confusion
in this domain, on the CoNLL dataset (Khapra and Ra-
manathan 2012), which is frequently used to train preorder-
ing models. Of the 1131 different possible productions in the
English to Farsi component, there are 167, 26, 9, 11 and 5
productions, which respectively have 2, 3, 4, 5, 6 possible
ways in which they are permuted, with a large number of
training data points in each case.

The training data is preprocessed to acquire the syntax
trees of the source and target side sentences, using a stan-
dard source side parser (such as (Klein and Manning 2003)),
and a bottom-up construction of the target tree, with the
source tree as reference. Further, all the productions, their
features and their corresponding ideal permutations serve as
the training dataset to the synthesizer.
DSL & Generalization: The DSL for syntax tree trans-
formations using production-level permutations includes the
following:

(i) Terminal symbols (which include all words in the
source side sentence), non-terminal symbols (POS tags) and

188

variables (which may take terminal or non-terminal symbols
as values). A production has a non-terminal symbol in the
LHS and a sequence of terminal/non-terminal symbols in
the RHS, and defines the grammatical rules of a language.
The root of a syntax tree is a non-terminal symbol repre-
senting the sentence. For any parent node and its ordered list
of children, there must exist a valid production having the
parent node as the LHS and the children as the RHS.

(ii) A generalized tree is a syntax tree with either terminal
symbols or variables at the leaves.

(iii) The set of primitive operations, which are all the pos-
sible permutations of the various productions.

Our generalization mechanism is as follows: given two
trees t1 and t2, let G(t1, t2) denote the generalization of t1
and t2. Let r(c1 . . .cn) denote a tree rooted at r, whose chil-
dren, along with their subtrees is denoted by the list c1 . . .cn.
Then, G(r1(c1 . . .cn),r2(d1 . . .dm)) is given by the following
recursive definition:

(i) r1(G(c1,d1) . . .G(cn,dn)), if r1 = r2 and n = m
(ii) X , a variable which can take values from {r1,r2}, oth-

erwise
The above definition may be extended to a generalization

over a set of trees, as well.
A node is a non-terminal or terminal present in a syntax

tree. We define as the content of a node in a tree, the subtree
rooted at it. The context of a node is a tuple consisting of its
parent, a list of its parent’s children, and an integer indicating
the index of the node in the list. The depth of a node is its
distance from the root node of the syntax tree.
Features: The following measures of the extent of matching
between a given test input and a candidate partition, are used
as features: (f1) subsumption: is a binary value which indi-
cates whether the content (subtree) of the test input produc-
tion is subsumed by the LGG of the content of points in the
candidate partition. (f2) matchscore: a value between 0 and
1, to indicate the extent of subsumption of test input’s con-
tent in the LGG content of points in the candidate partition.
(f3) relative frequency: the size of the candidate partition
with respect to the total size of all candidate partitions (f4)
number of candidate partitions, for the given input produc-
tion (f5) relative depth of the input production in the input
parse tree (f6) context: binary value, whether the context is
in the list of contexts of the candidate production or not (f7)
context frequency: the number of training instances in the
candidate partition which have the same context as that of
the test input.

6 Evaluations

In all our comparisons, our baseline consisted of the results
obtained by applying the existing techniques for unimodal
program synthesis (Raza, Gulwani, and Milic-Frayling
2014).

Another benchmark we considered was Markov Logic
Networks (MLNs), that form a state-of-the-art relational
learning framework to simultaneously learn features (for-
mulae in first order logic) and parameters (feature weights)
for classification tasks. We posed our problem within the
MLN framework by formulating a classification task where

each class label corresponds to a transformation. We sub-
sequently explored the space of features and parameters
through a popular implementation of MLNs (Kok and
Domingos 2009), viz., Alchemy2 and learned them for dif-
ferent choices of search and optimization parameters. We
encountered one of two challenges with each execution of
Alchemy’s beam search for the appropriate structure: (a) for
the beam size (threshold) parameter up to a certain value in
the thousands, the model with the resultant features yielded
accuracies exactly coinciding with the baseline whereas (b)
for beam size exceeding the threshold, the process termi-
nated with segmentation fault on all machines with a variety
of configurations that we experimented on.

Domain: XML Transformations: We consider the fol-
lowing set of problem statements (P1-P7) to be synthesized.
The statement of the problems have been extracted from on-
line help forums for various types of transformations, and
repetitive tasks, for which automation would greatly im-
prove the efficiency of the end user. Problems P1, P2 and
P3 respectively match the problem statements T11, T15
and T19 that are described in (Raza, Gulwani, and Milic-
Frayling 2014). The problem statements are as follows:
P1 - Convert textbox into table, list or textbox depending on
the size, font and color of the text inside the textbox.
P2 - Proper alignment of images based on number of images
present in a slide.
P3 - Change bullet colors in list depending on the color of
the bullet itself and the color of the neighbor bullets.
P4 - Change color, size of text in slide depending on the
alignment of the image inside the slide.
P5 - Change text style (bold, underline, italic) in textbox de-
pending on font, size of text.
P6 - Convert list into table, textbox or list depending on bul-
let type, size and font of text in list.
P7 - Change text indentation in table depending on the bor-
der, font of text inside table.

For each of the above problem statements, datasets are
simulated, under the following scenarios S1-S5. S1 is the
confusion-free case, while S2, S3, and S4 contain 20%,
40%, and 60% respectively of confused data points in both
tuning and testing data. S5 contains 40% confused and 20%
uncertain data points. The accuracies reported in Table 1 are
on an average, 30% above their corresponding baseline ac-
curacies. In particular, in S5, the case with uncertainty, we
found an average improvement of 36% over the baseline.

For each problem (P1-P7), training data (used for learning
S∗) of size 100 3 and 3-4 modes, is simulated, with 3-4 at-
tributes, each having 4-5 values. The values for the attributes
are chosen randomly from a prescribed set of values. Under
each scenario, tuning (used for learning f ∗w) and test data of
sizes 300 and 100 examples respectively, are simulated.

Under scenario 1 (free of confusion), MultiSynth reported
100% accuracy for all problems P1-P7. For scenarios S2-S5,
the accuracy (as percentage) in prediction on tuning (when

3With rampant rise in the usage of collaborative authoring and
editing platforms, dataset sizes in the orders of 100s are becoming
common.

189

Tun Tun Tun Tun Tst Tst Tst Tst
S2 S3 S4 S5 S2 S3 S4 S5

P1 96 93 90 93 96 96 90 95
P2 100 100 100 - 100 100 100 -
P3 80 75 63 70 80 76 53 67
P4 98 88 84 92 99 91 85 89
P5 89 83 71 73 91 82 74 79
P6 89 99 95 97 88 98 93 96
P7 93 83 73 77 89 80 72 75

Table 1: Evaluation of MultiSynth for XML Transformation

Tun Test Baseline
Farsi 90.53 89.55 85.17
Italian 91.15 90.35 86.70
Urdu 90.33 90.65 87.33

Table 2: Evaluation of MultiSynth for Machine Translation

tuning data is given as test data) as well as test data, are tabu-
lated as in Table 1. The “-” entries for P2, come from the fact
that the partitions cover all possible data points, and hence
there were no uncertain data points. P1, P2, P4 require on an
average 30 seconds, including partitioning on training data,
learning weights on tuning data, and getting the accuracy
on tuning and test data for all scenarios S2-S5. P5, P6, P7
require on an average 25 seconds. P3 requires 15 seconds.

Domain: Machine Translation: For each of the pairs
(English-Farsi, English-Italian, English-Urdu), we report ac-
curacy over productions which require permutation of the
RHS nodes to achieve the ideal reordering. We performed
experiments on the settings described in the CoNLL reorder-
ing task (Khapra and Ramanathan 2012). The accuracies in
reordering over tuning and test data are summarized in Table
2. They are also compared with the baseline to demonstrate
the improvement owing to MultiSynth’s approach.

The weights learnt for the features f1-f7 in each of the
cases, are presented in Table 3 The weights give us insight
into the nature of the translation problem in different lan-
guages. For example, f5 (relative depth) and f7 (context fre-
quency) having a lower value in Urdu indicates that the way
a production is reordered is largely independent of where in
the sentence it occurs; on the other hand, Farsi seems to be
a language where reordering rules would be highly sensitive
to context. Such insights may be used in the design of other
translation models for such languages.

In addition to accuracy, we also measured MultiSynth’s

f1 f2 f3 f4 f5 f6 f7
Fr .71 13.1 -0.08 -1.88 4.5 1.42 .09
It .22 12.3 -0.03 -1.01 4.4 -0.65 .08

Ur .69 7.0 -0.04 -0.03 2.1 -0.19 .00

Table 3: Feature weights learnt for Machine Translation

Fa It Ur
Baseline 50.0 65.1 38.3
Kunchukuttan et al. 2016 46.4 64.7 37.8
Gupta et al., 2016 55.7 73.0 44.7
MultiSynth 62.5 73.8 56.8
Dlougach and Galinskaya, 2013 65.6 76.7 55.8
Vishwesariah et al., 2011 68.7 83.0 63.3

Table 4: BLEU score comparison with other systems

performance using BLEU scores. (Papineni et al. 2002), a
popular metric for evaluating the quality of machine trans-
lation output. As mentioned in Section 5, we restrict our
problem to sentences which can be correctly translated us-
ing tree-based transformations. On these sentences, we ob-
tained BLEU scores of 77.51 for En-Fa, 79.84 for En-It,
and 65.35 for En-Ur, with baselines of 14.12, 20.07, 15.85
respectively. In Table 4, we compare BLEU scores against
the available results of existing systems (Kunchukuttan and
Bhattacharyya 2016; Patel et al. 2016; Dlougach and Galin-
skaya 2013; Visweswariah et al. 2011) in the shared task
from (Khapra and Ramanathan 2012). However, over 80%
of the sentences in this dataset are not tree-based transforma-
tions, accounting for a drop in performance. Further, our sys-
tem uses only a source side constituency parser whereas the
other pre-reordering techniques additionally require parsing
information for the target language. Despite this, our scores
compare favorably to specialized machine translation sys-
tems. On the other hand, our work could complement recent
success (Wu, Zhou, and Zhang 2017) of end to end sequence
to sequence neural translation models that have shown to
benefit from source side syntactic analysis.

7 Summary and Conclusion

We propose MultiSynth, a framework for synthesis of pro-
gram sets in a DSL, given a multimodal dataset, while bal-
ancing confusion and uncertainty. The approach adopted is
to reduce confusion by constraining the search space of pro-
gram sets to those that have least possible generality mea-
sure, while satisfying at least θ ∈ [0,1] fraction of the train-
ing examples. By virtue of properties of the generality mea-
sure and the satisfaction function, we were able to develop a
2-stage polynomial time algorithm that found the unique so-
lution for θ = 1: (i) partition the training data based on gen-
eralizability of input-output pairs, where each partition cor-
responds to a mode (ii) use the LGG within each partition to
synthesize the corresponding program. In a subsequent step,
we resolved the confusion of mapping a data point to an
appropriate partition by learning a function that ranks pro-
grams from partitions that contend for the data point.

The specific contributions of this paper are (i) the efficient
synthesis of generalized programs for multimodal datasets,
through LGGs (ii) the effectiveness of learning to rank on
confused data points, illustrated on two application domains.
For future work, one may consider the problem of multi-
modal program synthesis in the presence of noise, i.e. when
θ < 1. For example, one may try to devise an approxima-

190

tion algorithm for the constrained submodular minimization
subproblem in our optimization function, and hence quickly
find a good partition of the dataset to synthesize programs.
Acknowledgement: We acknowledge Ajit Diwan, Ana-
maya Tengse and Animesh Baranawal for contributions.

References

Barowy, D. W.; Gulwani, S.; Hart, T.; and Zorn, B. 2015.
Flashrelate: extracting relational data from semi-structured
spreadsheets using examples. In ACM SIGPLAN Notices, vol-
ume 50, 218–228. ACM.
Bisazza, A., and Federico, M. 2016. A survey of word
reordering in statistical machine translation: Computational
models and language phenomena. Computational Linguis-
tics.
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth,
M. K. 1987. Occam’s razor. Information processing letters
24(6):377–380.
Collins, M.; Koehn, P.; and Kučerová, I. 2005. Clause re-
structuring for statistical machine translation. In Proceedings
of the 43rd Annual Meeting on Association for Computational
Linguistics, ACL ’05, 531–540. Stroudsburg, PA, USA: As-
sociation for Computational Linguistics.
Dlougach, J., and Galinskaya, I. 2013. Building a reorder-
ing system using tree-to-string hierarchical model. CoRR
abs/1302.3057.
Ellis, K.; Solar-Lezama, A.; and Tenenbaum, J. 2015. Un-
supervised learning by program synthesis. In Advances in
Neural Information Processing Systems, 973–981.
Ellis, K.; Solar-Lezama, A.; and Tenenbaum, J. 2016. Sam-
pling for bayesian program learning. In Advances In Neural
Information Processing Systems, 1289–1297.
Genzel, D. 2010. Automatically learning source-side reorder-
ing rules for large scale machine translation. In Proceedings
of the 23rd international conference on computational lin-
guistics, 376–384. Association for Computational Linguis-
tics.
Gulwani, S. 2011. Automating string processing in spread-
sheets using input-output examples. In ACM SIGPLAN No-
tices, volume 46, 317–330. ACM.
Gulwani, S. 2016. Programming by examples (and its ap-
plications in data wrangling). In Esparza, J.; Grumberg, O.;
and Sickert, S., eds., Verification and Synthesis of Correct and
Secure Systems. IOS Press.
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, 133–142. ACM.
Khapra, M. M., and Ramanathan, A. 2012. Report of the
shared task on learning reordering from word alignments at
rsmt 2012. In 24th International Conference on Computa-
tional Linguistics, 9.
Kini, D., and Gulwani, S. 2015. Flashnormalize: Program-
ming by examples for text normalization. In Proceedings of
the 24th International Conference on Artificial Intelligence,
776–783. AAAI Press.

Kitzelmann, E. 2010. A Combined Analytical and Search-
Based Approach to the Inductive Synthesis of Functional Pro-
grams. Ph.D. Dissertation, Universität Bamberg.
Kitzelmann, E. 2011. A combined analytical and search-
based approach for the inductive synthesis of functional pro-
grams. KI-Künstliche Intelligenz 25(2):179–182.
Klein, D., and Manning, C. D. 2003. Accurate unlexicalized
parsing. In Proceedings of the 41st Annual Meeting on As-
sociation for Computational Linguistics-Volume 1, 423–430.
Association for Computational Linguistics.
Kok, S., and Domingos, P. 2009. Learning markov logic net-
work structure via hypergraph lifting. In Proceedings of the
26th annual international conference on machine learning,
505–512. ACM.
Kunchukuttan, A., and Bhattacharyya, P. 2016. Faster de-
coding for subword level phrase-based SMT between related
languages. CoRR abs/1611.00354.
Le, V., and Gulwani, S. 2014. Flashextract: a framework
for data extraction by examples. In ACM SIGPLAN Notices,
volume 49, 542–553. ACM.
Lerner, U., and Petrov, S. 2013. Source-side classifier pre-
ordering for machine translation. In EMNLP, 513–523.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting on associa-
tion for computational linguistics, 311–318. Association for
Computational Linguistics.
Patel, R. N.; Gupta, R.; Pimpale, P. B.; and M, S. 2016. Re-
ordering rules for english-hindi SMT. CoRR abs/1610.07420.
Plotkin, G. D. 1971a. A further note on inductive generaliza-
tion. Machine intelligence 6(101-124).
Plotkin, G. D. 1971b. A further note on inductive generaliza-
tion. Machine intelligence 6:101–124.
Raychev, V.; Bielik, P.; Vechev, M.; and Krause, A. 2016.
Learning programs from noisy data. In ACM SIGPLAN No-
tices, volume 51, 761–774. ACM.
Raza, M.; Gulwani, S.; and Milic-Frayling, N. 2014. Pro-
gramming by example using least general generalizations. In
AAAI, 283–290.
Raza, M.; Gulwani, S.; and Milic-Frayling, N. 2015. Compo-
sitional program synthesis from natural language and exam-
ples.
Singh, R., and Gulwani, S. 2016. Transforming spreadsheet
data types using examples. In ACM SIGPLAN Notices, vol-
ume 51, 343–356. ACM.
Visweswariah, K.; Rajkumar, R.; Gandhe, A.; Ramanathan,
A.; and Navratil, J. 2011. A word reordering model for im-
proved machine translation. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing,
EMNLP ’11, 486–496. Stroudsburg, PA, USA: Association
for Computational Linguistics.
Wu, S.; Zhou, M.; and Zhang, D. 2017. Improved neural
machine translation with source syntax. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-
25, 2017, 4179–4185.

191

