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Abstract

Peer grading, allowing students/peers to evaluate others’ as-
signments, offers a promising solution for scaling evaluation
and learning to large-scale educational systems. A key chal-
lenge in peer grading is motivating peers to grade diligently.
While existing spot-checking (SC) mechanisms can prevent
peer collusion where peers coordinate to report the uninfor-
mative grade, they unrealistically assume that peers have the
same grading reliability and cost. This paper studies the gen-
eral Optimal Spot-Checking (OptSC) problem of determin-
ing the probability each assignment needs to be checked to
maximize assignments’ evaluation accuracy aggregated from
peers, and takes into consideration 1) peers’ heterogeneous
characteristics, and 2) peers’ strategic grading behaviors to
maximize their own utility. We prove that the bilevel OptSC
is NP-hard to solve. By exploiting peers’ grading behaviors,
we first formulate a single level relaxation to approximate
OptSC. By further exploiting structural properties of the re-
laxed problem, we propose an efficient algorithm to that re-
laxation, which also gives a good approximation of the origi-
nal OptSC. Extensive experiments on both synthetic and real
datasets show significant advantages of the proposed algo-
rithm over existing approaches.

Introduction

Peer grading, allowing students/peers to evaluate others’
assignments, not only helps the instructor bring qualified
feedbacks to classrooms but also helps students self-study
using other peers’ solutions (Raman and Joachims 2014;
Caragiannis, Krimpas, and Voudouris 2015). Besides its di-
rect application to educational systems (e.g., Coursera and
EdX), peer grading is also useful in reputation and crowd-
sourcing systems where it is difficult to evaluate peers’ con-
tributions (Witkowski et al. 2013; Ho, Frongillo, and Chen
2016). One of the key challenges in peer grading is how
to motivate students to grade assignments diligently (Sadler
and Good 2006; Liu and Chen 2016; Shnayder et al. 2016).
Well-known Peer Prediction (Miller, Resnick, and Zeck-
hauser 2005; Radanovic and Faltings 2015; Kong, Ligett,
and Schoenebeck 2016) and Bayesian Truth Serum (Prelec
2004; Witkowski and Parkes 2012) mechanisms work by
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paying a reward to a peer if his (belief) report is predicted
to be correct based on other peers’ reports. However, most
of these incentive mechanisms are vulnerable to peer collu-
sion, where peers could have a motivation to report the unin-
formative grade by a pre-agreed grading rule (Gao, Wright,
and Leyton-Brown 2016).

Spot-checking (SC) mechanisms can prevent the peer
collusion issue (Jurca and Faltings 2005; Carbonara et al.
2015). In SC, the instructor checks some assignments by
himself and offers a reward to a peer who grades diligently.
Existing SC researches have shown that under the special
setting where peers are homogeneous with the same grading
reliability and cost, a simple SC mechanism, such as ran-
dom (Wright, Thornton, and Leyton-Brown 2015) or uni-
form (Gao, Wright, and Leyton-Brown 2016), is efficient
to motivate peers to be diligent. However, in practice, peers
often have heterogeneous grading reliability and cost (Das-
gupta and Ghosh 2013; Agarwal et al. 2017), for example, in
an empirical online peer grading test (Kulkarni et al. 2013),
peers with suitable backgrounds have 25% disagreements in
average, and varied by peers, about 75% grading is com-
pleted in 9.5 minutes to 17.3 minutes. Under such a general
setting, randomized SC mechanisms might perform poorly
(as we show in this paper) on maximizing assignments’ eval-
uation accuracy. The focus of this paper is finding the op-
timal SC mechanism to maximize assignments’ evaluation
accuracy in a practical setting with heterogeneous peers.

The first contribution of this paper is a general SC model
for peer grading systems with strategic and heterogeneous
peers. We assume that the instructor has a spot-checking
budget, denoting the maximum number of assignments he
is capable of checking. Given budget K, the instructor’s ob-
jective is maximizing assignments’ evaluation accuracy ag-
gregated from peers, which can be formulated as a bilevel
optimal SC (OptSC) problem. In the upper level, the in-
structor determines the probability each assignment needs
to be checked, and in the lower level, peers are strategic that
choose the optimal grading strategies to maximize their own
utility. We prove it is NP-hard to solve OptSC. To address
the NP-hardness, our second contribution is formulating a
single level relaxation to approximate the bilevel OptSC. We
show that, compared to OptSC, the relaxation loses very lim-
ited accuracy. By further exploiting the structural properties
of the relaxed problem, our third contribution is to propose
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an efficient algorithm that achieves accuracy within nearly a
constant factor with respect to the original OptSC. Finally,
we conduct extensive experiments on both synthetic and real
datasets to validate the advantages of the proposed algorithm
over other existing approaches.

Related Work

Many peer grading systems (PGSs), such as peerScholar
(Pare and Joordens 2008), Crowdgrader (de Alfaro and
Shavlovsky 2014), Mechanical TA (Wright, Thornton, and
Leyton-Brown 2015) and Peer Assessment (Shnayder and
Parkes 2016) have been developed. Existing PGSs mainly
include three phases:

Calibration, where peers’ grading reliability and cost
are calibrated and learned (Kulkarni et al. 2013). Those re-
searches (Tran-Thanh et al. 2014; Xue et al. 2016; Liu and
Chen 2016) of learning peers’ reliability and cost are orthog-
onal to our work of optimizing SC mechanisms, and provid-
ing parameters input for peer modeling.

Grading, where students grade peer assignments accord-
ing to pre-designed incentive mechanisms. Peer-predication
and Bayesian truth serum (Prelec 2004) mechanisms, re-
ward a peer if his (belief) report is predicted to be cor-
rect based on other peers’ reports, have proven to be effec-
tive in eliciting truthful grades (Dasgupta and Ghosh 2013;
Shnayder et al. 2016). However, they also provide a means
for students to collude, such as grading by pre-agreed eval-
uation rule. SC (Jurca and Faltings 2005; Gao, Wright, and
Leyton-Brown 2016) and audit mechanisms (Carbonara et
al. 2015), can prevent such a peer collusion issue by allow-
ing the instructor to check some assignments, and reward-
ing a peer if he is verified to grade diligently. However, ex-
isting SC mechanisms mainly focus on theoretic guarantee
on truthfulness, do not address the optimization problem of
maximizing assignments’ evaluation accuracy with the gen-
eral setting where the instructor has a limited spot-checking
budget and peers are heterogeneous on grading reliability
and cost.

Aggregation, where students’ grades are aggregated to
estimate assignments’ true grades. Traditional aggregation
methods, such as majority voting (Sheng, Provost, and
Ipeirotis 2008), expectation-maximization (Whitehill et al.
2009), maximum a posteriori (MAP) (Ok et al. 2016) and
belief propagation (Karger, Oh, and Shah 2011), mainly fo-
cus on finding aggregation rules to maximize the probability
that the aggregated grade correctly predicts the underlying
true value. Most of these works assume honest peers who
always grade diligently. One exception is a recent paper that
studies both elicitation and aggregation (Ho, Frongillo, and
Chen 2016), however, a prior information about true value
of each assignment is required.

In summary, compared with most related SC mechanism
studies, which use simple random policy for homogeneous
PGSs, we consider designing the optimal SC mechanism and
the aggregation rule to maximize PGSs’ reliability in a more
practical and general setting where instructor has the budget
constraint and peers are heterogeneous and strategic.

Model
In a typical peer grading system (PGS), there are n (≥ 2)
peers/students I and n assignments J of these students. The
true quality qj of each assignment j is drawn from a set of
possible categories Q. For ease of analysis, we use the binary
grade criterion Q={−1, 1}, which can be interpreted as cate-
gories bad (−1) and good (1). Let G=(I, J, E) denote the bi-
partite grading graph between peers and assignments (Das-
gupta and Ghosh 2013). That is, (i, j)∈E if peer i grades
assignment j, and (i, i) /∈E guarantees that each peer does
not grade his own assignment. Let I(j) denote peers who
grade assignment j, and J(i) denote assignments graded by
peer i. |I(j)|=|J(i)|=l, where l is the load of peers.

Peers. Peers’ grades are denoted by Z=(zij)i∈I,j∈J ,
where zij∈{−1, 1} if (i, j)∈E and zij=0 if (i, j)/∈E. More-
over, as required in many practical peer grading systems (de
Alfaro and Shavlovsky 2014), peers should also provide de-
tail comments on assignments. The observed grade mainly
depends on a peer’s reliability, which denotes the probability
of grading an assignment correctly. A peer’s reliability is an
increasing function of the effort level he puts in grading. Let
eij denote peer i’s effort level on assignment j. For simplic-
ity, we consider binary effort level, i.e., eij∈{0, 1}. Putting
in full effort eij=1 incurs cost cij(1)∈ [0, 1], while putting
in zero effort eij=0 incurs zero cost cij(0)=0. To simplify
notations, in the following, cij(1) is substituted by cij . A
peer who puts in zero effort grades arbitrarily with reliability
p0i =P(zij=qj |eij=0)=0.5 (P means the probability), denot-
ing a random estimate (Witkowski et al. 2013). A peer who
grades with full effort or diligently, produces his maximum
reliability p1i =P(zij=qj |eij=1)>0.5.

To motivate peers to grade diligently, the SC mecha-
nism is introduced. In SC, the instructor himself can check
and grade some assignments. Given a peer-assignment pair
(i, j) ∈E, if peer i is checked with grading assignment j
diligently, i will gain a reward rij∈ [0, 1]; otherwise, if i is
checked with putting zero effort on j, he will not receive
any reward. On the other hand, if j is not checked by the in-
structor, i will not receive any reward (Liu and Chen 2016).
Assume that assignment j will be spot-checked with proba-
bility xj∈ [0, 1], peer i’s expected utility uij(eij , xj) gained
by putting in effort eij∈{0, 1} on j is1

uij(eij , xj) = eij(xjrij − cij). (1)
Considering the external reward and intrinsic grading cost,
peer i’s best strategy on grading assignment j is

e∗ij = argmaxeij∈{0,1} uij(eij , xj). (2)
The Instructor. The instructor estimates unchecked as-

signments’ quality by aggregating peers’ grades. We adopt
the widely used weighted majority voting (WMV) aggrega-
tion method (Sheng, Provost, and Ipeirotis 2008), which can
guarantee accuracy performance. For an assignment j, its
estimated value q̃j aggregated by WMV can be computed
by

q̃j=

{
1,

∑
i∈I(j) wijzij ≥ 0;

−1,
∑

i∈I(j) wijzij < 0.
(3)

1Our results can be extended to involving peer i’s reliability
p
eij
i in his utility function, i.e., uij(eij , xj) = eij(p

eij
i xjrij−cij).
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where wij=2pij−1 is the weight of peer i’s grade on assign-
ment j and pij∈{p0i , p1i } is the reliability of peer i on grad-
ing assignment j. This design of WMV has two desirable
properties: 1) the weight is proportional to peers’ reliability
and 2) if peer i grades arbitrarily with reliability p0i =0.5, his
weight becomes zero, indicating that the arbitrary uninfor-
mative grade will be discarded in the final aggregation.

Given an assignment j and its peers’ reliability profile
pj=(pij)i∈I(j), let Pe(j, pj)=P(qj �= q̃j , pj) denote j’s ex-
act error rate (i.e., the probability of returning the incorrect
grade) under WMV, which can be computed by

∑
S⊆I(j)

(∏
i∈S(1−pij)

∏
i∈I(j)\S pij

)
1X (S,j)≥X (I(j)\S,j).

The instructor considers all possible peer subsets S ⊆ I(j)
who grade incorrectly and remaining peers I(j)\S who grade
correctly such that the aggregated grade is incorrect. The
function 1x≥y equals 1 if x > y, equals 0.5 if x = y, and
equals 0 if x<y. The function X (S, j) = ∑

i∈S(2pij−1),
denoting the total weight of peers S . We further define j’s
exact accuracy rate Pa(j, pj)=P(qj= q̃j , pj) =1−Pe(j, pj).

Computing the exact error rate Pe(j, pj) requires consid-
ering 2l (l=|I(j)|) peer combinations, which is intractable
for large-scale PGSs peer where each assignment is graded
by dozens of peers (Piech et al. 2013). Moreover, the struc-
ture of Pe(j, pj) is complex and hard to analyse. Alterna-
tively, inspired by error rate analysis of crowd labelling (Li,
Yu, and Zhou 2013), we apply a simple but meaningful
upper bound error rate P

u
e (j, pj) of WMV to approximate

Pe(j, pj):

P
u
e (j, pj) = e−0.5

∑
i∈I(j)(2pij−1)2 . (4)

Proposition 1. Given an assignment j and reliability profile
pj={pij}i∈I(j), we have Pe(j, pj) ≤ P

u
e (j, pj)

2.

Next, we show that the upper bound error rate deceases
with peer reliability, which is consistent with the exact error
rate measure. We first define relationship ‘�’ between two
reliability profiles pj and p′

j : pj�p′
j , iff ∃i∈I(j): pij>p′ij

and ∀k ∈ I(j)\i, pkj≥p′kj .

Proposition 2. For an assignment j and two peer reliability
profiles pj and p′

j , where pj�p′
j , Pu

e (j, pj)<P
u
e (j, p′

j).

The Instructor’s Objective. In practice, the instructor
can only check a limited number of assignments, denoted as
the spot-checking budget K. Given such budget K, the in-
structor’s objective is to optimize the SC policy x=(xj)j∈J

of determining each assignment j’s checking probability xj ,
with the aim of maximizing assignments’ average evalua-
tion accuracy. We formulate a bilevel optimization program

2All omitted proofs are in the online appendix:
http://www.ntu.edu.sg/home/boan/papers/AAAI18 Peer Grad-
ing Appendix.pdf.

for the OptSC problem as follows:

maxx Φ(x) =
∑

j∈J

(
1−(1−xj)e

−0.5
∑

i∈I(j)(2p
eij
i

−1)2
)

n , (5)

s.t. uij(eij , xj) ≥ uij(e
′
ij , xj), ∀i ∈I(j), e′ij ∈{0, 1}, (6)∑
j∈J xj ≤ K, (7)

∀j ∈ J, xj ∈ [0, 1]. (8)
In the upper level Eq.(5), for each assignment j∈J , 1−xj is

the probability of not checking j and e−0.5
∑

i∈I(j)(2p
eij
i −1)2

is j’s upper bound error rate P
u
e (j, pj) if it is not checked,

where p
eij
i ∈{p0i , p1i } is peer i’s reliability on j. Then, the

terms (1 − xj)P
u
e (j, pj) and 1 − (1 − xj)P

u
e (j, pj) are j’s

upper bound error rate and lower bound accuracy rate under
x, respectively. In the lower level Eq.(6), each peer i max-
imizes his utility uij by choosing the optimal strategy eij
on grading j. Given an SC policy x, we define assignments’
total lower bound accuracy rate, Φn(x)=n · Φ(x).

Given an SC policy x, each peer’s best strategy can be
uniquely determined for his monotone utility function. Thus,
we can substitute Pu

e (j, pj) by P
u
e (j, x). In the following, for

convenience, we substitute upper bound error rate and lower
bound accuracy rate by error rate and accuracy rate.

Analysis and Algorithm
Section 4.1 shows the NP-hardness of OptSC. In Section 4.2,
we propose an efficient algorithm to approximate OptSC and
analyze its approximation ratio in Section 4.3.

Problem Complexity

We show that OptSC is NP-hard by reducing an arbitrary 0-1
knapsack decision problem (KDP) to an OptSC.
Theorem 1. The OptSC is NP-hard.

Proof. Given a set of items I={1, . . . , n}, each with a cost
ci ∈Z

+ and a value vi ∈Z
+, and the knapsack’s capacity

C ∈ Z
+. Here, without loss of generality, we assume that

maxi∈I ci<C. A KDP asks that given K∈Z+, whether there
exists a subset S⊆I so that

∑
i∈S ci≤C and

∑
i∈S vi≥K.

For any KDP=〈I, C,K〉, we construct the corresponding
OptSC as follows: for each item i∈I , we create an assign-
ment j(i) and a peer i who grades j(i). Each peer i’s grading
reliability is set as p0i = 0.5 and

p1i = 0.5((−2 ln(1− vi/vmax

1− ci/C
))0.5 + 1) (9)

where vmax=maxi∈I vi/(1−ci/C)
1−e−0.5 . Let spot-checking budget

be 1, and the cost and reward of peer-assignment pair
(i,j(i)) be ci and C, respectively. The construction can be
done in polynomial time. We can show that the constructed
OptSC has a spot-checking policy with average accuracy
rate K/vmax+1

n iff KDP=〈I, C,K〉 has a solution, and the
detailed proof for this “iff” conclusion is shown in the ap-
pendix.

An Efficient Approximation Algorithm

We begin by presenting some notations and rules that are
useful for approximation algorithm design.
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Critical Checking Probability: θij and ηj . For an as-
signment j with checking probability xj , peer i putting in
full effort eij=1 will gain utility uij(1, xj)=xjrij−cij and
putting in zero effort eij=0 will gain uij(0, xj)=0. To elicit i
to grade j diligently, the checking probability xj should sat-
isfy xj≥θij=cij/rij such that uij(1, xj)≥0. Thus, we first
define θij=cij/rij , the critical checking probability of the
assignment j with respect to peer i, above which i grades
j diligently and under which i grades j arbitrarily. We next
define ηj=maxi∈I(j) θij , the critical checking probability of
j with respect to peers I(j). A diligent peer-assignment pair
(i, j) denotes i grades j diligently.

Error Rate First (ERF) Rule. Given a PGS G=(I, J, E)
and an SC policy x, let P

u
e (j, x) denote the error rate of

assignment j under x. Now assume that there is extra tiny
budget ε that cannot elicit any non-diligent peer-assignment
pair to be diligent. It is optimal to maximize PGS’s eval-
uation accuracy by allocating ε to the assignment j∗ that
has the largest error rate, i.e., j∗=argmaxj∈J P

u
e (j, x). We

verify this rule by analysing the structure of Eq.(5). Let
x∗=(x−j∗ , xj∗ = xj∗ + ε) and x′=(x−j′ , xj′ = xj′ + ε)
(xj∗ + ε<1, xj′ + ε<1) denote policies of allocating ε
to j∗ and j′( �= j∗), where x−j is the checking probabil-
ities of all assignments except j under x. The total accu-
racy difference between x∗ and x′ is Φn(x

∗) − Φn(x
′) =

∂Φn(x)
∂xj∗

ε− ∂Φn(x)
∂xj′

ε = ε(Pu
e (j

∗, x)− P
u
e (j

′, x)) ≥ 0.
Next, we present the approximation algorithm. The key

idea behind our algorithm is that we first formulate a single
level relaxation to approximate the bilevel OptSC. Then, we
design an efficient approximation algorithm for the relaxed
problem, which also offers performance guarantee for the
original OptSC.

Relaxing OptSC. Given an SC policy x, let S(x) be
the set of diligent peer-assignment pairs (i, j) where peer
i grades assignment j diligently, i.e., S(x)={(i, j)|xj ≥
θij , (i, j) ∈ E}. Let J(i,S(x))={j|∃(i, j) ∈ S(x)} be as-
signments in S(x) that are graded diligently by peer i and
I(j,S(x))={i|∃(i, j)∈ S(x)} be peers in S(x) who grade
assignment j diligently. We formulate a single level Peer-
Assignment-oriented relaxation OptSC PA. This relaxation
is a combinatorial optimization problem of finding the op-
timal diligent peer-assignment pair set S ⊆E to maximize
assignments’ accuracy rate Φτ (S), shown as follows.

maxS⊆E Φτ (S)=
∑

j∈J

(
1−(1−xj)e

−0.5
∑

i∈I(j)(2pij−1)2
)

n ,

(10)
s.t. xj = maxi∈I(j,S) θij , (11)

pij = p1i , ∀(i, j) ∈ S; pij = p0i , ∀(i, j) /∈ S, (12)∑
j∈J xj ≤ K. (13)

In Eq.(10), S ⊆ E is the set of selected peer-assignment
pairs. To elicit all peer-assignment pairs in S to be diligent,
Eq.(11) proposes a critical checking policy xj of checking
each assignment j with the maximal critical checking prob-
ability with respect to peers I(j,S). This critical checking
policy guarantees that the original OptSC and the relaxation
OptSC PA achieve nearly the same accuracy rate.

Theorem 2. Given K≤∑
j∈J ηj , let y=(yj)j∈J and Φopt

be OptSC’s optimal SC policy and accuracy rate. Let S and
Φτ

opt be OptSC PA’s optimal peer-assignment pair set and

accuracy rate. We have Φopt−Φτ
opt≤ 1+n1

n , where n is the
number of peers and n1 is the number of assignments that
are checked by probability 1 in y.
Proof. Under y, we split all assignments J into three disjoint
groups, L, H and F , where L={j|yj =maxi∈I(j,S(y)) θij}
denotes assignments checked by the critical checking prob-
ability, H={j|yj > maxi∈I(j,S(y)) θij , yj �= 1} denotes as-
signments neither checked by the critical checking proba-
bility nor probability 1, and F={j|yj =1, yj /∈L} denotes
assignments checked by probability 1, but not in L, where
|F|=n1.

Case 1 [n1=0]: Let j∗ be the assignment in H that has the
largest error rate under y, i.e., Pu

e (j
∗, y)=maxj∈H P

u
e (j, y).

According to the ERF rule, we can improve y by transfer-
ring some budget from other assignments j∈H to j∗ until the
transferred budget can elicit certain peer in I(j∗)\I(j∗,S(y))
to be diligent on j∗. This budget transfer will not decrease
any assignment’s error rate. We proceed this budget transfer
process until one of the two scenarios happens: 1) all assign-
ments in H are checked by the critical checking probability
and 2) there is only one assignment in H that is not checked
by the critical checking probability. Let y′ be the final policy
after this budget transfer, we have Φ(y′)≥Φ(y) in OptSC.

For scenario 1), we have Φ(y′)≤Φτ (S) because S is the
optimal critical checking policy. Thus, Φopt−Φτ

opt = Φ(y)−
Φτ (S) ≤ Φ(y′)−Φτ (S))≤ 0 ≤1/n.

For scenario 2), let j∗ be the assignment that is not
checked by the critical checking probability under y′ and
zj∗=y′j∗−maxi∈I(j∗,S(y′)) θij∗ ≤ 1 be the redundant non-
critical checking budget on j∗. Removing zj∗ from j∗
and defining the corresponding critical checking policy
y′′≥(y′−j∗ , yj∗

′′ = y′j∗−zj∗). Because zj∗ is the redundant
non-critical checking budget, we have Φ(y′′)=Φ(y′)−zj∗/n
in OptSC. Let Φτ (S)=Φτ (S(K)) denote the optimal ac-
curacy rate of OptSC PA with budget K. Then, we have
Φτ (S(K))≥Φτ (S(K−zj∗)). With budget K−zj∗ , the policy
y′′ is a critical checking policy and S(K−zj∗) is the optimal
critical checking policy. Thus, we have Φτ (S(K−zj∗))≥
Φ(y′′) ≥ Φ(y′)− zj∗/n ≥ Φ(y)− zj∗/n. Finally, we have
Φopt−Φτ

opt = Φ(y) − Φτ (S)≤Φ(y) − Φτ (S(K−zj∗))≤
zj∗/n≤1/n.

Case 2 [n1>0]: Besides j∗=argmaxj∈H P
u
e (j, y), there

are other n1 assignments in F that have higher accuracy
rates in y for OptSC than those in S for OptSC PA. Similar
to Case 1), we can further derive that Φopt−Φτ

opt≤1+n1

n . The
condition that the assignment j∈F checked by probability
1 in OptSC is harsh, where the error rate Pu

e (j, y) of j under
full critical checking probability ηj must be larger than all
assignments j′ ∈ L that are checked by the partial critical
checking probability yj′ ≤ ηj . With budget K≤∑

j ηj , the
scenario that an assignment is checked by probability 1 hap-
pens infrequently, and compared to n, n1 is very small. �
Properties of OptSC PA. We observe that in OptSC PA,
the objective function Φτ satisfies monotone and submodu-
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lar properties with respect to S . Let U be a non-empty finite
set and f be a function f : 2U→R, where 2U denotes the
power set of U . The function f is monotone if f(A)≤f(B)
for all A⊆ B ⊆ U and submodular if f(A ∪ s)−f(A) ≥
f(B ∪ s)−f(B) for all A ⊆ B ⊆ U and s ∈ U\B. We first
define a couple of quantities that will be useful in Theorem
3. Let Pu

e (j, I(j,S))=e−0.5
∑

i∈I(j,S)(2p
1
ij−1)2 denote the er-

ror rate of assignment j when peers I(j,S) grade diligently
on j. For two disjoint sets I(j,S1) and I(j,S2), where
I(j,S1)∩I(j,S2) = ∅, we have Pu

e (j, I(j,S1)∪I(j,S2)) =
P
u
e (j, I(j,S1)) · Pu

e (j, I(j,S2)).

Theorem 3. The objective function Φτ defined in Eq.(10) is
monotone and submodular with respect to S .

Proof. Monotone property: Given a set of diligent peer-
assignment pairs S and another peer-assignment pair
(i∗, j∗) /∈ S, let S∗=S ∪ (i∗, j∗) and xS=(xS

j )j∈J ,
xS

∗
=(xS∗

j )j∈J denote critical checking polices for S and
S∗, respectively. Then, we have 1) I(j∗,S∗)\I(j∗,S)=i∗, 2)
∀j∈J \j∗, xS

j =xS∗
j and P

u
e (j, I(j,S))=Pu

e (j, I(j,S∗)), and
3) xS∗

j∗ ≥ xS
j∗ . Finally, the difference between Φn(S∗) and

Φn(S) is Φn(S∗) − Φn(S) = (1−xS
j∗)P

u
e (j

∗, I(j∗,S))−
(1− xS∗

j∗ )P
u
e (j

∗, I(j∗,S∗)) = P
u
e (j

∗, I(j∗,S))((1−xS
j∗)−

(1 − xS∗
j∗ )P

u
e (j

∗, i∗)
)
. Since P

u
e (j

∗, I(j∗,S))≥ 0, we have
Φn(S∗)−Φn(S)∝1−xS

j∗−(1−xS∗
j∗ )P

u
e (j

∗, i∗)≥xS∗
j∗−xS

j∗≥
0. The operator ∝ means the positive relation.

Submodular property: Let S1 and S2 denote two dili-
gent peer-assignment pair sets, where S1⊆S2. For any dili-
gent peer-assignment grading (i∗, j∗) /∈S2, S∗

1=S1∪(i∗, j∗)
and S∗

2=S2∪ (i∗, j∗), then, we have

Φn(S∗
1 )− Φn(S1)− (Φn(S∗

2 )− Φn(S2))

=P
u
e (j

∗,I(j∗,S1))
(
(1−xS1

j∗ )−(1−x
S∗
1

j∗ )P
u
e (j

∗, i∗)
)

−P
u
e (j

∗,I(j∗,S2))
(
(1−xS2

j∗ )−(1−x
S∗
2

j∗ )P
u
e (j

∗, i∗)
)

=P
u
e (j

∗, I(j∗,S1))
[
(1−xS1

j∗ )−(1−x
S∗
1

j∗ )P
u
e (j

∗, i∗)

−P
u
e (j

∗, I(j∗,S2\S1))
(
(1−xS2

j∗ )−(1−x
S∗
2

j∗ )P
u
e (j

∗, i∗)
)]

∝(1− xS1
j∗ )− (1− x

S∗
1

j∗ )P
u
e (j

∗, i∗)

−P
u
e (j

∗, I(j∗,S2\S1))
(
(1−xS2

j∗ )−(1−x
S∗
2

j∗ )P
u
e (j

∗, i∗)
)

≥(1−xS1
j∗ )−(1−x

S∗
1

j∗ )P
u
e (j

∗, i∗)

− (
(1−xS2

j∗ )−(1−x
S∗
2

j∗ )P
u
e (j

∗, i∗)
)

=(xS2
j∗ −xS1

j∗ )−P
u
e (j

∗, i∗)(xS∗
2

j∗ − x
S∗
1

j∗ )

≥(xS2
j∗ −xS1

j∗ )−(x
S∗
2

j∗ −x
S∗
1

j∗ )=(x
S∗
1

j∗ −xS1
j∗ )−(x

S∗
2

j∗ −xS2
j∗ )≥0.

�
An Approximation Algorithm for OptSC PA. Based on
monotone and submodular properties of Φτ , we propose
PASC, a peer-assignment pair-based SC algorithm (i.e., Al-
gorithm 1). Algorithm 1 mainly consists of two stages. Stage
1–diligent grading elicitation: In Lines 2-6, Algorithm 1
first finds one candidate SC policy by greedily eliciting the

Algorithm 1: Peer-Assignment Pair-Based Spot-
Checking Algorithm PASC(G,K)

1 Initialize x=(0)j∈J , Ω=E, Kr = K, K∗ = K;
2 while Ω �= ∅ do

3 (i∗, j∗)=argmax(i,j)∈Ω
Φτ (x−j ,x

′
j=θij)−Φτ (x)

x
′
j−xj

;

4 if θi∗j∗ − xj∗ ≤ Kr then
5 xj∗ = θi∗j∗ , Kr = Kr − (θi∗j∗ − xj∗);
6 Ω = Ω \ {(i, j∗) ∈ Ω|θij∗ ≤ xj∗};

7 (i∗, j∗) = argmax(i,j)∈E Φ(0, . . . , xj=θij , . . . , 0);
8 x∗ = (0, . . . , xj∗=θi∗j∗, . . . , 0), K∗ = K∗ − xj∗ ;
9 If Φ(x∗) > Φ(x), then Kr = K∗ and x = x∗;

10 while Kr > 0 do
11 j∗=argmaxj∈J P

u
e (j, x),

δb = max{1− xj∗,Kr}; Kr=Kr − δb,
xj∗ = xj∗ + δb;

12 Return the SC policy x = (x1, x2, . . . , xn).

peer-assignment pair (i∗, j∗) that has the largest margin ac-
curacy gain-cost ratio to be diligent, i.e.,

(i∗, j∗) = argmax(i,j)∈E
Φτ (x−j ,x

′
j=θij)−Φτ (x)

x′
j−xj

(14)

where x′
j=θij is the critical probability of eliciting diligent

grading of (i, j) and x′
j−xj is the budget necessary for this

elicitation under the policy x. In Lines 7-8, Algorithm 1 also
finds another candidate policy x∗ that only elicits the opti-
mal peer-assignment pair (i∗, j∗) that has the largest accu-
racy rate gain under policy x=(0)j∈J to be diligent. In Line
9, Algorithm 1 selects the policy from the two candidates x
and x∗ with larger accuracy rate. Stage 2–remaining bud-
get allocation: In lines 10-11, if there is remaining budget
Kr = K−∑

j xj > 0, Algorithm 1 iteratively allocates Kr

to assignments that have the largest error rates.

Approximation Ratio Analysis

In this section, we provide the approximation ratio
Φpasc/Φopt of PASC, where Φpasc and Φopt are accuracy
rates returned by PASC and optimum (OPT) of OptSC. Let
n1 be the number of assignments that are checked by prob-
ability 1 in OPT, which has been discussed in Theorem 2.

Theorem 4. If K<
∑

j ηj , Φpasc

Φopt
≥ K

2(K+n1+1) (1− 1
e ).

For K≥∑
j ηj , we first present an useful property of OPT.

Proposition 3. Given the budget K =K1+K2, we have
xopt(K)=xopt(K1)+xopt(K1 ⊕K2), where xopt(K) is the
optimal SC policy with budget K and xopt(K1 ⊕K2) is the
optimal SC policy with budget K2 under existing optimal SC
policy xopt(K1).

Theorem 5. If K≥∑
j ηj , Φpasc

Φopt
≥ K

K+n1+1 .

Proof. We divide this setting into two sub-settings: 1) K =∑
j ηj and 2) K >

∑
j ηj .
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Setting 1): K=
∑

j ηj . PASC can elicit all peers to be dili-
gent, we have Φτ

opt =Φpasc. According to Theorem 4, we

have
Φτ

opt

Φopt
≥ K

K+n1+1 , which derives that Φpasc

Φopt
≥ K

K+n1+1 .

Setting 2): K >
∑

j ηj . Splitting K into two parts K1 =∑
j ηj and K2 = K −K1. Based on Proposition 3, we have

Φopt = Φopt(K1) + Φopt(K1 ⊕K2). Given the budget K1,
by Theorem 2, OPT can be divided into two cases:

Case 1) [n1=0]: In the case that each assignment j ∈ J is
checked by the critical checking probability ηj . With budget
K1, we have Φpasc(K1) = Φopt(K1) by eliciting all peer-
assignment pairs to be diligent. In the second stage with bud-
get K2 , we have Φpasc(K1⊕K2) = Φopt(K1⊕K2) by the
ERP rule. Thus, we have Φopt = Φopt(K1) + Φopt(K1 ⊕
K2) = Φpasc(K1) + Φpasc(K1 ⊕K2) = Φpasc.

On the other hand, if one assignment j∗ that has the
largest error rate is not checked by the critical checking
probability, i.e., xopt(j

∗) > ηj∗ , and any other assignment
j ∈ J\{j∗} is checked by the critical checking probabil-
ity xj = maxi∈I(j,S(xopt)) θij . We further consider three
cases according to the scale of the remaining budget K2

in the second stage: 1) K2 is tiny such that the assign-
ment j∗ cannot be checked by probability 1 in OPT. Then,
we have that in OPT, only the assignment j∗ has a larger
checking probability than that in PASC, i.e., xopt(j

∗) >
xpasc(j

∗), ∀j �= j∗, xopt(j) ≤ xpasc(j). For this case, we
have Φopt−Φpasc ≤ 1

n . 2) K2 is moderate that can make j∗
be checked by probability 1 in OPT, but by less than prob-
ability 1 in PASC. Here, we have that Φpasc(K1 ⊕ K2) ≥
Φopt(K1 ⊕ K2) because PASC allocates the whole K2 to
the assignment j∗ that has the largest error. Thus, for this
case, we have Φopt − Φpasc = Φopt(K1) + Φopt(K1 ⊕
K2) − (Φpasc(K1) + Φpasc(K1 ⊕ K2)) ≤ 1/n. 3) K2

is large that can make j∗ be checked by probability 1 in
PASC, and OPT is checking another assignment j′, where
xopt(j

′) ≥ ηj′ . For this case, we have that in OPT, only
j′ has a larger checking probability than that in PASC, i.e.,
xopt(x

′
j) ≥ xpasc(x

′
j), ∀j �= j′, xopt(xj) ≤ xpasc(xj),

which derives Φopt − Φpasc ≤ 1/n. Other cases with larger
budget can be reduced to above three cases.

Case 2) [n1 >0]: Similar to Case 1) analysis, we can also
derive that Φopt − Φpasc ≤ (1 + n1)/n.

Combining the above conclusion that Φopt−Φpasc≤1+n1

n ,
Φpasc

Φopt
≥ K

K+n1+1 follows readily from Theorem 4.

Uncertainty about Reliability and Cost

So far, we have addressed the optimal spot-checking prob-
lem with complete information where each peer i’s diligent
reliability p1i and cost cij are known. We extend it to the
incomplete information setting where p1i ∈ [p1,min

i , p1,max
i ]

and cij ∈ [cmin
ij , cmax

ij ]. Now the instructor’s objective is to
determine an SC policy, x, that maximizes the accuracy rate
Φ∗(x) over all of the possibilities that each p1i and cij could
be chosen from the defined intervals, formulated as follows:

maxx Φ∗(x), (15)

s.t. Φ∗(x) = minp1,c

∑
j

(
1−(1−xj)e

−0.5
∑

i∈I(j)(2p
eij
i

−1)2
)

n
,

p1,min
i ≤ p1i ≤ p1,max

i , cmin
ij ≤ cij ≤ cmax

ij , ∀i ∈ I, j ∈ J

(6)− (8).

We can convert this incomplete information problem (IP) to
the equivalent complete information problem (CP) defined
in Eq.(5) with p1i =p1,min

i and cij=cmax
ij .

Theorem 6. Let x∗ be the optimal SC policy of CP. Then,
x∗ is also the optimal SC policy of IP.

Experimental Evaluation

We experimentally verify the evaluation accuracy and scal-
ability of the proposed algorithm on synthetic and real
datasets. All computations are performed on a 64-bit PC
with a dual-core 3.2 GHz CPU and 16 GB memory. All re-
sults are averaged over 500 instances.

Experiment on Synthetic Dataset

There are 1000 students and 1000 assignments. For each stu-
dent i, his diligent reliability follows the Gaussian distribu-
tion N(μ, δ2), where μ=0.75 and δ=0.125. We allocate each
assignment to l peers randomly. The cost cij and reward rij
follow the Uniform distributions U(0, 1) and U(cij , 1).

We compare our PASC algorithm with three algorithms:

• Random, where budget K is allocated to n assignments
randomly, i.e., choose one assignment j, and allocate a
random probability xj ≤ 1 to j.

• Assignment-oriented Spot-Checking algorithm (ASC),
where budget is greedily allocated to the assignment that
has the largest marginal gain-cost ratio.

• Assignment Allocation First (AAF), where we first parti-
tion these 1000 students into 250 groups, each group has
the equal sized 4 members and has approximate group
reliability. Each assignment is randomly allocated to l

4
groups of these 250 groups. After this assignment allo-
cation, Random SC policy is exploited.

Accuracy Rate Evaluation: Table 1 shows the evalua-
tion accuracy rate under various budgets K and loads l,
from which we observe that 1) given a load and a budget,
PASC has the largest accuracy rate, which is followed by
ASC, AAF and Random. 2) Give a budget, accuracy rates of
PASC, AAF and Random increase with load, while that of
ASC decreases with load. This is because when each assign-
ment j has a large load, more critical checking budget ηj is
required. However, such incremental budget cannot propor-
tionally improve accuracy due to the submodular property.
3) Given a load, these algorithms’ accuracy rates increase
with budget and the increment becomes smaller with the in-
crease of budget. 4) With a pre-step assignment allocation,
AAF performs slightly better than Random. This is because
in Random, assignments are allocated to peers randomly,
considering balancing peers reliability among assignments.
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Budget K 100 300 500
Load l 4 8 12 16 4 8 12 16 4 8 12 16
PASC 0.770 0.832 0.874 0.900 0.915 0.956 0.976 0.986 0.956 0.982 0.993 0.997
ASC 0.625 0.608 0.601 0.597 0.806 0.789 0.779 0.776 0.956 0.953 0.949 0.944
AAF 0.581 0.590 0.592 0.595 0.732 0.754 0.768 0.774 0.885 0.910 0.929 0.939

Random 0.577 0.584 0.587 0.589 0.729 0.752 0.765 0.772 0.881 0.907 0.925 0.934

Table 1: The evaluation accuracy on synthetic dataset. Each cell is statistically significant at 95% confidence level.
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Figure 1: (a) Convergence on Budget; (b) Robustness on Budget and Load; (c) Evaluation Accuracy on Real Dataset.

Convergence: Figure 1(a) shows the convergence of eval-
uation accuracy rate on budget, from which we observe
that when the budget K is smaller than the critical budget
Kc=

∑
j ηj , PASC performs much better than ASC, AAF

and Random. When K>Kc, PASC and ASC produce the
same accuracy rate and converge to the optimal accuracy.
This is because when K>Kc, all peers can be elicited to be
diligent in both PASC and ASC.

Robustness: The instructor might have imprecise esti-
mates of p1i and cij , where p1i ∈ [p̃1i−δp, p̃

1
i+δp] and cij ∈

[c̃ij−δc, c̃
1
ij+δc], p̃1i and c̃ij are observed values. δp and δc

are noise parameters, where δp=p̃1i /10 and δc=c̃ij/10. We
compare algorithm’s worst-case accuracy rate in uncertain
settings defined in Eq.(15). From Figure 1(b), we observe
that PASC produces the largest accuracy rate.

Experiment on Real Dataset

Dataset: TREC3 is a collection of topic-document relevance
judgements labelled by workers on AMT. This dataset’s data
structure is similar to PGS’s, where each worker (i.e., peer)
is asked to judge whether a topic-document (i.e., assign-
ment) is relevant (i.e., good) or not (i.e., bad). This dataset
contains 1,977 judgements collected from 763 workers.
Experiment Setup: We first use ltra training tasks to cali-
brate worker reliability. For each worker i who judges lcori

3https://sites.google.com/site/treccrowd/

correct labels among ltra tasks, his reliability is estimated
as p1i =lcori /ltra. We model worker’s cost and reward in a
similar way with that in Section 12. We compute that work-
ers’ average reliability 0.89 and variance 0.16. Under the SC
mechanism, a worker-task pair (i, j) that is elicited to be
diligent, we directly use i’s label in the dataset as i’s judge-
ment; otherwise, i reports a random judgement on j. Finally,
we use the WMV to aggregate the estimated judgement.

Accuracy Rate Evaluation: Figure 1(c) shows the eval-
uation accuracy in real dataset (in real dataset, the task allo-
cation has been determined, thus AAF is unnecessary), from
which we observe that 1) PASC performs the best on im-
proving evaluation accuracy. 2) For PASC and ASC, before
the critical budget point (K ≤1000), their increment rates
drop with budget, while exceeding the critical budget, their
increment rates goes up again. In real dataset, peers have
high average reliability accuracy (∼0.89). Even with limited
budget, these high reliable peers can be elicited to be dili-
gent, leading to a high base accuracy. When budget becomes
moderate, such incremental budget can only improve limited
accuracy due to the submodular property and the high base
accuracy. Finally, when the budget becomes so large that it
exceeds the critical budget, all peers will be diligent. The re-
maining budget will be allocated to the assignment that has
the largest error rate, thereby improving the increment rate
again.
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Conclusion

This paper studies the problem OptSC of optimal spot-
checking assignments to maximize assignments evaluation
accuracy in general PGSs. The NP-hardness complexity of
OptSC is analysed. A combinational optimization problem
OptSC PA is proposed to approximate OptSC. The mono-
tone and submodular properties of OptSC PA are exploited,
and an efficient SC approximation algorithm is proposed.
Experimental results show that on both syntectic and real
datasets, the proposed algorithm achieves higher evaluation
accuracy than other benchmark algorithms.
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