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Abstract

Graphical models offer techniques for capturing the struc-
ture of many problems in real-world domains and provide
means for representation, interpretation, and inference. The
modeling framework provides tools for discovering rules for
solving problems by exploring structural relationships. We
present the Structural Affinity method that uses graphical
models for first learning and subsequently recognizing the
pattern for solving problems on the Raven’s Progressive Ma-
trices Test of general human intelligence. Recently there has
been considerable work on computational models of address-
ing the Raven’s test using various representations ranging
from fractals to symbolic structures. In contrast, our method
uses Markov Random Fields parameterized by affinity fac-
tors to discover the structure in the geometric analogy prob-
lems and induce the rules of Carpenter et al.’s cognitive model
of problem-solving on the Raven’s Progressive Matrices Test.
We provide a computational account that first learns the struc-
ture of a Raven’s problem and then predicts the solution by
computing the probability of the correct answer by recog-
nizing patterns corresponding to Carpenter et al.’s rules. We
demonstrate that the performance of our model on the Stan-
dard Raven Progressive Matrices is comparable with existing
state of the art models.

Introduction

Polya wrote that heuristic reasoning, or ars inveniendi, aims
at discovering rules for solving problems for which an
optimal solution may be impractical or requires a provi-
sional plausible guess (Polya 1945). Newell has written that
Polya’s methods for problem-solving are directly relevant
to mechanizing reasoning with computer programs (Newell
1983). However, heuristic reasoning traditionally has been
used in conjunction with symbolic, propositional represen-
tations. With this work, we illustrate the use of heuristic rea-
soning with Markov Random Fields for addressing problems
on tests of human intelligence. We aim at providing a com-
plementary view on problem solving on the Raven’s test that
exploits statistical reasoning over graphical representations
of the problems.

The need to be able to assess the degree of success for
computational models of human cognitive processes has
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started an increasing trend of building computer systems ca-
pable of addressing tests of individual human intelligence
(Bringsjord 2011). Hernández-Orallo et al. present an ex-
tensive taxonomy of about thirty existing models varying in
purpose, generalization and technology (Hernández-Orallo
et al. 2016). The diversity of of the problems ranges from ge-
ometric analogy (Evans 1964) to odd-one-out (Lovett, Lock-
wood, and Forbus 2008; McGreggor and Goel 2011) and
Raven’s Progressive Matrices (RPM) (Carpenter, Just, and
Shell 1990; Lovett, Forbus, and Usher 2010; McGreggor and
Goel 2014; Strannegård, Cirillo, and Ström 2013). In this
paper, we center our attention on RPM because its visual
input, variety of problems, centrality in previous research,
and a correlation with general human intelligence provide a
suitable dataset for analyzing capabilities of a computational
model that focuses on problem solving.

A RPM problem is a clever organization of geometric fig-
ures (see Figure 1 for an illustration). In part because of its
simplicity and partly because of the high correlation with
other measures of intellectual achievement (Carpenter, Just,
and Shell 1990), it is widely adopted in psychometrics, the
science of measuring intelligence and knowledge. The Stan-
dard Raven Progressive Matrices (SPM) test consists of five
sets of twelve problems each, A through E, with the prob-
lems typically increasing in difficulty both within a set and
across the sets. In this discussion, we will focus on SPM
problems (both, 2x2 and 3x3) that are presented in black
ink on white background. The left-hand side of the Figure 1
shows a 2x2 matrix similar to a problem from the SPM test,
with the missing element in the lower right corner. The right-
hand side shows a set of six possible answers for filling in
the blank cell to complete the logical pattern in the matrix.

Early computational models of addressing Raven’s prob-
lems did not change the original problem representation, fo-
cusing instead on the rules needed to solve the problem.
Carpenter et al, 1990, identified five distinct rules - ”con-
stant in a row”, ”distribution of three values”, ”quantitative
pairwise progression”, ”figure addition”, and ”distribution
of two values”. Their method exemplified heuristic reason-
ing over propositional representations. The system proposed
by Lovett et al. used prior knowledge of geometric elements
and spatial relations to build qualitative spatial representa-
tions of the human generated sketches of RPM problems,
and then performing analogical reasoning on them (Lovett
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(a) RPM Problem Space (b) RPM Solution
Space

Figure 1: Example 2x2 problem similar to one from the
Standard Raven Progressive Matrices (SPM) test. (Due to
copyright issues, all such figures in this paper illustrate prob-
lems similar to those on the SPM test.)

et al. 2009). These models illustrate the Analytic strategy to
solving Raven’s problems (Hunt 1974).

More recently, two new approaches, fractal and affine,
propose purely iconic visual representations of the Raven’s
Progressive Matrices test (McGreggor, Kunda, and Goel
2014; Kunda, McGreggor, and Goel 2013). The affine
method splits the matrix grid and the solutions grid into in-
dividual cells and performs affine transformations on the
pixel representations. The fractal method takes this divi-
sion further by partitioning the cells into fractal units and
subsequently estimating similarity based on the features ex-
tracted from the fractal representations. Both approaches ex-
emplify the Gestalt visual strategy, an alternative to the An-
alytic strategy (Hunt 1974). An important aspect of these
approaches is that they operate on a transformed representa-
tion of the original problem (Hernández-Orallo et al. 2016).

A more recent model in the Analytic approach analyzes
RPM problems in terms of their practical difficulty as mea-
sured by the number of rules applied in Carpenter et al.’s
model (Ragni and Neubert 2014). A Bayesian model in this
tradition assigns prior probabilities to the rules in Carpenter
et al.’s model to fit data on human performance on RPM
problems (Little, Lewandowsky, and Griffiths 2012). An-
other anthropomorphic cognitive model (Strannegård, Cir-
illo, and Ström 2013) emphasizes problem-solving strategies
evident among high-achieving human problem solvers.

We observe two core themes common to the above com-
putational accounts: problem re-representation and exploita-
tion of problem-specific heuristic strategies. We present an
alternative computational method that combines the benefit
of purely visual representation, problem re-representation,
structural mapping, and heuristic reasoning nested in the
problem-solving strategies. We use the framework of
Markov Random Fields (MRF) as the basis of the proposed
mathematical representations because it enables us to ex-
press interactions between images in the RPM problems in a
formal and very compact way. Markov Networks, which are
a subclass of general graphical models, provide an advan-
tageous mechanism for interpretation of the structure of the
problem through assigning numerical values to interactions
between its components.

Our Approach Motivation and Overview

The general process of our computational model is presented
in Figure 2. The three main modules - representation build-
ing, pattern learning and pattern recognizing - constitute the
essence of the Structural Affinity computational model for
solving Raven’s Progressive Matrices. The low-level pixel
information is extracted from images and represented as
affinity factors which measure the compatibility between
images. This information is used to create the next level of
abstraction - a problem structure corresponding to a rule that
most likely captures the logical sequence in the input image.
The learned abstractions are stored in memory and later re-
trieved during the process of pattern recognition.

Figure 2: A diagram of the Structural Affinity computa-
tional model with three main modules - representation, pat-
tern learning, and pattern recognizing.

We demonstrate the basic process on the example shown
in Figure 3.

Figure 3: An example of the 3x3 Raven’s problem

After receiving the image matrix (here, 3x3) and encod-
ing the input with affinity factors, the pattern learning mod-
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ule starts the process of finding a structure which best en-
codes the spatial relationship between the images in the
given problem. The search of a structure is initiated by an-
alyzing the possible transformations when moving from left
to right (row), or from top down (column). Given that there
may exist more than one structure that can encode the prob-
lem with sufficient soundness, our methods gives preference
to the formations which satisfy the following two principles
of parsimony:
• Minimal number of the nodes: our method seeks the min-

imal group of images which together represent a single
unit of a pattern. For example, for the problem given in
Figure 3, the smallest group contains three images, and
we could have a few different ways of grouping - row-
wise, column-wise, diagonal or triangular

• Feature invariance: of all candidate groups, our method
gives preference to those clusters which undergo the min-
imal number of detected transformations. For example,
as the row grouping (for Figure 3) preserves the iden-
tity property better than the column grouping, the row-
structure provides a higher information gain on the pat-
tern.
After the minimal structure is mapped out, the pattern

recognition module collects the evidence of a pattern sim-
ilarity by fitting each of the candidate solutions from the
given list. The task of the pattern recognizer is to find the
solution with highest likelihood. By substituting each can-
didate into the incomplete third row, the recognizer scores
the resulting formation with the objective to maximize the
identity function. This process arrives at the correct solution
by selecting the image that repeats the image observed in the
third row - a circle. By being able to abstract the concept of
a rule from the graphical representation of Raven’s problem,
the model learns to recognize a pattern. In the next section
we show how to generalize this example by formalizing the
method of exploiting the structure of the graph.

The Structural Affinity Method

Knowledge Representation

The core challenge in solving a Raven’s Intelligence test is
identifying the logical pattern in a sequence of geometrical
images that when expanded optimally leads to a single cor-
rect answer. Thus, the issue here is how to establish a rep-
resentational structure parameterized in such a way that it
directly correlates with the underlying pattern?

Our approach here is to model the interactions between
images as undirected graph structure such as Markov Ran-
dom Field. Each cell of the Raven’s Matrix corresponds to
a node variable in a network with edges capturing the inter-
action between variables. At the crux of the method is the
notion of image affinity which tracks an important measure
for how compatible are the images within a group. The affin-
ity between neighboring nodes is a factor function whose
purpose is to parameterize the undirected graph without im-
posing a causal structure (Koller and Friedman 2009).

Let D be a set of N images. The affinity factor φ is then a
function from V al(D) to R. As an illustration, let us con-
sider the affinity factor for 2x2 Raven’s matrix problems

such as the one illustrated in Figure 1. The smallest building
block of the image is the pixel which we shall denote as x1

or x0 for white and black colors respectively. Table 1 shows
one potential factor function for a pair of images which re-
quires four possible configurations of the pixels’ color as-
signments.

φ(A,B)
a0 b0 1000
a0 b1 200
a1 b0 500
a1 b1 2000

Table 1: An example of the affinity factor φ for a pair of im-
ages A and B. It captures the interaction between variables
by estimating the agreement between choice of pixel color.
A high value for the assignments with matching pixel states,
(a0, b0) and (a1, b1), correspond to a strong agreement, i.e.
images A and B are very similar. On the other side, if the
assignments with opposite pixel states, (a0, b1) and (a1, b0),
are more likely indicated by a high φ value, then a signifi-
cant transformation has been applied to image A to form an
image B.

Formally, the factor function is defined as follows:

φ(A,B) : V al(A,B) �→ R
+ (1)

The affinity factor is calculated by counting the number
of occurrences for each configuration (a, b):

φ(a,b)(A,B) =

n−pixels∑
i=1

[C(Ai) = a] ∧ [C(Bi) = b] (2)

where C(Xk) is the operator function for reading color
bit information for pixel k of the image X .

A full Markov Network for the 2x2 Raven’s Matrix is
graphically visualized in Figure 4 with nodes encoding im-
age labels and edges parameterized by affinity factor func-
tions.

For a 3x3 Raven’s Matrix, the full graphical structure is
more complex. However, we are mainly concerned with the
factor function which takes a similar form with 23 possible
assignments as indicated in Table 2.

φ(A,B,C)
a0 b0 c0 φ1

a0 b0 c1 φ2

a0 b1 c0 φ3

a0 b1 c1 φ4

a1 b0 c0 φ5

a1 b0 c1 φ6

a1 b1 c0 φ7

a1 b1 c1 φ8

Table 2: Affinity factor φ for a triple of images A, B and C
in the 3x3 Raven’s matrix problem illustrated in Figure 3
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A

BC

1 6

φ(A,B)
φ(A,C)

φ(B,C)

φ(C, 1) φ(B, 6)

φ(A, 1)
φ(A, 6)

solutions 1 through 6

Figure 4: Markov Network for the 2x2 Raven’s matrix prob-
lem as shown in Figure 1

Justification

Markov Networks are commonly used in research on com-
puter vision for a variety of tasks such as image segmenta-
tion and object recognition (Koller and Friedman 2009). By
formulating a model with the ability to capture the interac-
tions between neighboring images in an RPM problem, we
can infer the logical pattern in a sequence of images. This
method of representing an RPM problem as a Markov Net-
work not only does not involve any propositional represen-
tations (such as shapes, objects, spatial relations), it does not
even engage any image transformations (such as reflections,
rotations, translations). Instead, the reasoning is based solely
on the statistical interaction between pixels in the images.

Rule Mapping - Pattern Learning

Solving Raven’s problem using structural affinity method
can be conceptualized as a process of going from a gen-
eral model of the problem to a restricted Markov Network
which captures the minimal amount of knowledge required
for solving the problem. For the 3x3 RPM problem, the gen-
eral model assumes inter-dependence of all components of
the matrix space and requires 9(9−1)

2 = 36 edges which con-
volute the structure of the Raven’s problem. To address this
issue, we restrict the number of the edges to the minimal
set of the most influential connections that reduce the prob-
lem complexity and aid in discovering a structure. Before
unpacking the requirement for minimal knowledge, let us
define the concept of structural affinity more formally.
Definition 0.1. Let X be a finite set of variables represent-
ing components in the visual problem and let φk(Xi, Xj) be
a k-th factor function that denotes the affinity between Xi

and Xj . We define the Structural Affinity Ψ(X) to be a set
of factor functions that contain the minimal representation
of the dependence structure in the full graph G over given
RPM:

Ψ(X) : {φk(Xi, Xj) |Xi �⊥⊥ Xj and k ≤ ||G||} (3)
where ||G|| is the cardinality of the graph G given by the

total number of edges.

With a reduced set of affinity factors we represent a re-
lationship between the components of the Raven’s problem
that highlights the strongest interactions in the network (i.e.,
images represented by the variables Xi and Xj that are not
independent). The scale of dependence is captured by the
affinity factor that measures the degree to which the images
are compatible with each other.

For example, the images in the Raven’s problem where
the objects in a row simply repeat each other without any
additional transformation, are said to be highly dependent
resulting in large values of the affinity factor functions.

One approach of picking an informative network structure
is starting with a variable of interest, in our case a candi-
date solution, and iteratively estimating its dependence on
the neighboring variables. Initially, all variables in the ma-
trix spaces are considered to be neighbors with the solution
item. We then prune the weak dependencies leaving only
the minimal map of the network structure which serves as
a foundation for identifying a possible strategy for solving
Raven’s problem.

Structural Affinity Hypothesis The concept of a mini-
mal map allows us to explore a possibility of identifying a
correct solution of Raven’s problem by merely analyzing its
structure as a mapping of strength between its components.

Given a Raven problem and its expected solution, the
Markov network structure with the minimal map will
have the highest structure score as compared to the net-
works with the sub-optimal solutions.

Under this hypothesis, solving Raven’s test can be
achieved with the following four steps of creating and se-
lecting the most likely structure:

1. Create a hypothesis space Ωm of all possible factor
graphs, where m is number of possible solutions.

2. Define objective functions that optimize towards the de-
sired properties of the graph G.

3. Compute the scores for all resulting factor graphs.
4. Select the structure with the highest score as a most likely

solution to the problem.
Both, the presence and the strength of the edges in the cre-

ated network, provide insight on the nature of the masked
dependencies. The resulting network topologies highlight
properties of Raven’s problem which may be connected to
the problem structure through the set of rules described in
Carpenter et al.’s seminal cognitive model of problem solv-
ing on SPM (Carpenter, Just, and Shell 1990).

For example, a rule for Figure Addition (an object in a
third row/column is formed from juxtaposition of the objects
in the first two rows/columns) can be reduced to a network
structure as shown in Figure 5 where a strong interaction is
expressed by a presence of a solid edge, and a weak interac-
tion is indicated by a dashed line. Little et al. refer to this rule
as Logical OR to classify the transformation between figures
as logical operations of disjunctions (Little, Lewandowsky,
and Griffiths 2012).

Little et. al. show that a Bayesian model can successfully
predict the rule by observing a collection of hand-coded fea-
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I3,1 I3,2

X

w(I3,1, X)

w(I3,2, X)

w(I3,1, I3,2)

Figure 5: Network topology for the figure addition rule. The
elements of the networks are images from either the third
row or the third column, and the missing element X from
the solution space. Here, the figures which are being added
do not require dependence, however, the final figure is de-
pendent of both constituents (dashed vs. solid edges)

tures. In our model, the handcrafting of features is not nec-
essary as the rule is learned directly from the given problem.
By following Little’s et. al. Bayesian formulation, we com-
pute the posterior probability of each rule using following
formula:

P (g|s) ∼ P (s|g) ∗ P (g) (4)

where P (s|g) is the evidence for observing a structure s
given rule g, and P (g) is the prior for rule g. Here, P (g|s)
is an unnormalized measure since we use it for ranking pur-
poses, and therefore do not need to convert it to probability
value in the range [0..1].

We compute a rule likelihood by collecting evidence of
the rule g from the observed structure s by performing a
series of independence tests, such as χ2, between affinity
factors parameterizing a Markov network. The distribution
of the χ2 values within the network provides a basis for
constraining functions Hi which after aggregation and nor-
malization produce a score for the given combination of the
structure s and rule g. The computed score measures the
compatibility of the derived structure topology and the sug-
gested rule:

P (s|g) = 1

Z

n∑
k=1

Hi(g) (5)

where P (s|g) is the likelihood of the structure s given rule
g, Z is a normalization function, and Hi(g) is a constraining
function of the form:

H(g) = t(χ̄2) · wt(g) (6)

where t is statistics measure for the obtained χ2 values
of the independence tests and the wt(g) is the weight of the
given statistics measure for the rule g.

wt(g) =

⎧⎪⎨
⎪⎩
> 0, for boosting the statistics
0, if statistics is not relevant for the rule g
< 0 for penalizing the statistics

(7)

Various weights and statistics are derived experimentally,
based on the heuristics of the rule. For example, Carpenter et
al.’s constancy rules give preference to the uniform distribu-
tion of the χ2 values, i.e. all edges are connected with sim-
ilar strength values, while quantitative rules penalize even-
ness and give preference to the configurations with a gradual
decrease of strength.

Predicting the Response - Pattern Recognition

Once the rule tokens have been induced from Raven’s matrix
space for each problem, our method predicts the solution to
the missing object as follows: For every inferred rule Ri for
the problem at hand, rank each candidate solution Xj by
computing the average value across a set of corresponding
objective functions fn imposed by the rule Ri.

E(Xj) =
1

||R||
M∑
i=1

N∑
n=1

fn(Ri) (8)

where E(Xj) is the estimated likelihood of the solution
Sj given set of objective functions fn.

An example of an objective function for the constancy
rule is:

maximize F = φ0,0(I1, I2) (9)

where I1 and I2 are variables in the Markov Network rep-
resenting two images in Raven’s problem affinity for which
is being estimated with the factor φ. Here, the factor function
is computed over states (0, 0) (black pixels) to maximize the
potential of identity property between images I1 and I2.

Finally, the solution is selected by simply finding the can-
didate with the maximal value of the likelihood:

X = argmax j ∈ [1..J ]E(Xj) (10)

The objective functions exemplify the heuristic reasoning
of our approach by introducing conditions under which the
most likely solution should be found. Given the statistical
nature of the algorithm, the model combines the signals from
an ensemble of heuristic functions to predict the solution that
fits the observations represented in the form of affinity fac-
tors. The heuristics attempt to capture our expectations of
the behavior between images in the Raven’s test under the
assumptions of the inferred rules. For example, by assuming
that the best strategy for solving a specific Raven’s problem
is applying a conjunction rule in the row, we impose a kind
of heuristics that simultaneously maximize the pairwise re-
lationships between the candidate solution and the images
from the third row. We achieve such heuristic constraint by
applying the following objective functions:

max F = φ0,0,0(I1, I2, I3) (11)

min F = φ0,1,0(I1, I2, I3) (12)

min F = φ1,0,0(I1, I2, I3) (13)

Initial inspection of the ranked candidate solutions indi-
cated a strong propensity to split the predictions into two
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Rule

B C D E
Constant in a Row or Column 6 6 7 0
Distribution of three values 0 0 8 0
Distribution of two values 0 0 0 1
Figure Addition or Subtraction 3 5 1 21
Quantitative pairwise progression 2 14 3 0
Symmetry* 5 0 0 0

Table 3: Induced Carpenter’s rule for set B, C, D and E. We
additionally included rule Symmetry for set B which is not
classified as one the five Carpenter’s rules. This analysis in-
cluded cases where multiple tokens is required for solving a
problem.

groups separated by a large margin - highly unlikely candi-
dates which when selected would probably be attributed to
a random choice, and plausible candidates, the incorrect an-
swers amongst which are typically due to Incomplete Corre-
late errors in human performance on the Raven’s test(Kunda
et al. 2016). Our technique currently does not directly mea-
sure the confidence, however, given the probabilistic nature
of the approach, the confidence is inferable via the computed
score for each candidate.

Results

Setup Description

We have evaluated our computational model for sets B
through E of the Standard Raven’s Progressive Matrices
(SPM) test. This is because the five types of rules described
by Carpenter et al. do not apply to set A which relies heav-
ily on textures and not geometric pattern learning. Images
were digitized for consumption by our computational model.
The resulting artifact introduced some noise related to image
alignment; however, the statistical nature of the algorithm
smoothed out the impact on the accuracy.

Rule Inference Results

Table 3 reports the overall frequency of each inferred rule
according to the Carpenter et al.’s naming scheme. The num-
ber of rule tokens applied to a problem varies from 1 to 4,
with a most frequent case of 2 rules per problem. In addition
to inducing the rule, the algorithm augments the results with
the directional variable (row, column, diagonal, or triangu-
lar), however, for the analysis and comparison we only kept
the name of the rule.

To estimate the correctness of the rule induction outcome,
we compared the algorithm response to a suggested logi-
cal relation in the items for each problem in sets C, D, and
E (Georgiev 2008). For set B (which was not included in
the Georgiev’s analysis), we manually created the ground
truth for each problem before hand. Our performance mea-
surements resulted in 0.94 for precision, 0.72 for recall and
0.82 for F1 score. The lower number for recall indicates that
we did not retrieve all rule tokens, however, as we show the
agent problem solving accuracy results below, it did not im-
pact significantly the results generated during the solution

Set Correct Percentage Correct

Raven’s Problem B 11 91.67
Raven’s Problem C 12 100.0
Raven’s Problem D 10 83.33
Raven’s Problem E 11 91.67

Table 4: Response predictions for rule-aware agent per set
for Raven’s Standard Progressive Matrices Test - Set B, C,
D and E

prediction phase. We found that in most cases the rule tokens
which were identified (94%) bore sufficient information for
disambiguating the correct solution.

Rule-Aware Agent Results

Our computational model predicts correct responses for 44
out of 48 targeted problems (sets B through E of SPM) re-
sulting in overall 91%. Table 4 shows the absolute count of
the correct responses and its percentage per set.

The incorrect responses for the 4 out of 48 problems can
be mapped to the two out of four conceptual error types -
Wrong Principle and Incomplete Correlate in Kunda et al.’s
classification of error on SPM (Kunda et al. 2016). As the
Structural Affinity method is based on the image agreement,
in a case of ambiguity it is biased towards selecting an an-
swer which is a copy of the elements from the matrix space
of the problem (Wrong Principle), or the answer is almost
correct, i.e., second best choice (Incomplete Correlate).

Comparison to Other Computational Models

Table 5 shows the comparison of our technique based on
Structural Affinity method with two visual methods - Affine
(Kunda 2013) and Fractal (McGreggor and Goel 2014) and
two propositional methods -Anthropomorphic (Cirillo and
Ström 2010) and CogSketch (Lovett, Forbus, and Usher
2010). The Affine and the Fractal methods are using a vi-
sual approach and problem re-representation which relate to
the Structural Affinity in Gestalt principle. The Anthropo-
morphic and the latest published CogSketch models differ
from our method in the overall strategy, and as such also
serve as good comparison models. The Structural Affinity
method has a total score of 44 out of 48 targeted problems
in the SPM; the Affine and Fractal have total scores 39 and
42 respectively on the same problem set. The Anthropomor-
phic model solved 28 out of 36 targeted problems (C through
E), and, finally, the CogSketch reported solving 44 out of 48
problems. The results presented in our Structural Affinity
method compare very well in performance with CogSketch
and Fractal methods and outperform Affine and Anthropo-
morphic accounts. Thus, we suggest that the method of first
learning the pattern corresponding to Carpenter et al.’s rules
as tokens, and then recognizing the answers that fit the pat-
tern the best, plays an important role in constructing a model
capable of solving intelligence tests in the form of geometric
analogies.
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Method Correct Target

Affine 39 60
Antropomorphic 28 36
CogSketch 44 48
Fractal 42 60
Structural Affinity 44 48

Table 5: Comparison of the overall accuracy results for five
computational models

Discussion and Conclusions

We began this paper by asserting the importance of learning
and recognizing patterns in problem-solving by exploiting
the interpretative nature of graphical models. We offered a
representation that is capable of quantifying the level of in-
teraction between constituents of the geometric problem on
an example of Raven’s intelligence test. The simulation re-
sults presented in this work show that our Structural Affinity
method built on the basis on Markov Networks allows in-
ducing the set of rules (pattern learning) that are most imag-
inable to express the logical sequence used for creating the
problem. As our model generates input for structure finding
algorithm directly from the images, it is not susceptible to
the limitation of Carpenter et al. (Carpenter, Just, and Shell
1990) and Little et al. (Little, Lewandowsky, and Griffiths
2012) works where the model inputs are hand-coded.

The success of the rule inference portion of the algorithm
(94% precision score) suggests that geometric problems on
the Raven’s test can be understood through statistical analy-
ses that are also frequently leveraged in understanding other
phenomena such as language and vision. The cases where
the model misclassified the patterns are also difficult for hu-
mans as they require the analysis of slopes and completeness
(Georgiev 2008). One of the problems, however, pointed to
the limitation of our own approach where affinity factors
could not capture the corresponding regions of the images. It
may be possible to address this criticism by a more advanced
factor-creation algorithm that can account for a more signif-
icant image misalignment.

The second component of our algorithm - applying the
induced rule tokens to Raven’s problem to predict the solu-
tion - demonstrates the heuristic nature of problem solving
through pattern recognition. Each inferred rule dictates the
set of heuristics expressed through affinity factor states’ rela-
tionships either validating or refusing a solution (we showed
an example of an identity heuristic function). Our achieved
accuracy of 91% is on par with the state of the art compu-
tational accounts for solving SPM. The misclassified cases,
most suitably attributed to a Wrong Principle or an Incom-
plete Correlate, suggest a potential improvement of the so-
lution disambiguation by adding a more comprehensive set
of heuristics. The generality of the model is supported by
adhering to the standard set of rules as classified by Car-
penter et al. (Carpenter, Just, and Shell 1990) and applied to
Bayesian models and evaluated to human performance data
fitness (Little, Lewandowsky, and Griffiths 2012).

Our method composed of three modules - representation
building, pattern learning and pattern recognition - raises

the question on the power of statistical reasoning for un-
derstanding problems that require logical deductions: what
is minimal level of abstraction that is sufficient for pattern
extraction and accurate response prediction? The evidence
shared with the results of our simulations suggests that high
accuracy levels are indeed achievable with statistical reason-
ing over graphical models. Furthermore, as the underlying
process of identifying structure is not specific to SPM, our
method may be more general and applicable to other visual
problems that require deducing logical sequences.

Future Work

The compilation of results presented in this computational
simulation provides evidence that Markov Network repre-
sentation parameterized with affinity factor functions encode
sufficient information for solving Raven’s matrices of vary-
ing difficulty. By solving 44 out of 48 problems, the method-
ology demonstrates an ability to match different levels of
intelligence by strategizing over the Raven’s matrix view.
By formalizing the concept of compatibility between im-
ages, we believe it may be possible to generalize the ap-
proach to solving other geometrical problems that encom-
pass mathematical symmetries and more advanced logical
progressions.

The most natural generalization of our method is expected
for the Advanced Raven Progressive Matrices (APM) test
due to their similar structure to SPM. The logical progres-
sions are more complex so an addition of new objective
functions may be required to capture the heuristics not ob-
served on the simpler Raven’s sets. An extension to Colored
Raven Progressive Matrices (CPM) can be achieved by in-
creasing the possible states of the affinity factors from bi-
nary (black and white) to arbitrary number of colors with
the trade-off of computational speed.

Other geometrical problems, such as Odd One Out, have
been addressed within the same family of visual computa-
tional models (McGreggor and Goel 2011). While further
development is needed to validate the applicability of our
approach here, we anticipate a minimal changes in the pre-
diction algorithm (optimizing for less compatible images),
and a more substantial effort to infer a different set of rules
to explain the patterns in the underlying problems.
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