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Abstract

There is growing need for robots that can interact with people
in everyday situations. For service robots, it is not reasonable
to assume that one can pre-program all object categories. In-
stead, apart from learning from a batch of labelled training
data, robots should continuously update and learn new object
categories while working in the environment. This paper pro-
poses a cognitive architecture designed to create a concurrent
3D object category learning and recognition in an interactive
and open-ended manner. In particular, this cognitive architec-
ture provides automatic perception capabilities that will allow
robots to detect objects in highly crowded scenes and learn
new object categories from the set of accumulated experiences
in an incremental and open-ended way. Moreover, it supports
constructing the full model of an unknown object in an on-line
manner and predicting next best view for improving object
detection and manipulation performance. We provide exten-
sive experimental results demonstrating system performance
in terms of recognition, scalability, next-best-view prediction
and real-world robotic applications.

Introduction

In recent years, the role of open-ended learning in robotics
has been a topic of considerable interest. The general princi-
ple of open-ended learning is that humans learn to recognize
object categories ceaselessly over time (Kim et al. 2009).
This ability allows them to adapt to new environments, by
enhancing their knowledge from the accumulation of expe-
riences and the conceptualization of new object categories.
Taking this as inspiration, an autonomous robot, apart from
learning from a batch of labelled training data, must process
visual information continuously and perform learning and
recognition simultaneously. This is important since no matter
how extensive the training data used for batch learning, a
robot might always be confronted with an unknown object
when operating in everyday environments.

This paper reports on the development of an adaptive
robotic agent using a cognitive architecture that is integrated
with perceptual and motor systems. The contributions pre-
sented here are the following: (i) a complete architecture
for perceiving, learning, and recognizing 3D objects in an
interactive and open-ended fashion. (ii) proposing a novel
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Figure 1: The proposed system tested on two bin-picking
datasets that contain multiple objects in highly crowded
scenes: (left) juice box scenario; (right) coffee box scenario.

unsupervised Next-Best-View (NBV) prediction algorithm to
predict the next best camera pose to improve object detection
performance. We have tried to make the proposed architec-
ture easy to integrate into other robotic systems. The first
contribution follows our previous works on object perception
and open-ended perceptual learning (Kasaei et al. 2016b;
Oliveira et al. 2015; Kasaei et al. 2015). The present system
aims to be more active, handle more complex scenes, and
support concurrent object recognition and manipulation in
highly crowded scenes. In this work, “open-ended” implies
that the set of object categories to be learned is not known
in advance. The training instances are extracted from on-line
experiences of a robot, and thus become gradually available
over time, rather than being completely available at the be-
ginning of the learning process. The cognitive architecture
provides the underlying object representations; memories
to keep both temporary (working memory) and long-term
(perceptual) knowledge; simultaneous access to memory;
detecting, tracking, learning and recognizing objects in the
environment, NBV prediction and graphical interfaces to en-
able human users to teach new categories and instruct the
robot to perform tasks. The NBV prediction follows our work
on multi-view 6D object pose estimation and camera motion
planning (Sock et al. 2017).

Related Work

Service robots are expected to be more autonomous and work
effectively in human-centric environments. This implies that
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robots should have special capabilities, such as learning from
past experiences and real-time object category learning and
recognition. Towards this end, Jain et al. (Jain and Kemp
2010) presented an assistive mobile manipulator, EL-E, that
can autonomously pick objects from a flat surface and deliver
them to the user. Unlike our approach, the user provides a 3D
location of the target object to the robot by pointing at the ob-
ject with a laser pointer. In another work, a busboy assistive
robot has been developed by Srinivasa et al. (Srinivasa 2008).
This work is similar to ours in that it integrates perception
and motion planning for pick and place operations. However,
there are some differences: their vision system is designed for
detecting a single object type (mugs), while our perception
system not only tracks the pose of different types of objects
but also recognizes their categories. Furthermore, because
there is a single object type (i. e. mug), they computed the set
of grasp points off-line. In our approach, grasping must han-
dle a variety of objects never seen before. Several state of the
art cognitive architectures like DIARC (Scheutz et al. 2013)
and ACT-R (Anderson, Matessa, and Lebiere 1997) use clas-
sical object category learning and recognition approaches (i.e.
offline training and online testing are two separate phases),
where open-ended object category learning is generally ig-
nored (Leroux and Lebec 2013). Therefore, they work well
for specific tasks, where there are limited and predictable
sets of objects, and fail at any other assignment. Unlike our
approach, the perceptual knowledge of these cognitive archi-
tectures are static. Therefore, these architectures are unable
to adapt to dynamic environments (Laird et al. 2012).

To cope with these issues, several cognitive robotics groups
have started to explore how to learn incrementally from past
experiences and human interactions to achieve adaptability. In
(Skočaj et al. 2016), a system with similar goals is described.
In (Fäulhammer et al. 2017), a perception system is presented
that allows a mobile robot to autonomously detect, model,
and re-recognize objects in everyday environments. They
only considered isolated object scenarios, while our approach
can cope with highly crowded scenarios and find a next best
view to improve recognition and manipulation performance.

There are several limitations to use deep networks in open-
ended domains. Deep Neural Networks (DNN) are incremen-
tal in nature but not open-ended, since the inclusion of novel
categories enforces a restructuring in the topology of the net-
work. The difference between incremental and open-ended
learning is that the set of classes is predefined in incremental
learning and the representation of these classes is enhanced
(e.g., augmented, improved) over time, whereas in open-
ended learning the set of classes is continuously growing.
Moreover, DNN usually needs a lot of training data to obtain
an acceptable recognition accuracy. Schwarz et.al (Schwarz,
Schulz, and Behnke 2015) used DNN for 3D object category
learning. They clearly showed that the performance of DNN
degrades when the size of the dataset is reduced.

Overall System Architecture
A cognitive robot should process very different types of in-
formation in varying time scales. Two different modes of
processing, generally labelled as System 1 and System 2,
are commonly accepted theories in cognitive psychology
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Figure 2: Architecture of the proposed cognitive system.

(Evans 2008). The operations of System 1 (i.e. perception
and action) are typically fast, automatic, reactive and intu-
itive. The operations of System 2 (i.e. semantic) are slow,
deliberative and analytic. They are governed by relatively
flexible rules and are therefore explicitly represented. This
paper propose a perceptual cognitive architecture, with the
distinctive characteristics of System 1, to provide a proper
coupling between perception and action. The overall system
architecture is depicted in Fig. 2. It is a reusable framework
and all modules were developed over Robot Operating Sys-
tem (ROS). Each box represents a module that is organized
as a ROS package and typically corresponds to a node or
nodelet at runtime. Information exchange is performed us-
ing standard ROS mechanisms (i.e. either publish/subscribe
or server/client). The architecture consists of two memory
systems namely Working Memory and Perceptual Memory.
Both Working and Perceptual memory systems have been
implemented as a lightweight NoSQL database namely Lev-
elDB1. Working Memory is used for temporarily storing and
manipulating information and communications of all mod-
ules. It also keeps track of the evolution of both the internal
state of the robot and the events observed in the environment
(i.e. word model). Description of objects and object category
knowledge are stored into the Perceptual Memory.

For the perception of both the user and the scene, an RGB-
D sensor (i.e. Kinect) is used. The starting point for the
perception of the scene is Object Detection, which uses a
hierarchical clustering procedure to isolate (partial) point
clouds of the objects. Object Detection detects 6D poses of all
objects in a scene simultaneously, assigns a track-id to each
newly detect object, launches a dedicated object processing
pipeline for every detected object and pushes the object’s
point cloud to the pipeline that includes Object Tracking,
Object Representation and Object Recognition modules.

Object Tracking predicts the next probable position of an
object based on a Kalman filter using geometric information
as well as colour data (Oliveira et al. 2014). Object Tracking
receives the point cloud of the detected object and computes
the principal axes, an oriented bounding box for that point
cloud. The pose of centre of bounding box of the object is
then considered as the pose of the object. Object Tracking
sends out the tracked pose of the object as well as its point
cloud to the Object Representation module.

The Object Representation module computes and stores
object representations in the Perceptual Memory. Object
representation is one of the most challenging modules in

1https://code.google.com/p/leveldb/
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cognitive robotics because it must provide reliable infor-
mation in real-time to enable the robot to physically in-
teract with the objects in its environment. To represent
an object, GOOD descriptor is used (Kasaei et al. 2016c;
2016a). GOOD provides a suitable trade-off between de-
scriptiveness, computation time and memory usage, allowing
concurrent object recognition and pose estimation, and there-
fore a desirable object descriptor for 3D perception in service
robots. As shown in Fig. 2, in addition to storing description
of object in the perceptual memory, Object Representation
sends the extracted representations for recognition. For rec-
ognizing an object, the perceptual categories learned so far
are used to predict the category of the target object. Object
information including recognition result, size of bounding
box and pose of object are written to the working memory,
where the Task & Grasp Planning module can fetch them to
support object manipulation. Figure 1(left) shows a situation
where several objects are segmented, tracked and recognized.

User Interaction is essential for supervised experience
gathering. For this purpose, a graphical user interface has
been developed to teach the robot new object categories or
to instruct the robot to perform a task such as constructing
a full model of object or clear table tasks. Whenever the
instructor provides a category label for an object, the Object
Conceptualizer retrieves the models of the current object
categories as well as a description of the labelled object and
improves or creates a new object category model. The goal
of Grasp Planning is to extract a grasp pose (i.e. a gripper
pose relative to the object) either from above or from the side
of the object, using global characteristics of the object. The
Execution Manager works based on a Finite-State-Machine
(FSM) paradigm. It retrieves the task plan and the world
model information from Working Memory and computes the
next action (i.e. a primitive operator) based on the current
context. Then, it dispatches the action to the robot as well as
records success or failure in the Working Memory. It should
be noted that Task & Grasp Planning is not in the scope
of this paper. We previously showed how to grasp objects
(Kasaei et al. 2016b; Shafii, Kasaei, and Seabra Lopes 2016)
and how to conceptualize tasks using experience based robot
task learning and planning (Mokhtari, Seabra Lopes, and
Pinho 2017).

Perceptual Learning

This section presents in detail the object perception modules.

Object Detection

In general, object detection is a challenging task because
of ill-definition of the objects (Collet et al. 2014). Since a
system of boolean equations can represent any expression
or any algorithm, it is particularly well suited for encoding
the world and object candidates. Similar to Collet’s work
(Collet et al. 2014), we used boolean algebra based on the
three logical operators, namely AND ∧, OR ∨ and NOT ¬.
Moreover, a set of boolean constraints, C, is defined (see
Table 1). Based on these constraints, boolean expressions, ψ,
are built to encode object candidates for the Object Detection
purposes (see equation 1). Due to memory size concerns, a

Figure 3: Examples of showing object segmentation results:
(left) segmentation of isolated objects; (center) a pile of ob-
jects; (right) segmentation of the pile of objects.

representation of an object should only contain distinctive
views. A view which is different from the current view may
appear after the object is moved (i.e. the pose of the object
relative to the sensor changes). An object view is selected as
a key view (i.e. Ckey view) whenever the tracking of an object
is initialized (Ctrack), or when it becomes static again after
being moved.Moreover, Cinstructor and Crobot are exploited
to filter out object candidates which are part of the instruc-
tor’s body or robot’s body. Accordingly, the resulting object
candidates are less noisy and include only data corresponding
to the objects:

ψ = Ctable ∧ Ctrack ∧ ¬ (Cinstructor ∨ Crobot ∨ Cedge). (1)

In our current setup, we assume objects are situated on
a planar surface, as this is the common pose of objects in
domestic environments; but we do not consider any other as-
sumptions about the object appearance except that transparent
objects like glasses are not considered. A hierarchical clus-
tering procedure is used to segment scenes using geometric,
surface normal data and color. In this work, our segmentation
pipeline is composed of two processes (see Fig. 1). The first
process computes the regions of interest from the scene. It
starts with extracting points which lie directly above a hori-
zontal support plane. This is done by first finding the domi-
nant plane in the point cloud using the RANSAC algorithm
(Fischler and Bolles 1981). The scene is then segmented into
individual clusters using a Euclidean Cluster Extraction2 al-
gorithm (see Fig. 3 left). In case of large object candidates
(e.g. a pile of objects or a messy dinning table), as depicted
in Fig. 1, Euclidean clustering algorithm is not enough to ap-
propriately detect object candidates and further processing is
required. Therefore, the second process of the segmentation
pipeline is used to extract a set of object hypotheses from the
results of the first process. A region of the given point cloud
is considered as an object candidate whenever points inside
the region are continuous in both the orientation of surface
normals and the depth values. The depth continuity between
every point and its neighbors is computed. If the distance
between points is lower than a threshold, then the two points
belong to the same region. A color-based region growing
segmentation is also applied on large hypotheses. Each ob-
ject hypothesis (i.e., a cluster of points) will be treated as an
object candidate namely ci, where i ∈ {1, . . . ,K}. It should
be noted that the number of clusters is not pre-defined and it

2http://www.pointclouds.org/documentation/tutorials/cluster
extraction.php
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Table 1: List of used constraints with a short description.
Constraints Description

Ctable The interest object candidate is placed on top of a table.
Ctrack This constraint is used to infer that the segmented

object is already being tracked or not.
Csize Reject large object candidate.
Cinstructor Reject candidates that belong to the user’s body.
Crobot Reject candidates that belong to the robot’s body.
Cedge Reject candidates that are near to the edge of the table.
Ckey view Only key-views are stored into Perceptual Memory.

varies for different viewpoints. Fig. 3 illustrates the results
of the segmentation process in two different scenarios. A
constraint on dimensions of object’s bounding-box, Csize,
has been used to define an object is manipulatable or not. A
video of the robot exploring an environment3 is available at:
https://youtu.be/MwX3J6aoAX0

Object Category Learning and Recognition

Object representation is critical to any object recognition sys-
tem. In the present work, for each object candidate, GOOD
description (Kasaei et al. 2016c) is computed. The obtained
representation is then dispatched to the Object Recognition
module and is recorded into the Perceptual Memory. When-
ever a new object view is added to a category (i.e. super-
vised learning), the object conceptualizer retrieves the cur-
rent model of the category as well as representation of the
new object view, and creates a new, or updates the existing
category. Concerning category formation, an instance-based
learning (IBL) approach is adopted, in which a category is
represented by a set of views of instances of the category. An
advantage of the IBL approach is to facilitate incremental
learning in an open-ended fashion. This approach can incre-
mentally update the acquired knowledge (category models)
and extend the set of categories over time, which is suitable
for real-world scenarios. In order to assess the dissimilarity
between the target object view, t, and an object view, o, a
baseline classification mechanism, in the form of a nearest
neighbour classifier with a simple thresholding, is used. If,
for all categories, the dissimilarity is larger than a given clas-
sification threshold, e.g. 0.75, then the object is classified as
unknown, otherwise, it is classified as the category that has
the highest similarity.

Online Object Model Construction

In this section, we propose an approach for robots to au-
tonomously construct models of unknown objects. This ca-
pability is necessary for cognitive robots, since it will allow
robots to actively investigate their environments and learn
about objects in an unsupervised and incremental way. On-
line construction of full surface models of objects is not only
useful for improving object recognition performance by col-
lecting several views, but also can be used for manipulations.

Our approach enables a robot to move around an object
and build an increasingly complete 3D model of the object
by extracting object points from different perspectives and

3The ROS bag file used in this video was created by the Univer-
sity of Osnabrueck.

aligning them together by considering the tracked object pose
and robot pose as well as geometrical and visual information.
In such a scenario, tracking object is necessary since many
objects in everyday environments exhibit rotational symme-
tries or are lacking in distinctive geometries for matching.
As stated in (Krainin et al. 2010), without having pose in-
formation, Iterative Closest Point (ICP) based approaches
are not able to recover the proper transformations because
of the ambiguity in surface matching. To cope with this is-
sue, we develop a Kalman filter that uses depth and visual
information for keeping track of robot motion and the tar-
get object while it remains visible over time. Afterwards,
the extracted object views are unionised together using the
ICP approach (Pomerleau et al. 2013) that incorporates both
tracking and appearance information. It should be noted, this
approach cannot provide information about object parts that
are not visible based on the objects position in the environ-
ment. Since robot localization is out of the scope of this
work, we use noisy ground truth information and showed
that this approach can compensate for noise in robot mo-
tion and generate proper models of household objects. A
video showing the robot exploring an environment for con-
structing a full model of an Amita juice box is available at:
https://youtu.be/CuBS2L2q5NU

Unsupervised Next-Best-View Prediction

The ability to predict the Next-Best-View (NBV) pose is
important for mobile robots performing tasks in everyday
environments. In active scenarios, whenever the robot fails
to detect or manipulate objects from the current view point,
it is able to predict the next best view position, go there
and captures a new scene to improve the knowledge of the
environment. This may increase the object detection and
manipulation performance (see Fig.4). Towards this end, we
proposed an entropy based NBV prediction algorithm by
rendering the scene using the current object hypotheses.

In the previous steps, the robot captures a point cloud of
the scene and computes a list of hypothesis containing both
objects’ 6D pose and recognized label. The inputs to the Next-
Best-View (NBV) prediction module are: the constructed 3D
models of the objects; the point cloud of the scene; a set of
6D object hypotheses; P = {h1, . . . ,hn}; and the possible
viewing pose, V where V = {v1, . . . , vm} is a finite list of
possible viewing pose representing the camera rotation and
translation in 3D space. The given scene is first segmented
and the obtained clusters are then used to compute viewpoint

Figure 4: (left) Accumulated view and camera pose of differ-
ent view of a pile of coffee cup scenario; (right) images from
four different views.
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entropy for the given scene. There are various methods for
computing the viewpoint entropy. In general, the number of
visible voxel or points is used as an indicator of the area
for entropy computation. This measure is not good enough
since it only considers the coverage objective. Therefore, we
propose a new formulation for viewpoint entropy calculation
that takes into account both the coverage (i.e. the number of
visible points) and saliency (i.e. observing a large portion
of an object which can potentially reduce the pose estima-
tion and recognition uncertainty) objectives. The viewpoint
entropy of a given scene is computed as follows:

H = −
K∑

i=1

Ai

S
log

Ai

S
, (2)

where, K is the number of clusters, Ai is the area of the
ith cluster and S is the total area of the given scene. Before
actually moving the camera, we aim to predict the NBV from
the camera pose list, V. For this purpose, first, we have to
predict what can be observed from each pose in V by taking a
“virtual point cloud”. Toward this goal, based on the given set
of 6D objects hypothesis, the full model of objects are first
added to the current scene (see Fig.5 left). Afterwards, for
each possible camera poses, a virtual point cloud is rendered
based on depth buffering and orthogonal projection methods
(see Fig.5 center and right). Then, the viewpoint entropy is
calculated for each rendered view as before.

In general, choosing the view with the minimum view-
entropy as the next camera position has two problems. Firstly,
in real system, it costs system to move the camera too far
at a time. Secondly, view entropy estimation becomes less
reliable if the rendering view is far from the current position,
since the view entropy calculation is based on the rendered
virtual point cloud. To alleviate this issue, we apply Gaussian
weights to the view entropy value calculated for each view
candidate:

Hw
vi

= wviHvi : wvi =
1

σ
√
2π
e−||vi−vc||2/2σ2

, (3)

where σ is a smoothness parameter which restrict the move-
ment of the camera, wvi is the weight applied to view entropy
for vi, vc is the current camera pose, Hvi is the view entropy
of the view vi and Hw

vi
is the weighted view entropy of the

view vi. However, minimum Hw
vi

can be use to determine
the next camera pose, there is a risk of the camera moving
only locally. Although a set of viewpoints which are close to
each other may have good attributes, obtaining a sequence
of similar viewpoints would not help to detect new objects
which are visible from different viewpoints. To encourage
exploratory behaviour, the following equation is introduced
where viewpoints with higher entropy have a higher chance
of being chosen (Sock et al. 2017):

p(vNext = vi) = Hw
vi
/

m∑

n=1

Hw
vn
. (4)

Figure 5: Rendering virtual point cloud for unsupervised
NBV prediction: (left) the full model of detected objects are
added to the scene (i.e. corresponding points are highlighted
by green color); (center) the visible points from the virtual
camera pose are highlighted by red color; (right) the ren-
dered virtual point cloud. The reference frame represents the
camera pose of the acquired view.

Experimental Results

Three types of experiments were performed to evaluate the
proposed approach. In all results, number of bins parameter
of GOOD descriptor has been set to 15 bins.

Open-Ended Evaluation

We used a teaching protocol designed for experimental eval-
uation in open-ended learning (Chauhan and Seabra Lopes
2011). The idea is to emulate the interactions of a recognition
system with the surrounding environment over long periods
of time. The teacher interacts with the learning agent using
three basic actions: teach, used for introducing a new object
category; ask, used to ask the system what is the category of a
given object view; and correct, used for providing corrective
feedback in case of misclassification. The idea is that, for
each newly taught category, the simulated teacher repeatedly
picks unseen object views of the currently known categories
from a dataset and presents them to the system. It progres-
sively estimates the recognition performance of the system
and, in case this performance exceeds a given threshold, in-
troduces an additional object category. This way, the system
is trained, at the same time the recognition accuracy of the
system is continuously estimated. The simulated teacher must
be connected to an object dataset. In this work, the simulated
teacher was connected to the Washington RGB-D Object
Dataset (Lai et al. 2011). The performance of an open-ended
learning system is not limited to the object recognition accu-
racy. Therefore, when an experiment is carried out, learning
performance is evaluated using three distinct measures, in-
cluding: (i) the number of learned categories at the end of an
experiment (TLC), an indicator of How much does it learn?;

Table 2: Summary of experiments.
EXP# #QCI #TLC #AIC GCA (%) APA (%)

1 1669 37 18.35 0.65 0.74
2 2014 40 20.50 0.65 0.71
3 1759 43 16.91 0.66 0.72
4 1952 43 18.67 0.66 0.73
5 1592 37 17.35 0.67 0.72
6 1366 37 15.38 0.66 0.72
7 1547 35 17.97 0.66 0.72
8 2087 41 20.39 0.66 0.72
9 1066 34 13.94 0.65 0.74
10 1540 45 13.36 0.70 0.77

Mean±STD 1659±311 39.20±3.73 17.28±2.44 0.66±0.01 0.73±0.02
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Figure 6: System performance during open-ended evalua-
tions: (left) global classification accuracy versus number of
learned categories;(right) number of learned categories ver-
sus number of question/correction iterations.

(ii) The number of question / correction iterations (QCI) re-
quired to learn those categories and the average number of
stored instances per category (AIC), indicators of How fast
does it learn? (Fig.6 (right)); (iii) Global classification accu-
racy (GCA), an accuracy computed using all predictions in
a complete experiment, and the average protocol accuracy
(APA), indicators of How well does it learn? (Fig.6 (left)).

Since the order of the categories introduced may have an af-
fect on the performance of the system, ten experiments were
carried out in which categories were introduced in random
sequences. Results are reported in Table 2. By comparing all
experiments, it is visible that in the tenth experiment, the sys-
tem learned more categories than other experiments. Results
showed that both evaluation measures (GCA and APA) for
this experiment are higher than in all other experiments. In
the case of experiment 8, the number of iterations required to
learn 41 object categories was greater than other experiments.

The left column of the Fig.6 shows the global classification
accuracy obtained by the proposed approach as a function
of the number of learned categories. One important obser-
vation is that accuracy decreases in all experiments as more
categories are introduced. This is expected since a higher
number of categories known by the system tends to make
the classification task more difficult. The right column of the
Fig.6 illustrates how fast the learning occurred in each of the
experiments. It shows the number of question / correction
iterations required to learn a certain number of categories.

Our approach learned faster than Schwarz et. al (Schwarz,
Schulz, and Behnke 2015) approach; i.e. our approach re-
quires much fewer examples than Schwarzs work. Further-
more, we achieved accuracy around 70% by storing less than
20 instances per categories (see Table 2), while Schwarz et.al
used more than 1000 training instances per category (see
Fig.8 in (Schwarz, Schulz, and Behnke 2015)). In addition,
they clearly showed the performance of DNN degrades when
the size of dataset is reduced.

System Demonstration

To show the functionalities of the system, three real demon-
strations were performed. In the first two demonstrations,
a JACO robotic arm manufactured by KINOVA has been
used (Fig.7). During the session, a user presents objects to
the system and provides the respective category labels. The
user then instructs the robot to perform a clear table(.) task.

Figure 7: System performance during the first clear table
demonstration; (left) JACO arm manipulates a plasticCup;
(right) Object recognition performance. Each point in these
curves is computed based on the object recognition results in
the previous 15 iterations.

(i.e. puts the table back into a clear state). To achieve this
task, the robot must be able to detect, learn and recognize
different objects and transport all objects except standard
table items (e.g. Vase, etc.) to the predefined areas. While
there are active objects on the table, the robot retrieves the
world model information from the Working Memory includ-
ing label and position of all active objects. The robot then
selects the nearest object to the arms base and clear it from
the table. Figure 7 shows the evolution of object recognition
performance throughout the first clear table demonstration.
First, the system recognizes all table-top objects as Unknown.
After some time, the instructor labels T1 as a Vase and the
system starts displaying a recall of 1.0. However, the preci-
sion starts to decrease, because the category Bottle, CoffeeJug
and PlasticCup have not been taught yet, the performance
goes down. After the labelling objects, the precision starts
improving continuously. As it is shown in the Fig. 7 (right),
whenever the robot grasps an object (i.e. iterations 155, 280,
332), the shape of the object is partially changed, misclas-
sification is happened and the performance goes down. The
grasped object is then transported to the placing area and
the tracking of the object is lost (i.e. iterations 181, 302,
375). Afterwards, the performance starts going up again. A
video of the second clear table demonstration is available at:
https://youtu.be/LZtI-s95uTk

In the third demonstration, two human users interact with
the system. Initially, the system only had prior knowledge
about the Mug and Dish categories, learned from batch data
(i.e. set of observations with ground truth labels), and there
is no information about other categories (i.e. Vase, Bottle,
Spoon). Throughout this session, the system must be able to
recognize instances of learned categories and incrementally
learn new object categories. A video of this demonstration is
available at: https://youtu.be/eP0lwqW55Iw

These demonstrations show that the developed system is
capable of detecting new objects, tracking and recognizing
as well as manipulating objects in various positions.

Evaluation using scene datasets

Object Recognition Performance: Imperial College
Dataset (Doumanoglou et al. 2016) is related to domestic en-
vironments, where everyday objects are placed on a kitchen
table. It consists of variety of different scenes with a set of
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Figure 8: Viewpoint entropy for the bin-picking dataset: (top)
coffee-cup and (bottom) juice-box scenarios.

table top objects. This dataset contains 6 different sets of
table-top scenes from two different heights which has 353
scenes in total (see Fig.9 left). This is a especially suitable
dataset to evaluate the system since the object dataset was
collected under various clutter conditions and distances. The
objects were extracted from the scenes by running the pro-
posed object perception (see Fig.3 left). All detected objects
were manually labelled by the authors. To examine the perfor-
mance of the proposed approach, a 10-fold cross-validation
has been used. The F1-score of the object recognition system
was 0.92 for the extracted objects.
Next-Best-View Prediction: We test the proposed NBV
prediction on the bin-picking dataset (Doumanoglou et al.
2016), which is one of few datasets that contains multiple
objects in a highly crowded scene (Fig. 4). The coffee-cup
scenario contains 59 different views of the scene with 15
cups in a pile. The juice box scenario contains 5 juice boxes
and also has 59 views. Ground truth view point entropy (i.e.
highlighted by the red lines in Fig.8) is calculated based on
the proposed viewpoint entropy and ground truth objects po-
sitions provided by the dataset. In this evaluation, an object
pose estimator based on sparse auto-encoder (Doumanoglou
et al. 2016) is first used to generate multiple object hypothe-
ses. The proposed method for rendering virtual point cloud is
then used and an entropy for the rendered view is calculated.

Top-ten views, in terms of predicting view point entropy,
are selected based on the square error to the ground truth.
Boxplot for the selected views in both scenarios are depicted
in Fig.8, which displays the range of variation. The NBV
algorithm works well in both scenarios since the standard
deviation (SD) of the view entropy is small (i.e. SD for the

Figure 9: Accumulated view and camera pose: (left) Imperial
College dataset; (right) generated synthetic dataset.

Figure 10: Graph showing the correlation between visibility,
viewpoint entropy and detection performance.

coffee-cup was 0.105 and for the juice-box was 0.067) and
the mean is near to the ground truth in both scenarios. The
mean squared error (MSE) was 5.22 and 3.95 for the coffee-
cup and the juice-box scenarios respectively. Note, coffee
cup scenario is much more complex as it has more objects
and many of them are occluded in different views. In contrast,
objects in juice box scenario are visible in most of the views.
Correlation between visibility and viewpoint entropy: To
verify the correlation between the object detection perfor-
mance and the proposed viewpoint entropy, a synthetic
dataset is built for the following reasons: (i) more dense
and even sampling of camera viewpoint can be obtained;
(ii) perfect knowledge on object ground truth, camera pose
and calibration parameters are known. Towards this end, 20
object models are randomly thrown into a virtual box using
MuJoCo physics engine(Todorov, Erez, and Tassa 2012). As
depicted in Fig.9 (right), RGBD scenes are rendered at 100
evenly sampled viewpoints around upper hemisphere. For
more details on dataset see (Sock et al. 2017). The dataset is
publicly available at: https://goo.gl/BSr2mU

For each object, ratio of visible pixel to the total number
of pixel if the object were not occluded is calculated and
these values of every objects in a scene are averaged to quan-
tify the average visibility score for each viewpoint. Detector
(Doumanoglou et al. 2016) is used to obtain the F1-score for
each viewpoint and the proposed view entropy is also used
to calculate viewpoint entropy. Results are plotted in Fig. 10.
The view indices are ordered in descending average visibil-
ity score and the graph shows the F1 score and viewpoint
entropy decreases along with the visibility of the viewpoint.
The viewpoint entropy and F1 score are positively correlated
with the correlation coefficient of 0.6644 for the dataset.

Conclusion

In this paper, we presented a cognitive architecture designed
to enhance a proper perception for service robots. In partic-
ular, an interactive open-ended learning approach for per-
ceiving and and recognizing 3D object categories has been
presented, which enables robots to adapt to different environ-
ments. We also introduced view entropy, which can be used
to predict the NBV in an environment where robot movement
is costly and the scene is complex. Results showed that the
proposed system supports classical learning from a batch
of train labelled data and open-ended learning from on-line
experiences of robots. Moreover, we have tried to make the
proposed architecture easy to integrate on the other robotic
systems. In the continuation of this work, we would like
to investigate the possibility of overcoming the mentioned
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limitations to use DNN in open-ended domains.
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