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Abstract

Recent studies reveal that social advertising is more effective
than conventional online advertising. This is mainly because
conventional advertising targets at individual’s interest while
social advertising is able to produce a large cascade of fur-
ther exposures to other users via social influence. This moti-
vates us to study the optimal social advertising problem from
platform’s perspective, and our objective is to find the best ad
sequence for each user in order to maximize the expected rev-
enue. Although there is rich body of work that has been de-
voted to ad sequencing, the network value of each customer is
largely ignored in existing algorithm design. To fill this gap,
we propose to integrate viral marketing into existing ad se-
quencing model, and develop both non-adaptive and adaptive
ad sequencing policies that can maximize the viral marketing
efficiency.

Introduction

Social advertising has been proven to be more effective than
conventional online advertising due to the rapid growth of
social networking sites. Different from conventional online
advertising, a typical social advertisement can propagate
across the social network through “reposts” or “shares”. For
example, Facebook allows advertisers to promote their prod-
uct through promoted posts and boost posts, which could
propagate to other users through a sequence of re-shares.
This motivates us to study the ad sequencing problem in
the context of social advertising, e.g., finding the best ad
sequence for each user in order to maximize the expected
revenue from all influenced users.

Although there is rich body of work that has been de-
voted to ad sequencing, the network value of each customer
is largely ignored in existing algorithm design. Most exist-
ing work (Craswell et al. 2008; Kempe and Mahdian 2008;
Tang 2017) in the field of ad sequencing adopts a simple
and practical model to capture user’s reaction upon reading
a sequence of ads: the user scans through slots from top
to bottom, she clicks an ad i with (user-specific) probabil-
ity qi and continues to read the next ad with (user-specific)
probability ci. Under the pay-per-click model, each ad has
a pay-per-click revenue and advertiser pays such fee each
time when one of their ads is clicked. Then given a list of
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candidate ads, they mainly focus on finding the best ad se-
quence for a single user so as to maximize the expected rev-
enue. However, in the context of social advertising, users
are not isolated and one click on an ad could trigger a large
cascade of further exposures to other users. Therefore, we
must take into account the network value of each user when
determining the ad sequencing for her. We notice that influ-
ence maximization has been extensively studied in the liter-
ature (Kempe, Kleinberg, and Tardos 2003; Tang et al. 2011;
Tong et al. 2017), but none of them considered the sequenc-
ing problem on each individual user, and they simply as-
sume that the user will click all ads allocated to her (Tang
and Yuan 2016). To fill this gap, we, for the first time, in-
tegrate viral marketing into existing ad sequencing model
and develop both non-adaptive and adaptive ad sequencing
policies that can maximize the viral marketing efficiency.

The contributions of this paper can be summarized as fol-
lows:
• We are the first to formulate and study the social ad se-

quencing problem. Our objective is to determine the best
ad sequence for each arrival user so as to maximize the
expected revenue generated from all influenced users;

• We first study our problem under non-adaptive setting,
where we can not observe the actual influence generated
from the previously allocated ads. Under this model, we
propose a simple greedy algorithm that can achieve 1/2-
competitive ratio;

• We then extend our model to adaptive setting, where we
can observe the full or partial influence from previously
allocated ads, we propose a simple greedy policy that can
achieve a bounded competitive ratio. Although we focus
on ad sequencing in this paper, our results apply to a broad
range of optimization problems that can be formulated as
an adaptive submodular maximization problem.

Related Work

Due to the rapid increase in internet users, internet adver-
tising has attracted much attention these days (e.g., (Yang
et al. 2015; Edelman, Ostrovsky, and Schwarz 2005; La-
haie et al. 2007; Varian 2007)). (Aggarwal et al. 2008;
Kempe and Mahdian 2008; Tang 2017) study the ad se-
quencing problem under the cascade model. Majority of ex-
isting works assume that users are isolated from each other,
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thus it suffice to compute the best ad sequencing for each in-
dividual user. However, this assumption does not hold in the
context of social advertising, this is because users are con-
nected with each other in the social network, thus one user’s
decision could affect the others via social influence. To fill
this gap, we are the first to study the Social Ad Sequencing
problem, taking into account the network value of each user
when determining the best sequence for her. We present two
ad sequencing policies that can maximize the viral market-
ing efficiency under both non-adaptive and adaptive settings.

Ad Sequencing Model and Propagation Model

Advertisements

The input is a group of ads, denoted by A = {1, 2, · · · , |A|}.
Assume each advertiser i is willing to pay ri per engage-
ment, typical engagement includes share and like. In this
paper we use share as a representative.

Extension: In the model studied in (Tang and Yuan 2016),
each advertiser i also has a finite budget Bi, representing
the maximum amount of advertising fee she is willing to
pay. Thus, the actual payment made by i is the minimum
one between Bi and ri times the number of engagements.
Fortunately, all results derived in this paper can be easily
extended to this model.

Ad Scanning Process

Users are arriving sequentially, upon the arrival of a new
user, we must decide immediately the best ad sequencing
for her. Given an user u and a sequence of ads allocated to
her σu ∈ Σu, where Σu is the strategy space of u, i.e., Σu

contains all candidate ad sequences that can be allocated to
u, we assume that u will view the ads sequentially (Craswell
et al. 2008). After examining an ad, say i, in the sequence,
the user shares i with her friends with probability qi(u). This
probability is decided by the intrinsic quality or relevance of
ad i. Independently of whether ad i was shared or not, the
user continues to examine the next ad with probability ci(u);
otherwise, terminates the scanning process. We use σu(t) to
denote the ad placed in slot t by σu, u will see a particular
slot k with probability

∏k−1
t=1 cσu(t)(u). Thus u will share

σu(k) with the following probability:

pσu(k) = qσu(k)(u)
k−1∏

t=1

cσu(t)(u) (1)

In the rest of this paper, we say a user u is seeded by i if and
only if i is shared by u. Possible extensions to the previous
ad scanning model can be found in (Kempe and Mahdian
2008; Tang 2017).

Propagation Model

Given that ad i has been shared by some users S, we adopt
(enhanced) Independent Cascade Model (IC), which is in-
vestigated recently in the context of marketing (Goldenberg,
Libai, and Muller 2001a; 2001b; Kempe, Kleinberg, and
Tardos 2003; Tang and Yuan 2016; Yuan and Tang 2017a;
2017b), to capture the dynamics of cascade of i. Under

IC model, we use Gi = (U, pi(E)) to denote the diffu-
sion graph under ad i ∈ A, where U represent the set of
all users in the network, pi(u, v) is the diffusion probabil-
ity between u and v for ad i. The cascade process runs in
discrete steps, in each timestep, when a user u re-shares an
ad i, it has one chance of influencing each inactive neigh-
bor v and the success depends on the diffusion probability
pi(u, v). The expected revenue gained from S, denoted by
Ii(S), can be calculated as Ii(S) = riCi(S) where Ci(S)
is the expected number of influenced users given seed set S.
We add a set of edges {(u′, u)|u ∈ U} with diffusion prob-
abilities {pi(u′, u) = qi(u)|u ∈ U} to Gi, these additional
edges are used to capture the uncertainty from ad scanning
process.

Problem Statement

Let V ⊆ U denote the set of all arriving users. Notice that
since users are arriving in an online manner, the complete
information about V is only available at the end of the cam-
paign. Given an allocation S = {σu}u∈V , let piu(σu) denote
the probability that u shares i under S , and piu(σu) can be
computed according to (1), the probability that a subset of
users Z ⊆ V successfully become the seed set of i is

Pr(Z;S; i) =
∏

u∈Z
piu(σu)

∏

u∈V \Z
(1− piu(σu))

We use fi(S) to denote the expected revenue of i under S ,
then

fi(S) =
∑

Z∈2V
Pr(Z;S; i)Ii(Z)

It follows that the expected revenue under allocation S is

f(S) =
N∑

i=1

fi(S)

We study our problem from platform’s perspective and
our objective is to identify and allocate a sequence of ads to
each arriving user so as to maximize the expected revenue.
We study this problem under both adaptive and non-adaptive
settings.

Non-Adaptive Ad Sequencing: Under the non-adaptive
setting, we aim at computing the best ad sequence for each
arriving user, without observing the resulting cascade from
previously allocated ads. Our problem can be formulated as
P.A, where ∀u ∈ V : |S ∩ Σu| ≤ 1 specifies that only one
ad sequence can be selected for each user.

P.A max f(S)
subject to: ∀u ∈ V : |S ∩ Σu| ≤ 1

Adaptive Ad Sequencing: Under the adaptive setting,
we can observe partial or even full realization of the result-
ing influence from previously allocated ads. Therefore, the
decision made at each stage depends on the actual cascading
happens in previous stages. Similar to (Golovin and Krause
2011b), we first define full diffusion realization as follows.
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Definition 1 (Full Diffusion Realization) For each i ∈ A,
the state of every edge (u, v) in Gi is either “live” or
‘blocked”, indicating whether the propagation of i through
(u, v) is a success or not. The state of the diffusion of i can
be represented using function ψi : E → [0, 1], called full
diffusion realization or diffusion realization of i in short.

Let Ψ = {ψi|i ∈ A} denote the diffusion realization of
all ads upon the arrival of u. We define our adaptive policy
π : Ψ → σu, which is a function from the current “observa-
tion” Ψ to an ad sequence σu, specifying which ad sequence
should be allocated to u given the resulting cascade Ψ from
previously allocated ads. Our objective is to identify the best
policy that maximizes the expected revenue.

P.B: Maximize f(π)

Non-Adaptive Ad Sequencing

We first study the non-adaptive ad sequencing problem. The
performance of our online sequencing algorithm is evaluated
using competitive analysis. Given a set of arriving users, we
say our online algorithm achieves β competitive ratio if the
expected revenue of our algorithm is at least β times the
expected revenue of the offline optimal solution.

Algorithm Design

We follow a simple greedy idea to design our algorithm.
Upon the arrival of a user, we select the sequence with the
largest expected incremental marginal gain.

Assume u is the newly arrived user and the existing al-
location is S , let ΔS(σu) denote the expected incremental
marginal gain by adding σu.

ΔS(σu) =
∑

i∈A

∑

Z∈2V
Pr(Z;S ∪ {σu}; i)Ii(Z)

−
∑

i∈A

∑

Z∈2V
Pr(Z;S; i)Ii(Z)

Upon the arrival of u, we aim to compute the best se-
quence by solving the following optimization problem.

P.1 maxΔS(σu)
subject to: σu ∈ Σu

We introduce a dynamic programming based method for
computing such sequence in polynomial time. Our approach
is inspired by the one proposed for traditional ad sequencing
problem (Kempe and Mahdian 2008).

Let Δi
S(u) denote the expected marginal profit brought by

i being shared by u. Although calculating the exact value of
Δi
S(u) is #P-hard (Chen, Wang, and Wang 2010), we can

estimate its value using Monte Carlo simulation.

Δi
S(u) =

∑

Z∈2V
(Pr(Z;S; i)Ii(Z∪{v})−Pr(Z;S; i)Ii(Z))

Our greedy algorithm (Algorithm 1) works as follows: We
first calculate Δi

S(u) for each i ∈ A, then sort all ads in non-

decreasing order of Δi
S(u)qi(u)
1−ci(u)

. Assume A has been sorted,

then we adopt dynamic programming to find the optimal se-
quencing:

σ[i, t] = max{Δi
S(v)qi(u)+ci(u)σ[i−1, t−1], σ[i−1, t]}

In the above recursion function, σ[i, t] stores the optimum
value that can be obtained from ads i, · · · , |A| in slots
t, · · · , T , where T is maximum number of ads that can be
allocated to u.

Algorithm 1 Non-Adaptive Ad Sequencing
1: Upon the arrival of a new user u, calculate Δi

S(u) for
each i ∈ A;

2: Sort A in non-decreasing order of Δi
S(u)qi(u)
1−ci(u)

;
3: Adopt dynamic programming to find the optimal se-

quencing σ[i, t] = max{Δi
S(u)qi(u)+ci(u)σ[i−1, t−

1], σ[i− 1, t]};

Lemma 1 Line 3 in Algorithm 1 returns an optimal ad se-
quencing to P.1.

Proof: Given a sequence σu, we have ΔS(σu) =∑
i∈A piu(σu)Δ

i
S(u). Thus, solving P.1 is equivalent to

finding a σu that maximizes
∑

i∈A piu(σu)Δ
i
S(u) where

piu(σu) is defined in (1). Notice that for a given S , Δi
S(u)

is a fixed value for each i, thus we can treat Δi
S(u) as the

per-engagement value of ad i as defined in traditional ad se-
quencing problem (Kempe and Mahdian 2008), and this en-
ables us to find the optimal solution via dynamic program-
ming. �

We next prove that by solving P.1 optimally for each ar-
riving user, our greedy policy can achieve a constant com-
petitive ratio.

Theorem 1 Algorithm 1 achieves competitive ratio 1/2.

Proof: Notice that the original utility function f(·) is defined
on S where ∀u ∈ V : |S ∩ Σu| ≤ 1. To facilitate our anal-
ysis, we generalize its definition to any subset of

⋃
v∈U Σv

by allowing multiple sequences to be allocated to the same
user: f : 2

⋃
v∈U Σv → R. Intuitively, we assume that if mul-

tiple sequences are allocated to the same user, she will scan
them one by one independently. This generalized model al-
lows multiple attempts to share one ad, however, we assume
that the same ad can only be shared at most once.

We next give a formal description of this generalization.
For any subset of sequences S ∈ ⋃

v∈U Σv , let Su = S∩Σu

denote the set of sequences in S that are allocated to u, thus
S =

⋃
v∈U Sv . Given a S , we define the probability of i

being shared by u as

piu(S) = 1−
∏

σ∈Su

(1− piu(σ)) (2)

The probability that a subset of users Z ⊆ V successfully
become the seed set of i is

Pr(Z;S; i) =
∏

u∈Z
piu(S)

∏

u∈V \Z
(1− piu(S))
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Define fi(S) =
∑

Z∈2V Pr(Z;S; i)Ii(Z). It follows that
the expected cascade under allocation S , which is not nec-
essarily to be feasible, is f(S) = ∑N

i=1 fi(S).
We next prove that f(·) is a monotone and submodular

function. It is easy to prove that f(·) is monotone. Eq. (2)
implies that adding a new sequence to an existing allocation
does not decrease the click probability of any ad. There-
fore f(·) is a non-decreasing function. We next prove the
submodularity of f(·). Since f(·) is a linear combination of
fi(·), it suffice to prove the submodularity of fi(·). Consider
two arbitrary allocations S ′,S ′′ ⊆ Σ such that S ′ ⊆ S ′′, and
an arbitrary sequence σu ∈ Σu \ S ′′. Because ∀i ∈ A, ∀u ∈
V : piu(S) = 1−∏

σ∈Su
(1− piu(σ)) and S ′ ⊆ S ′′, we have

∀i ∈ A, ∀u ∈ V : piu(S ′) ≤ piu(S ′′). We next prove that
fi(SA ∪ {σu})− fi(SA) ≥ fi(SB ∪ {σu})− fi(SB). Our
proof is inspired by (Yuan and Tang 2017a). To facilitate
our analysis, we next take an alternative view at the prop-
agation process generated by any allocation S . For each
user v and each ad i, we select a random number gv uni-
formly from [0, 1]: if piv(S) > gv , then v is declared to be
live, otherwise, v is blocked. Similarly, we select a random
number ge uniformly from [0, 1] for each edge e, then an
edge is declared to be live if and only pe > ge. It is easy
to verify that a user is influenced by i if it can be reached
from some live user through a path consisting of live edges.
Since ∀i ∈ A, ∀v ∈ V : piv(S ′) ≤ piv(S ′′), for every node
v with piv(S ′) > gv , we have piv(S ′′) > gv . Moreover,
the set of live edges under S ′ are identical to S ′′. This im-
plies that if a user is influenced by i under S ′′, it must be
influenced by i under S ′′. This is sufficient to prove that
fi(SA ∪ {σu})− fi(SA) ≥ fi(SB ∪ {σu})− fi(SB), thus
fi(·) is submodular.

On the other hand, ∀u ∈ V : |S ∩ Σu| ≤ 1 is a parti-
tion matroid constraint. Therefore, an online greedy policy
achieves 1/2-competitive ratio. �

Adaptive Ad Sequencing

Adaptive Sequencing with Full Feedback

Algorithm 2 Adaptive Ad Sequencing
1: Upon the arrival of a new user u, calculate Δi

S(u|Ψ) for
each i ∈ A;

2: Sort all posts in non-decreasing order of Δi
S(u|Ψ)qi(u)
1−ci(u)

;
3: Adopt dynamic programming to find the optimal se-

quencing σ[i, t] = max{Δi
S(u|Ψ)qi(u) + ci(u)σ[i −

1, t− 1], σ[i− 1, t]};
4: Update the diffusion realization Ψ;

We first study the case when full feedback is available.
We assume that the diffusion realization of all previously al-
located ads is available before the arrival of the next user, it
allows us to adaptively decide the best ad sequencing for a
newly arrived user after observing the actual cascade result-
ing from previously allocated ads.

Our policy (Algorithm 2) is performed in a sequential
greedy manner as follows: After observing the diffusion re-

alization Ψ, we aim to identify the best sequence for u by
solving the following optimization problem:

P.2 maxΔΨ(σu)
subject to: σu ∈ Σu

In the above formulation, ΔΨ(σu) represents the expected
marginal profit of σu under Ψ and Δi

Ψ(σu) represents the
expected marginal profit from i, then ΔΨ(σu) can be calcu-
lated as

∑
i∈AΔi

Ψ(σu). By solving P.2, we are able to ob-
tain a sequence that maximizes the expected marginal bene-
fit under Ψ. Similar to the proof of Lemma 1, we can prove
that Line 3 in Algorithm 2 returns an optimal sequence to
P.2.

To bound the competitive ratio of Algorithm 2, we first
prove that f(·) is monotone and adaptive submodular. A
complete description of adaptive submodular optimization
can be found in (Golovin and Krause 2011b).
Lemma 2 f(·) is monotone and adaptive submodular.
Proof: Since f(·) is a linear combination of fi(·), it suffice
to prove that fi(·) is monotone adaptive submodular. In the
rest of this paper, we use fi(SΨ ∪ σu) to represent fi(SΨ ∪
{σu}).

It is easy to prove that fi(·) is an non-decreasing function,
we next focus on proving Δi

Ψ(σu) ≥ Δi
Ψ′(σu) for all Ψ ⊆

Ψ′, where Δi
Ψ(σu) = EΦ[fi(SΨ∪σu),Φ)−fi(SΨ),Φ)|Φ ∼

Ψ] and Φ a global realization that is consistent with Ψ. Con-
sider any node v ∈ U\{u} and a realization Ψ, the increased
utility from v brought by σu being added can be calculated
as follows:

(
piu(SΨ ∪ σu|Ψ)− piu(SΨ|Ψ)

)
Δi(u → v|Ψ) (3)

where piu(SΨ ∪ σu|Ψ) − piu(SΨ|Ψ) is the increased probability
of i being shared by u after adding σu and Δi(u → v|Ψ) is the
increased utility from v after i has been shared by u. It follows that
Δi

Ψ(σu) =
∑

v∈U (3). Similarly, this marginal utility under Ψ′

can be calculated as(
piu(SΨ′ ∪ σu|Ψ′)− piu(SΨ′ |Ψ′)

)
Δi(u → v|Ψ′) (4)

We next prove that (3) ≥ (4). It has been proved that
Δi(u → v|Ψ) ≥ Δi(u → v|Ψ′) in (Golovin and Krause
2011b), in order to prove (3) ≥ (4), it suffice to prove

piu(SΨ ∪ σu|Ψ)− piu(SΨ|Ψ) ≥ piu(SΨ′ ∪ σu|Ψ′)− piu(SΨ′ |Ψ′)
(5)

We prove (5) under two cases:
• u is seeded by i under Ψ′: we have piu(SΨ′ ∪ σu|Ψ′) −
piu(S ′Ψ|Ψ′) = 0, thus (5) holds;

• u is not seeded by i under Ψ′: because Ψ ⊆ Ψ′, u is not
seeded under Ψ. Thus piu(SΨ ∪ σu|Ψ) − piu(SΨ|Ψ) =
piu(SΨ′ ∪ σu|Ψ′)− piu(S ′Ψ|Ψ′) = piu(σu).
It follows that (3) ≥ (4), thus

∑
v∈U (3) ≥ ∑

v∈U (4).
Then we have Δi

Ψ(σu) ≥ Δi
Ψ′(σu). �

We next show that Algorithm 2 achieves a constant com-
petitive ratio.
Theorem 2 Algorithm 2 achieves 1/2-competitive ratio.
This theorem can be proved based on Lemma 2 and Theorem
7 in (Golovin and Krause 2011a).
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Adaptive Sequencing with Partial Feedback

We next study the case when only partial feedback is avail-
able. Unfortunately, the utility function f(·) under partial
feedback model is not adaptive submodular (Golovin and
Krause 2011b). To tackle this challenge, we first introduce
the following definition.
Definition 2 Given the existing allocation S , we define par-
tial feedback realization (p-realization) Ψp as the realiza-
tion that can be observed upon the arrival of the next user,
and we define the full feedback realization (f-realization)
Ψf ∈ Ψf as the complete realization of S , where Ψf is
the set of all possible f-realizations that are consistent with
Ψp, thus Ψp ⊆ Ψf . Notice that we have Ψp = Ψf under
full feedback model.

Let Ψ∗f denote the f-realization such that f(Ψp) = f(Ψ∗f ),
intuitively, Ψ∗f is the most pessimistic realization under
which no additional users, other than those who have been
influenced under Ψp, can be influenced by S . In the rest
of this paper, we assume Ψ∗f happens with probability αu

upon the arrival of u, and αu can be readily calculated
with the propagation model and ad scanning model. Let
α = minu∈V αu, we next prove that the greedy policy
described in Algorithm 2 achieves α/(α + 1)-competitive
ratio under partial feedback model. Notice that this result
subsumes the full feedback model as our special case, e.g.,
α = 1 under full feedback model.
Theorem 3 Algorithm 2 achieves α/(α+1)-competitive ra-
tio.
Proof: Consider any node v ∈ U \ {u} and a p-realization
Ψp, the increased utility from v brought by an arbitrary se-
quence σu being added under Ψp is at least:

α
(
piu(S ∪ σu|Ψ∗f )− piu(S|Ψ∗f )

)
Δi(u → v|Ψ∗f ) (6)

Consider an arbitrary f-realization Ψf , the increased utility
from v brought by an arbitrary sequence σu being added is:

(
piu(S ∪ σu|Ψf )− piu(S|Ψf )

)
Δi(u → v|Ψf ) (7)

We next prove that ∀u ∈ V ∀v ∈ U∀Ψf ∈ Ψf : 1
α (6) ≥

(7). Since Ψ∗f is the most pessimistic realization, we make
the following three observations:
• if v is influenced under Ψ∗f , it must be influenced under
Ψf , then Δi(u → v|Ψ∗f ) = Δi(u → v|Ψf ) = 0;

• if v is not influenced under Ψ∗f but it is influenced under
Ψf , then Δi(u → v|Ψ∗f ) ≥ Δi(u → v|Ψf ) = 0;

• if v is not influenced under Ψf , then any live path that
connects u and v can not contain any influenced nodes
under Ψf , thus this path also exists in Ψ∗f (under the same
global realization for the remaining nodes), it follows that
Δi(u → v|Ψ∗f ) ≥ Δi(u → v|Ψf ).

It follows that Δi(u → v|Ψ∗f ) ≥ Δi(u → v|Ψf ). On the
other hand, if u is seeded by i under Ψ∗f , it must be seeded
by i under Ψf , therefore

piu(S ∪σu|Ψ∗f )− piu(S|Ψ∗f ) ≥ piu(S ∪σu|Ψf )− piu(S|Ψf )

It follows that

∀u ∈ V ∀v ∈ U∀Ψf ∈ Ψf :
1

α
(6) ≥ (7)

Thus, we have EΦ[fi(S ∪ σu,Φ)− fi(S,Φ)|Φ ∼ Ψp] ≥
αEΦ[fi(S ∪ σu,Φ) − fi(S,Φ)|Φ ∼ Ψ∗f ] ≥ αEΦ[fi(S ∪
σu,Φ) − fi(S,Φ)|Φ ∼ Ψf ]. Assume σg

u is the sequence
added by our greedy algorithm, for every σu ∈ Σu, we have

EΦ[fi(S ∪ σg
u,Φ)− fi(S,Φ)|Φ ∼ Ψp]

≥ EΦ[fi(S ∪ σu,Φ)− fi(S,Φ)|Φ ∼ Ψp]

≥ αEΦ[fi(S ∪ σu,Φ)− fi(S,Φ)|Φ ∼ Ψf ] (8)

Let O denote the optimal solution before u’s arrival and
σo
u is the optimal sequence assigned to u. Due to f(·) is

adaptive submodular under full feedback model, we have

EΦ[fi(S ∪O ∪ σo
u ∪ σg

u,Φ)− fi(S ∪O ∪ σg
u,Φ)|Φ ∼ Ψf ]

≤ EΦ[fi(S ∪ σo
u,Φ)− fi(S,Φ)|Φ ∼ Ψf ].

It follows that EΨf
[EΦ[fi(S ∪O∪σo

u∪σg
u,Φ)−fi(S ∪O∪

σg
u,Φ)|Φ ∼ Ψf ]|Ψf ∼ Ψf ] ≤ EΨf

[EΦ[fi(S ∪ σo
u,Φ) −

fi(S,Φ)|Φ ∼ Ψf |Ψf ∼ Ψf ]. According to (8), we have

1

α
EΦ[fi(S ∪ σg

u,Φ)− fi(S,Φ)|Φ ∼ Ψp] (9)

≥ EΦ[fi(S ∪ σo
u,Φ)− fi(S,Φ)|Φ ∼ Ψf ]

Therefore, (9) is lower bounded by (9) ≥ EΨf
[EΦ[fi(S ∪

O ∪ σo
u ∪ σg

u,Φ)− fi(S ∪O ∪ σg
u,Φ)|Φ ∼ Ψf ]|Ψf ∼ Ψf ].

Thus Algorithm 2 achieves α/(α+ 1)-competitive ratio. �

Performance Evaluation

In this section, we evaluate the effectiveness and efficiency
of our proposed ad sequencing strategies on three bench-
mark social network datasets.

Experimental Setup

Datasets. We conduct extensive experiments on three real-
world benchmark social networks in the literature of viral
marketing: Epinions, Slashdot, and Pokec to examine the ef-
fectiveness and efficiency of the proposed algorithms. Basic
statistics of the datasets are summarized in Table 1, where
n denotes the number of nodes and m denotes the number
of edges in the social graph. Epinions is a who-trusts-whom
network that is taken from a social consumer review web-
site (http://www.epinions.com/). Slashdot is a social graph
that exhibits friend/foe relationships in a user community in-
terested in technology oriented news (http://slashdot.org/).
Pokec is the most popular online social network in Slo-
vakia (http://pokec.azet.sk/). The popularity of Pokec has
not changed even after the emergence of Facebook. In this
graph, nodes represent authors and the edges are directed
since friendships in Pokec are oriented. All datasets used
in our experiments are publicly available at (Leskovec and
Krevl 2014).

Influence Model. The influence diffusion model governs
the way that information spreads in the social network driven
by social influence. In this work, we adopt the standard
Independent Cascade (IC) model as the influence model,
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Figure 1: Expected revenue vs. size of ad space.

Figure 2: Expected revenue vs. number of users arriving online.

Figure 3: Expected revenue vs. size of ad space.

Figure 4: Expected revenue vs. α.
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Table 1: Dataset characteristics
Dataset n m Type Avg. degree

Epinions 75,879 508,837 directed 13.4
Slashdot 82,168 948,464 directed 21.8

Pokec 1,632,803 30,622,564 directed 35.9

which is mostly widely used in the literature (Tang, Xiao,
and Shi 2014; He and Kempe 2016). As for the IC model,
we adopt two different methods to set the influence proba-
bility associated with the edges, and test how the quality of
solutions changes under these two settings. In the first ap-
proach, we set the propagation probability of each directed
edge as reciprocal of the in-degree of the node that the edge
points to. Specifically, for each edge e we first identify
the node v that e points to, and then set p(e) = 1/d(v),
where d(v) denotes the in-degree of v. This setting of p(e)
is widely used in prior work (Tang, Xiao, and Shi 2014;
Goyal, Lu, and Lakshmanan 2011; jun ), it can be used to
explain the influence spreading in the social networks where
the recipiants recieve similar amount of influence regardless
of her node degree. We call it WC setting. In the second
approach, we set the influence probability of each directed
edge randomly from {0.1, 0.01, 0.001} as in (Chen, Wang,
and Yang 2009; jun ), representing the case when multiple
types of personal relations (three types in this case) exist, we
call it TR setting.

Parameters. In our experiments, unless otherwise speci-
fied, for each ad, we set the click probability and the contin-
uation probability for all the users by sampling uniformly at
random from [0, 0.1]. We set the number of candidate ads to
100. The pay-per-engagement revenue for each ad is sam-
pled uniformly at random from [1, 5]. We vary the number of
users arriving onine and the ad space size to evaluate the im-
pact of these parameters on the quality of the solutions. For
the adaptive greedy ad sequencing algorithm (Algorithm 2),
we adjust the value of control parameter α to evaluate its
impact on the performance of the solutions.

Experimental Results

Results for non-adaptive ad sequencing. Our first set of
experiments evaluates our solutions produced by Algorithm
1 (abbreviated as NG) in terms of the expected revenue ob-
tained from advertisers. Figure 1 shows the expected rev-
enue yielded by NG on all tested datasets, with the size
of ad space varying from 1 to 10. The x-axis holds the
size of ad space, and the y-axis holds the expected revenue.
We observe that as the size of ad space increases, the ex-
pected revenue obtained by NG increases at first, and then
gradually converges as the size of ad space approaches 10.
The expected revenue obtained under WC setting consis-
tently achieves a higher value than that obtained under TR
setting. The underlying reason is that under WC setting,
the edges are associated with higher influence probabilities,
which leads to a larger size of the expected influence spread,
therefore the expected revenue increases accordingly. We
also observe that the lines clearly illustrate the phenomenon
of diminishing marginal returns, empirically illustrating sub-
modularity.

Figure 2 shows the expected revenue yielded by NG on
all tested datasets, with the number of users arriving online
varying from 2 to 20. The x-axis holds the number of users
that will arrive in an online manner, and the y-axis holds
the expected revenue. In this set of experiments, we set the
size of ad space to be 10. As the number of online users
increases, we have more users to allocate advertisements,
therefore, we will obtain more seed users to trigger a larger
cascade of engagement (repost/like) for each ad throughout
the entire social network, leading to a higher expected rev-
enue earned from advertisers. We observe that again, NG
yields a higher expected revenue under WC setting than it
does under TR setting.

Results for adaptive ad sequencing. Figure 3 shows the
expected revenue produced by Algorithm 2 (abbreviated as
AG), with the size of ad space varying from 1 to 10. The
x-axis holds the size of ad space, and the y-axis holds the
expected revenue. In this set of experiments, we set the num-
ber of users arriving online to be 20 and α = 1, indicating
a fully adaptive ad sequencing strategy is computed. Again,
we observe that the expected revenue increases as the size of
ad space increases, eventually converges. We also observe
that compared with NG under the same parameter setting,
AG produces a must higher expected revenue than NG, be-
cause AG fully utilizes the observations on actual influence
diffusion that can be made during the ad sequencing process.
Thus AG provides a sophisticated yet effective ad sequenc-
ing strategy, leading to a higher expected revenue.

Figure 4 illustrates the expected revenue produced by AG
with the value of α ranging from 0 to 1. The x-axis holds
the value of α, and the y-axis holds the expected revenue.
In this set of experiments, we set the number of users arriv-
ing online to be 20 and the size of ad space is set to be 10.
Recall that when α = 0, our model reduces to non-adaptive
model; and when α = 1, our model becomes fully adaptive
model. As expected, the expected revenue produced by AG
increases as α increases. The underlying reason is that when
α approaches to 1, each decision made by our ad sequencing
strategy is based on more observation of the actual influence
diffusion triggered by the current seed set for each ad. In
particular, when α = 1, AG fully utilizes the observation of
the diffusion realization, thus it produces a high quality ad
sequence for each online user, leading to a higher expected
revenue across all the sequences.

In summary, our experiments on benchmark datasets
demonstrate that our proposed social ad sequencing algo-
rithms are effective and efficient under various settings.

Conclusion

In this paper, we study social ad sequencing problem for in-
fluence maximization. We integrate viral marketing into ex-
isting ad sequencing problem, and study our problem under
both non-adaptive and adaptive settings. We propose a serial
of policies that achieve bounded competitive ratios. We also
conduct extensive experiments to evaluate the performance
of our algorithms, and the experiment results validate the
effectiveness of our solutions.
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