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Abstract
Human action recognition remains a difficult problem for AI. 
Traditional machine learning techniques can have high 
recognition accuracy, but they are typically black boxes 
whose internal models are not inspectable and whose results 
are not explainable. This paper describes a new pipeline for 
recognizing human actions from skeleton data via analogical 
generalization. Specifically, starting with Kinect data, we 
segment each human action by temporal regions where the 
motion is qualitatively uniform, creating a sketch graph that 
provides a form of qualitative representation of the behavior 
that is easy to visualize. Models are learned from sketch 
graphs via analogical generalization, which are then used for 
classification via analogical retrieval. The retrieval process 
also produces links between the new example and compo-
nents of the model that provide explanations. To improve 
recognition accuracy, we implement dynamic feature selec-
tion to pick reasonable relational features. We show the ex-
planation advantage of our approach by example, and results 
on three public datasets illustrate its utility. 

Introduction 

Human action recognition is an important but difficult prob-
lem. Traditional machine learning relies on extracting large 
numbers of features and using techniques such as deep 
learning (Baccouche et al. 2011). However, these techniques 
have some disadvantages. A key problem is that they are 
black boxes: They can produce results, but do not provide 
explanations for their answers. This makes their results dif-
ficult to trust and to debug (Lowd and Meek 2005). When
people perform recognition, even for visual tasks, they often 
can describe the reasons for their classification. There is ev-
idence that relational representations are important in hu-
man cognition (Marr 1982; Palmer 1999). By working with
human-inspired relational representations, we provide evi-
dence that analogical models can produce high accuracy 
while providing explanations.
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This paper draws on research in qualitative spatial reason-
ing and cognitive simulation of visual problem-solving and
analogy to provide a new approach with high accuracy and
a novel explanation ability to recognize human actions from 
Kinect skeleton data. Instead of computing frame-based fea-
tures (Wang et al. 2016; Li, Chen, and Sun. 2016), the video 
stream is divided into sketch graphs, consisting of multiple 
sequences of snapshots. Each snapshot is like a panel in a 
comic strip: It consists of a motion segment described by a 
single qualitative state, which might correspond to many 
frames. Each body point has its own sequence of such states.
The trajectories within these states and relationships across 
these states are described qualitatively, using automatically 
constructed visual representations. The sketch graphs for 
each instance of a behavior type are combined via analogical 
generalization, to automatically construct probabilistic rela-
tional schemas (plus outliers) characterizing that behavior 
type. To categorize a new behavior, a set of sketch graph
representations is computed for it, and analogical retrieval 
is used across the entire set of trained behavior models to 
retrieve the closest schema (or outlier). We begin by sum-
marizing the work we build on, including CogSketch and 
analogical processing. We then describe the learning pipe-
line and how classification works. We show how explana-
tion sketches enable understanding recognition decisions 
made via analogy. Results on three public Kinect action da-
tasets are described, and we close with related and future 
work.

Background
Our approach combines ideas from sketch understanding
and analogical processing. We discuss each in turn.
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CogSketch
CogSketch (Forbus et al. 2011) is a sketch understanding 
system that provides a model of high-level visual pro-
cessing.  It provides multiple, hierarchical levels of visual 
representation, including decomposing digital ink into 
edges, combining edges into entities, and gestalt grouping 
methods.  The qualitative visual representations that it auto-
matically computes from digital ink have enabled it to model 
a variety of visual problem-solving tasks (e.g. Lovett and
Forbus, 2011).  These relations include qualitative topology 
(Cohn et al. 1997), positional relations (e.g. above, leftOf), 
and directional information (e.g. quadrants), which we 
added as extensions to the OpenCyc ontology. Every sketch 
has one or more subsketches, each of which contains glyphs.
Glyphs are the constitutes of sketches. Both glyphs and 
subsketches can participate in relationships, which can 
themselves be visually depicted by glyphs.

In this paper, subsketches are used to implement sketch
graphs. CogSketch’s visual processing is used to construct 
additional relations within and between subsketches. This 
includes the qualitative representations mentioned above. In 
each subsketch, relations within an action segment are ex-
tracted. The metalayer in CogSketch enables multiple 
subsketches and relationships between them to be displayed, 
to support visualization.

The representations produced by CogSketch have been 
used to model human performance on several visual tasks, 
including Ravens’ Progressive Matrices, one of the most 
common tests used to measure human fluid intelligence.  
The CogSketch model uses SME (described below) at mul-
tiple levels of visual representations, including re-represent-
ing visual descriptions automatically as needed. Its perfor-
mance places it in the 75th percentile for American adults, 
better than most adult Americans (Lovett and Forbus, 2017).  
Ravens and the other visual problems that CogSketch and 
SME have been used with are static, this paper marks the 
first time they have been used with dynamic visual data.

Analogical Processing
We build on models inspired by Gentner’s structure-map-
ping theory of analogy and similarity (Gentner, 1983).  Its 
notion of comparison is based on structured descriptions, in-
cluding both attributes and relations.  There is considerable 
psychological evidence supporting structure-mapping, mak-
ing it attractive for use in AI systems so that, with the right 
representations, what looks similar to us will look similar to 
our software and vice-versa.  We use Structure-Mapping 
Engine (SME; Forbus et al. 2016) for analogical matching, 
MAC/FAC (Forbus, Gentner, and Law 1995) for analogical 
retrieval, and SAGE (McLure, Friedman and Forbus 2015)
for analogical generalization.  Since these operations are at 
the heart of our learning approach, we summarize each in 
turn.

SME takes as input two structured, relational representa-
tions and produces one or more mappings that describe how 
they align.  These mappings include correspondences (i.e. 
what goes with what), a similarity score, and candidate in-
ferences that suggest how statements from one description 
can be projected to the other. SME has been used in a variety 
of AI systems and cognitive models.

Analogical retrieval is performed by MAC/FAC, which 
stands for “Many are Called/Few are Chosen”, because it 
uses two stages of map/reduce for scalability.  The inputs 
consist of a probe case and a case library. The MAC stage 
computes, in parallel, dot products over vectors that are au-
tomatically constructed from structured descriptions, such 
that each predicate, attribute, and logical function are di-
mensions in the vector and whose magnitude in each dimen-
sion reflects their relative prevalence in the original struc-
tured description.  The best mapping, and up to two others 
(if they are sufficiently close) are passed to the FAC stage.  
FAC compares the best structured descriptions from the 
MAC stage to the input probe using SME.  Again, the best 
match, with up to two others if sufficiently close, are re-
turned.  This provides scalability, because the MAC stage is 
inexpensive.  It also provides structural sensitivity, because 
the content vector dot product is a coarse estimate of SME 
similarity, followed by using SME itself.

Analogical generalization is performed by the Sequential 
Analogical Generalization Engine (SAGE).  Every concept 
to be learned by analogy is represented by a generalization 
pool, which maintains both generalizations and outlying ex-
amples.  Examples are added incrementally.  The closest 
matching item (example or generalization) is retrieved via 
MAC/FAC, using the contents of the generalization pool as 
a case library.  If there is no item, or the similarity to what 
is retrieved is less than an assimilation threshold, the new 
example is added as an outlier. Otherwise, if the item re-
trieved is an example, the two are combined into a new gen-
eralization.  This process involves merging them, replacing 
non-identical entities by skolems, and assigning a probabil-
ity to each statement depending on whether it was in just one 
description or both.  If the item retrieved was a generaliza-
tion, that generalization is updated with skolems and proba-
bilities based on its alignment with the new example.  Gen-
eralizations in SAGE are thus probabilistic, but still concrete 
– skolem entities may become more abstract due to fewer 
high-probability statements about them, but logical varia-
bles are not introduced.  Instead, candidate inferences are 
used for schema application.  

SAGE also supports classification, by treating the union 
of generalization pools as a large case library.  The case li-
brary which contained the closest item is taken as the clas-
sification of that example, with the correspondences of the 
match constituting an explanation of why it is a good match.  
Since a generalization pool can have multiple generaliza-
tions, SAGE naturally handles disjunctive concepts.

639



Our Approach
Our approach focuses on human skeleton action recognition 
via analogical generalization over qualitative representa-
tions. It is implemented as a pipeline with four stages: Ac-
tion Segmentation, Relational Enrichment, Action General-
ization and Classification. A dynamic feature selection pro-
cess picks reasonable additional features for different ac-
tions before the final training. All sketches and relations are 
computed by our system automatically. Figure 1 shows the 
pipeline of our system. We describe each stage in turn, and 
describe explanation sketches.

Figure 1: pipeline of our algorithm

Action Segmentation
The skeleton data produced by a Kinect (or other 3D sen-
sors) contains many points per frame, representing each 
body part such as the head or right-hand. We use 20 body 
points tracked by Kinect V1 to represent 20 body parts and 
connect these body points to provide a concise body skele-
ton graph, as shown in Figure 2.

Figure 2: Kinect body skeleton graph

Each instance of an action consists of a continuous move-
ment stream, sampled via many frames, each frame contain-

ing coordinates for these points. The first step of our pipe-
line abstracts away from frames into qualitatively distinct 
intervals describing the motion of particular body parts. A
track is a sequence of point coordinates from each frame for 
a specific body point. As CogSketch needs 2D sketches, we 
map each 3D coordinate into front-view and right-view. To 
segment movements of a track (a body point) in a view, we 
compute the azimuth (the angle that is clockwise relative to 
the north) changes of the track frame by frame to find the 
direction change. Intervals of time over which the motion 
has similar azimuth are grouped into one segment. In the ex-
periments reported here, we use only the right-hand, left-
hand, right-hip and left-hip in front-view and right-view, be-
cause the motions in the datasets used can be described as 
the movements of these four body parts.

For each track in a view, we first compute the spatial re-
lation Moving or Stationary (MOS), with 0.02 quantization
factor via QSRlib (Gatsoulis et al. 2016), a library of quali-
tative spatial relations and calculi, for the four main body 
points. MOS relations can show whether a point in a frame 
is moving (label ‘m’) or stationary (label ‘0’). An MOS re-
lation sequence could be as follows:

[0,0,0,0,m,m,m,m,m,m,m,0,0,]
After motion detection, eight MOS sequences corre-

sponding to four points in two views are extracted. All 
frames with label ‘m’ are segmented by computing the car-
tographical azimuth changes between each pair of two con-
secutive moving points. When the azimuth change between 
two consecutive point pairs is larger than 88 degrees, the
movement of the track is segmented into two parts. After
action segmentation, we get eight sequences of segments, 
four points in the front-view and four points in the right-
view.

We use two techniques to reduce segmentation noise. 
First, after action segmentation, all segments in a track are 
merged again when the average azimuth between start-
point and end-point is smaller than fifty degrees. Second,
segments are also merged when the distance between start-
point and end-point of the segment is smaller than half of 
average distance between start-point and end-point of all 
segments.                      

Relational Enrichment
The relational enrichment stage involves automatically add-
ing additional relationships via CogSketch, to provide more 
information about the motions within and between seg-
ments. Each example of a behavior is imported into Cog-
Sketch as a set of sketches, one per track, with each panel
(segment) within a track being represented by a separate 
subsketch. Within each panel, the skeleton is represented by 
a set of glyphs, including an arrow from start-point to end-
point of the track panel to represent the direction of motion.
Figure 3 shows two sketches from eight sketches of raising 
the right-hand and putting it down and the relations within 
same sketch and between different sketches. As only the 
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right-hand has movements in this action, we only show the 
two sketches of right-hand movements.

To summarize, each action is represented by eight 
sketches in CogSketch: right-hand in front-view, right-hand 
in right-view, left-hand in front-view, left-hand in right-
view, right-hip in front-view, right-hip in right-view, left-
hip in front-view and left-hip in right-view. In each sketch 
and subsketch, CogSketch is used to compute relationships 
between body parts, e. g. the relative position of the right-
hand to the head.

Figure 3: Two sketches of raising hand action

We use the following logical function to denote panels in 
a sketch graph:

(KinectMotionFn <body-part> <view> <move-type> <token>)
<body-part> is from the four main body points: right-hand, 
left-hand, right-hip, left-hip. <view> is front or right view. 
<move-type> describes the type of movement: single-hand, 
two-hand or full-body. <token> is a unique identifier denot-
ing the segment.

In each segment subsketch, additional details can be pro-
vided via Cyc’s holdsIn relation. For example, spatial rela-
tions are helpful to determine the locations of body points, 
so these relations are added. In each segment motion, we use 
entities from CogSketch’s qualitative representation of ori-
entation to describe the direction of motion, i.e. the quadrant 
representations Quad1, Quad2, Quad3, Quad4, the pure di-
rections Up, Down, Left, and Right, plus the constant 
NoMotion indicating lack of motion. The motion direction 
information is connected with the motion segment via hold-
sIn. For example:

(holdsIn
(KinectMotionFn RightHand Front SingleHand D1RHFS2)
(trackMotionTowards Quad1))
Sequence information between segment panels is repre-

sented using the occursAfter and occursTogether relations. 
occursAfter indicates that two segments occur successively
and is used to connect segments from same track in same
view. occursTogether means that two segments have eighty 
percent time overlap and connects the segments from differ-
ent track in same view, e. g.
(occursAfter

(KinectMotionFn RightHand Front SingleHand D1RHFS2)
(KinectMotionFn RightHand Front SingleHand D1RHFS4))
This representation enables facts from different segments 

to be included in one unified case representation and is ex-
tracted totally automatically. Table 1 provides the full set of 
relationships that we compute for every track.

Relations Descriptions
(trackMotionTowards 
<Quad1/Quad2/Quad3/Quad4 >)

The track moving direction from 
start-point to end-point.

(quadDirBetween 
<right-hand/left-hand>
<right-elbow/left-elbow>
<Quad1/Quad2/Quad3/Quad4>)

The elbow direction with respect 
to corresponding hand.

(bodyStatus 
<Bend/Straight>)

Whether the body bends larger 
than 45 degrees.

(handPosition
<RaiseHand/PutDown >
<right-hand/left-hand>)

Whether the hand bends raising 
larger than 90 degrees.

(armStatus 
<Bend/Straight >
<right-arm/left-arm>)

Whether the arm bends larger than 
90 degrees.

(motionRange
<Large/Small>)

Whether the movement range is 
larger than half of body length.

(twoArmRela
<Cross/NoCross>)

Whether the two arms are cross 
with each other.

(legStatus
<Bend/Straight>
<right-leg/left-leg>)

Whether the leg bends larger than 
45 degrees.

(moveRespectArm
<Inside/OutSide>
<right-hand/left-hand>)

Whether the hand is moving to-
wards inside of the arm or outside 
of the arm.

(distRespectBody
<Large/Small>)

Whether the distance of x coordi-
nates between hand and spine is 
larger than 25.

Table 1: basic features in each case

Action Generalization
All facts for each segment are combined as a predicate-cal-
culus case representing the entire action.  Each such action
instance is added to the generalization pool being used to 
learn that concept. For all experiments reported here, we 
used an assimilation threshold of 0.7.  SAGE also uses a 
probability cutoff, i.e. if a fact’s probability drops below this 
value, it is removed from the generalization. We used a 
probability cutoff of 0.2 in all experiments.  Each action type 
is represented as a distinct generalization pool and all action 
type generalization pools are combined into a case library.
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Classification
By treating the union of generalization pools for action types
as one large case library, our system can classify new exam-
ples based on which library the closest retrieved item came 
from.  Given a new case, MAC/FAC is used to retrieve the 
closest generalization or outlier from the union of the gen-
eralization pools. The action label of the generalization pool 
it came from is assigned to the test instance.

Dynamic feature selection
As shown in Table 1, ten basic relations are extracted to rep-
resent each segment. However, representing the direction of 
motion more precisely relative to different reference points 
can be very useful. The relation qualDirBetween represents 
the direction of motion with respect to a reference point. Its 
first argument is the start or end point of the motion. Its sec-
ond argument is the reference point.  Its third argument is 
the direction. For example, 
(holdsIn

(KinectMotionFn RightHand Front SingleHand D1RHFS1)
(qualDirBetween RightHand-StartPoint Head Quad4))

indicates that that the start-point of the motion D1RHFS1 is 
in the Quad4 direction, with respect to the head, in the first 
segment of the right-hand track within the front-view.

In these experiments we use head, shoulder-center, spine 
and hip-center as the possible reference points.  Directions 
are described either in terms of quadrants or broad direc-
tions, i.e. Left/Right or Up/Down, each of which are the un-
ions of two quadrants.  For conciseness, we will abbreviate 
subsets of these representation via the template <reference 
point>-<direction type>, i.e. the statement above would be 
an example of Head-Quad.

Dynamic feature selection is used to select which families 
of direction representations are used for a dataset.  Given the 
distinctions above, there are 12 families of qualDirBetween 
relations that can be computed. The algorithm starts with the 
basic set of features plus a single family of optional features, 
doing training and testing with each independently.  The 
highest accuracy optional feature is retained.  On subsequent 
rounds, the search is constrained by limiting it to the two 
unused features that perform best where the choices so far 
perform the worst.  The search stops either when a cutoff is 
reached (here, the cutoff is four optional features, which pro-
vides a reasonable tradeoff between accuracy and effi-
ciency) or when all the additions lead to lower accuracy.

We evaluated dynamic feature selection on the Florence 
3D Action dataset (Seidenari et al. 2013), which contains 
nine activities: wave, drink from a bottle, answer phone, 
clap, tie lace, sit down, stand up, read watch, bow. Ten sub-
jects were asked to perform the nine actions two or three 
times. Two groups of additional features are tested: one is
picked manually and the other one is picked via the algo-
rithm above. Cross-subject validation was used. The results,
shown in Table 2, show that dynamic feature selection im-
proves accuracy by ten percent.

Methods Features Accuracy results (%)
Manual-feature-se-
lection

Head-Quad, Spine-Quad, 
Hip-Center-Quad

63.6

Dynamic-feature-
selection

Head-Quad
Spine-Up-Down
Hip-Center-Up-Down

74.2

Table 2: Recognition results with dynamic-feature-selection

Explanation Sketches
Sketch graphs carve motions up into a discrete set of snap-
shots, much like comic strips, an easy to apprehend visuali-
zation for people.  The generalizations are also sketch 
graphs, enabling them to be inspected more easily than, for 
example, large vectors. The analogical mapping that justi-
fies a recognition decision can be displayed by drawing the 
correspondences between panels in the two sketch graphs 
and their constituents. 

This is the basis for the explanation sketch. It depicts 
how a retrieved sketch graph for a generalization (or an 
outlier) aligns with a sketch graph for a new behavior. The 
skeleton glyphs from corresponding segments are visual-
ized in two boxes side-by side.  Correspondences within 
the segments are indicated by dashed lines. Thus, the ex-
planation sketch provides a visualization for how a model 
explains a behavior, based on their overlap. Figure 4 shows 
two examples.  Figure 4 (a) shows a perfect match with 
five dashed lines for all five different parts. Figure 4 (b) 
shows a different movement corresponding, which only 
has same facts for left-arm, left-leg and right-leg.

Figure 4 (a): perfect matching

Figure 4 (b): Partial matching
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The explanation sketch could be used to answer why-not 
questions. Given a behavior and asked why a specific clas-
sification was not used, the most similar generalization or 
outlier from that generalization pool can be retrieved and 
compared. The non-overlapping aspects indicate why that 
category was not chosen.

Experimental Results and Discussion
While we view the ability to produce understandable expla-
nations as an important part of our approach, we note that 
other approaches do not explore explanation, so we confine 
ourselves here to comparing with others using their metrics.
Three datasets are tested and we describe each in turn.

UTD-MHAD Dataset
The University of Texas at Dallas Multimodal Human Ac-
tion Dataset (UTD-MHAD) was collected as part of re-
search on human action recognition by Chen et al.  (Chen et 
al. 2015). This Kinect V1 dataset contains eight different 
subjects (4 females and 4 males) performing twenty-seven 
actions 4 times each in a controlled environment.

Table 3: Accuracy (%) for each action from the two action sets

Qualitative spatial relations are computed for all target 
body points and dynamic feature selection is used. From dy-
namic feature selection, Head-Quad, Head-Up-Down, Hip-
Center-Up-Down and Spine-Quad were picked as four ad-
ditional features. We used the same cross-subject testing 

method from (Chen, et al. 2015) in our experiments. Our 
method achieves 65.82% accuracy. One reason why our 
method does not have relatively good performance on this 
dataset is that there are many similar actions such as “Arm-
curl” and “clap”. Some pairs of similar actions have the
same qualitative representations, so with our encoding, 
SME has trouble recognizing them. Consequently, we also 
tested our method on a subset of actions containing nineteen 
actions, removing 6 similar actions and 2 actions with large 
noise. Table 3 shows the accuracy for each action tested on 
the two different action sets. The average accuracy is shown
in Table 4.

Method Accuracy (%)

Inertial (Chen et al. 2015) 67.2

Kinect & Inertial (Chen et al. 2015) 79.1

CNN (Wang et al. 2016) 85.81

Our Method 65.82

Our Method (19 actions) 80.3

Table 4: Recognition Rates (%) comparison on the UTD-MHAD

As shown in the two tables above, our method has 80.3% 
accuracy on the set with 19 actions, which is only lower than 
the CNN approach. Again, one reason is that the qualitative 
relation encoding can cause information loss if the available 
relationships do not provide fine enough distinctions. For 
examples, the “swipe-right” action can be segmented into 
three parts: raise hand, swipe, and put down hand. But these 
segments could form a triangle in the air, which is similar to 
the “draw-triangle” action. With spatial relations we defined 
here, some instances of “draw triangle” with larger move-
ment range may be represented by same relational facts of 
“swipe-right”. This resolution/accuracy tradeoff is worth 
exploring in the future work.

Florence 3D Actions Dataset
We ran an experiment on this dataset but followed the leave 
one out cross-validation protocol (LOOCV) (Seidenari et al. 
2013) to better compare with other methods. With this pro-
tocol, there are more training data than the previous experi-
ment. Dynamic feature selection picked Head-Quad, Spine-
Up-Down, Hip-Center-Up-Down as additional features.
The average accuracy compared with other methods is 
shown in Table 5.

Method Accuracy (%)

Devanne et al. 2014 87.04

Vemulapalli, Arrate, and 
Chelappa. 2014

90.88

Our Method 86.9

Table 5: Recognition Rates (%) on the Florence dataset

Accuracy (%) 27 actions Accuracy(%) 19 actions
Swipe left 68.75 Swipe left 75
Swipe right 62.5 Swipe right 68.75
Wave 81.25 Wave 81.25
Clap 56.25 Arm cross 68.75
Throw 43.75 Basketball shoot 81.28
Arm Cross 62.5 Draw circle

Clockwise
87.5

Basketball shoot 81.25 Draw triangle 87.5
Draw X 50 Bowling 62.5
Draw circle
Clockwise

75 Boxing 87.5

Draw circle
Counter clockwise

25 Baseball swing 87.5

Draw triangle 68.5 Tennis serve 62.5
Bowling 62.5 Push 62.5
Boxing 87.5 Catch 81.25
Baseball swing 81.25 Pickup and throw 81.25
Tennis swing 37.5 Jog 100
Arm curl 50 Sit to stand 75
Tennis serve 62.5 Stand to sit 81.25
Push 56.25 Lunge 93.75
Knock 62.5 Squat 100
Catch 75 Overall 80.3
Pickup and throw 81.25
Jog 62.5
Walk 43.75
Sit to stand 75
Stand to sit 81.25
Lunge 93.75
Squat 100
Overall 65.82
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As Table 5 shows, our method has comparable results 
with (Devanne et al, 2014) and a little lower than (Vemula-
palli, Arrate, and Chelappa 2014) results. In this dataset, our 
algorithm has relatively low accuracy on “drink from a bot-
tle” and “answer phone” among all nine actions because 
some instances of them cannot be distinguished from the 
“wave” action. All three can be segmented into a motion that 
subject raises the right-hand to the position near the head, 
and our qualitative representations did not have sufficient 
resolution to distinguish them.  However, we note that when 
people are asked to review the skeleton data for these two 
actions, they also find it hard to describe the differences.
Consequently, we do not necessarily view our system’s per-
formance on these actions as a negative. 

UTKinect-Action3D Dataset
To further evaluate our method, we ran an experiment on the 
UTKinect-Action3D dataset (Xia, Chen, and Aggarwal
2012). This Kinect dataset has 10 actions performed by 10 
different subjects. For each action, each person performs it
twice so there are 200 behaviors in this dataset. The ten ac-
tions are: walk, sit down, stand up, pick up, carry, throw, 
push, pull, wave, and clap hands. 

With dynamic feature selection, Head-Up-Down, Spine-
Quad and Hip-Center-Up-Down are picked as the additional 
features for this dataset. We follow the leave one out cross 
validation protocol (LOOCV) for comparability. Table 6
shows the recognition rates corresponding to the different 
actions and compares our accuracy with two other methods.

Action Xia, Chen, 
and Ag-
garwal. 2012

Theodorakopoulos et al.
2014

Ours

Walk 96.5 90 100
Sit down 91.5 100 90

Stand up 93.5 95 85
Pick up 97.5 85 100
Carry 97.5 100 85
Throw 59.0 75 60
Push 81.5 90 70

Pull 92.5 95 95
Wave 100 100 100
Clap hands 100 80 100
Overall 90.92 90.95 88.50

Table 6: Recognition Rates (%) on the UTKinect-Action dataset

As shown in the Table 6, the three algorithms present 
comparable performance for different actions. Our average 
accuracy is 88.5%. Our system has relatively lower accuracy 
on some actions such as throw and push. In this dataset, 
some subjects did not face the Kinect directly when they 
performed the actions. As our method needs to extract front-
view and right-view sketches from the data, this factor could 
have influenced on our algorithm.

Related Work
Human action recognition from Kinect data is a popular 
topic and various methods have been used on this problem. 
In (Wang et al. 2016), the spatial-temporal information from 
3D skeleton data was projected into three 2D images (Joint 
Trajectory Maps), and Convolutional Neural Networks were 
used for action recognition. In (Chen et al. 2015), three dif-
ferent depth motion maps of front, side and top views are 
extracted as features form depth video sequences. Addition-
ally, each skeleton data sequence is partitioned into N tem-
poral windows and some statistical features are extracted in 
each window. A collaborative representation classifier is 
used to classify the actions with the features above. In (De-
vanne et al. 2014), the skeleton data is modeled as a multi-
dimensional vector and the trajectories described by this 
vector are interpreted in a Riemannian manifold. By using 
an elastic metric to compare the similarity between trajecto-
ries, actions can be classified. In (Vemulapalli, Arrate, and 
Chelappa 2014), the skeleton data movements are repre-
sented as Lie group and mapped to its Lie algebra. Then, the 
authors test this representation with Fourier temporal pyra-
mid representation and linear SVM. In (Xia et al. 2012), his-
tograms of 3D joint locations with LDA are extracted from 
skeleton data and HMM models are trained to classify ac-
tions. In (Theodorakopoulos et al. 2014), the system uses 
sparse representations in dissimilarity space to encode ac-
tion movements and performs classification on these repre-
sentations.

All approaches mentioned above only use statistical mod-
els on quantitative data, which makes it hard for them to ex-
plain their results. To the best of our knowledge, this is the 
first work to do skeleton action recognition via analogical 
generalization on qualitative relations instead of pattern 
recognition or machine learning. We also note that none of 
the algorithms above address explanation, whereas our ap-
proach does.  As far as we know, this is the first paper to 
provide visual explanations for skeleton action recognition 
problems. Admittedly, qualitative representations do lose
details of action movements, so some methods have slightly 
better performance on accuracy than ours. However, expla-
nation ability is also essential in recognition tasks, to pro-
vide people a better understanding of the results.

Conclusions and Future Work
This paper presents a new approach with high accuracy and 
novel explanation ability, based on qualitative representa-
tions and analogical generalization, for learning how to clas-
sify human actions from skeleton data. Our pipeline uses az-
imuth changes to segment tracks, a cognitive model of hu-
man high-level vision to enrich descriptions of motion and 
configuration, and analogical generalization to provide 
learning via inspectable, relational models. Explanation 
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sketches are used to visualize the correspondences and map-
pings between different segments. Experiments on three 
public datasets provide evidence for the utility of this ap-
proach.

There are several avenues to explore next. The first is to 
test it with additional datasets, both to explore noise and dy-
namic encoding issues.  The second is to explore the effec-
tiveness of explanation sketches in helping system trainers 
improve performance and to implement the extension to 
SAGE, which constructs near-misses (McLure, Friedman 
and Forbus 2015), to improve our explanation sketches. Fur-
thermore, we plan to explore using this same approach to 
analyze video more broadly, including RGB and depth data.
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