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Abstract

Big human mobility data are being continuously generated
through a variety of sources, some of which can be treated and
used as streaming data for understanding and predicting ur-
ban dynamics. With such streaming mobility data, the online
prediction of short-term human mobility at the city level can
be of great significance for transportation scheduling, urban
regulation, and emergency management. In particular, when
big rare events or disasters happen, such as large earthquakes
or severe traffic accidents, people change their behaviors from
their routine activities. This means people’s movements will
almost be uncorrelated with their past movements. Therefore,
in this study, we build an online system called DeepUrban-
Momentum to conduct the next short-term mobility predic-
tions by using (the limited steps of) currently observed human
mobility data. A deep-learning architecture built with recur-
rent neural networks is designed to effectively model these
highly complex sequential data for a huge urban area. Ex-
perimental results demonstrate the superior performance of
our proposed model as compared to the existing approaches.
Lastly, we apply our system to a real emergency scenario and
demonstrate that our system is applicable in the real world.

Introduction

The next-generation 5G mobile Internet technologies will
mark a new era in the information industry, and they will
play an important role in stimulating the growth of the In-
ternet of Things (IoT). Against this background, massive
GPS trajectories that are being continuously generated from
sources, such as smartphones, GPS devices on cars, WLAN
networks, and location-based social networks, become im-
portant for use as real-time human mobility data streams.
With such valuable streaming data, people’s future behav-
iors and movements can be predicted step-by-step in an
online manner, based on an intuitive Markov-like assump-
tion that people’s next behaviors mostly rely on their recent
ones. Especially, when big rare events or disasters, such as
high-magnitude earthquakes happen, people’s behaviors and
movements will become rather different from their daily
routines. Such online short-term predictions using recent

∗Corresponding author
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Can we develop an online intelligent system for
short-term human mobility prediction with high precision
by using recent momentary mobility at a citywide level? Big
human mobility data and deep-learning technologies pro-
vide us with the opportunity to implement this system.1

momentary mobility will become very necessary and practi-
cal. Elevating this to a citywide level, namely predicting Ur-
banMomentary human mobility for a huge urban area, can
play a crucial role in effective urban planning, transportation
scheduling, and emergency management.

However, even for a short period, human mobility and
transportation transitions for a large-scale transportation
system are highly complex, which are almost impossible
to be effectively modeled using classical methodologies
or simple neural network-based models. Emerging deep-
learning technologies have demonstrated superior perfor-
mances on various datasets (e.g., images, texts, and videos)
(Bengio 2009; Vincent et al. 2010; Demuth et al. 2014) of
existing classical approaches. Hence, in this study, we inves-
tigate the various aspects of human mobility during a short
period in a large urban area by using a deep-learning-based
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approach. We also develop an intelligent system for citywide
short-term human mobility prediction with high precision
compared with the existing approaches.

In this study, we first collect big human mobility data and
process them into calibrated trajectories, and construct an
artificial human mobility data stream for a large urban area.
Then, we build an online intelligent system called DeepUr-
banMomentum to continuously take the recent momentary
mobility as the input and predict next short-term urban hu-
man mobility as the output, as shown in Fig.1. The model-
ing component of our system is based on the deep Recurrent
Neural Network (RNN) architecture constructed using two
layers: one RNN layer is used to turn the inputted location
sequence into a single latent vector containing information
about the entire sequence. Then, a functional layer will re-
peat this latent vector multiple times and pass this vector
sequence to another RNN layer that is used to turn this con-
stant sequence into multiple steps of output mobility. This
deep model is built essentially as a regression model that
can directly take continuous values (location coordinates) as
input and output. Finally, given an artificial mobility data
stream for a big urban area, DeepUrbanMomentum will au-
tomatically conduct an online deep-learning process and re-
port the prediction results of UrbanMomentum by a well-
trained model by using the current urban mobility data. To
the best of our knowledge, DeepUrbanMomentum is the first
system that applies the deep-learning approach to effectively
perform online short-term human mobility predictions at a
citywide level. It has the following key characteristics:
• It is built and tested based on a big human mobility data

source, which stores the GPS records of 1.6 million users
over three years.

• It is built as an online prediction system driven by mobil-
ity stream and deep-learning technologies.

• It constructs a deep-sequence learning model with RNN
for effective multi-step predictions.

• It is applied to real-world scenarios and verified as a
highly deployable prototype system.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of our data source. Section 3
gives the definition of UrbanMomentum and the prediction
model. Section 4 explains the modeling details and the deep-
learning architectures. Section 5 shows the experimental de-
tails, the performance evaluation, and the prediction results
in a real-world scenario. Section 6 introduces studies related
to our research. Section 7 contains summaries, the limita-
tions of our current system, and our future work.

1“Konzatsu-Tokei (R)” from ZENRIN DataCom CO.LTD is
used by us, which refers to people flows data collected by individ-
ual location data sent from mobile phone with enabled AUTO-GPS
function under users’ consent, through the “docomo map navi” ser-
vice provided by NTT DOCOMO, INC. Those data is processed
collectively and statistically in order to conceal the private infor-
mation. Original location data is GPS data (latitude, longitude) sent
in about every a minimum period of 5 minutes and does not include
the information to specify individual such as gender or age. In this
study, the proposed methodology is applied to raw GPS data by
NTT DOCOMO, INC.

Data Source

A raw GPS log dataset was collected anonymously from ap-
proximately 1.6 million mobile phone users in Japan over a
three-year period (August 1, 2010 to July 31, 2013)1. Data
collection was conducted by a mobile operator and a private
company under an agreement with the mobile phone users.
This dataset contains approximately 30 billion GPS records,
and the total size of the data is more than 1.5 TB. To bet-
ter simulate a real-time situation for our online system, this
dataset is stored on a Hadoop cluster, containing 32 cores,
32 GB memory, and 16 TB storage, which can run 28 tasks
simultaneously. Furthermore, we use Hive on top of Hadoop
to make the whole system support SQL-like spatial queries.
Therefore, GPS trajectories of a specified city and day can
be retrieved in a short response time, and our database can be
regarded as a nearly real-time data source that can provide
streaming trajectory data to our online system.

Preliminaries

Definition 1 (Raw human trajectory): The raw trajectory col-
lected from an individual is essentially a sequence of 3-
tuple: (timestamp, latitude, longitude), which can indi-
cate a person’s location according to a captured timestamp.
In the rest of this paper, it is further simplified as a sequence
of (t, l)-pairs.

Note that the raw trajectory has a lot of temporal uncer-
tainties because of different time intervals between two con-
secutive timestamps. Our goal is to predict citywide human
movements; therefore, it motivates us to reduce temporal un-
certainty by calibrating the raw trajectory to have equal time
intervals Δt, which is defined as follows:

Definition 2 (Calibrated human trajectory): A calibrated
human trajectory traj from time t1 to tm is a sequence
of timestamp-location pairs denoted as: (t1, l1), (t2, l2), ...,
(tm, lm) that satisfies:

∀i ∈ [1,m) , |ti+1 − ti| = Δt

In fact, this calibration operation is performed based on
the following assumption.

Definition 3 (Temporal certainty assumption): For each
individual person, his/her location coordinates can be re-
trieved every Δt time.

Definition 4 (Urban human mobility stream): Based on
the above definitions, urban human mobility can be regarded
as a kind of streaming data arriving every Δt time interval,
from which we can get n infinite human trajectories corre-
sponding to n individual persons. Furthermore, these n tra-
jectories will all be spatially contained in one urban area de-
noted as ur. Therefore, an urban human mobility stream is
determined by three parameters ur, n, and Δt, which are
given as:

uhms = F (ur, n,Δt)

Ideally, n should be the total number of a city’s resident
population, and Δt should be several seconds. However, this
ideal mobility stream is extremely hard to build because
of various limitations of location acquisition technologies.
Therefore, n is more likely to be the total number of active
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Figure 2: Deep Sequential Modeling Architecture.

users of a certain smartphone application, and Δt is set to
10 min or a longer time interval.

Definition 5 (Current urban mobility): given an uhms, a
current time t and an integer α, current urban mobility Xt is
defined as follows:

Xt = {traj | traj ∈ uhms ∧ ∀i, t− αΔt ≤ traj.ti ≤ t}
which intuitively means current α steps of urban human mo-
bility accumulated from uhms.

Definition 6 (Next urban mobility): Similarly, given an
uhms, a current time t, and an integer β, the next urban
mobility Xt+1 is defined as follows:

Xt+1 =

{traj | traj ∈ uhms ∧ ∀i, t+Δt ≤ traj.ti ≤ t+ βΔt}
which means the next β steps of urban human mobility.

Definition 7 (UrbanMomentum prediction model): Given
the current urban mobility Xt, UrbanMomentum prediction
will construct a model Pθ(X̂t+1 | Xt), in which θ represents
a set of model parameters and X̂t+1 is the predicted next
urban mobility. It will be built as a regression model, and
its parameters can be obtained by minimizing the prediction
error L(X̂t+1, Xt+1) as follows:

θ = argmin
θ

L(X̂t+1, Xt+1) = argmin
θ

||X̂t+1 −Xt+1||2

Short-Term Urban Mobility Modeling

Our system is built based on a given uhms to predict the
next urban mobility X̂t+1 using Xt in an online manner. It
is a relatively easy task when X̂t+1.β = 1, which means the
online system accumulates the current α steps of the urban
human mobility Xt and uses them to predict only one-step
of the next urban mobility. However, it is always not suffi-
cient to give out only the one-step prediction, especially dur-
ing times of emergencies, such as rare events or some natu-
ral disasters. Therefore, a more meaningful prediction X̂t+1

with a large β called Short-Term Urban Mobility Prediction
becomes the main task of our online prediction system.

SimpleRNN Modeling Architecture

Given a Xt and based on our temporal certainty assumption,
a current mobility of one person can be simplified as: xt =

l1, l2, ..., lα, and similarly a next short-term prediction can
be represented as: x̂t+1 = lα+1, lα+2, ..., lα+β . It can be
further modeled as:

P (lα+1, lα+2, ..., lα+β) =

β∏
i=1

P (li+α | li, li+1, ..., li+α−1)

(1)
Spatial Continuity. This model is similar to the n-gram
model, which is a typical probabilistic sequential model for
predicting the next item in such a sequence in the form of a
(n-1)-order Markov model. However, the longitude and lat-
itude of each location l is a continuous value in our prob-
lem definition because of the spatial continuity for which it
is not simple to utilize the Markov model. Some may sug-
gest a classical methodology that partitions the whole area
into massive grids to convert the continuous space into dis-
crete values. It is still difficult because our online system
has to predict short-term human mobility for large urban ar-
eas, such as the Great Tokyo Area. Even with 1000-meter
meshing, it still generates about 4,000 grids for the whole
urban area (3,925 km2), which will lead to an extremely
sparse transition matrix if we apply the Markov model based
on this huge mesh. In conclusion, urban human mobility
on a continuous large-scale area is a highly complex phe-
nomenon, which cannot be modeled without using classi-
cal methodologies. The above information motivates us to
employ deep-learning technologies, such as RNNs (Demuth
et al. 2014), and their special variants of the long short-
term memory (LSTM) networks (Hochreiter and Schmid-
huber 1997), to our system for mobility modeling. These
have provided an impressive performance in modeling se-
quential data, such as speech and text. In particular, for our
system, they can help us model human mobility on a contin-
uous large urban space in a regression manner.
Recurrent Neural Networks. Compared with traditional
neural networks, RNNs are specially designed for sequen-
tial data modeling. In traditional neural networks, neurons
in one layer and its neighboring layers are fully connected,
whereas neurons in the same layer do not have any connec-
tions. Such structures cannot effectively deal with the sit-
uation when data are not independent, such as words in a
sentence. The typical structure of a simple RNN is shown in
Fig.1. We can see that the neighboring neurons in the same
hidden layer are connected with one another so that the net-
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work can memorize former information and have an impact
on the output of the current timestep τ . Therefore, the total
input not only contains the input at the timestep τ , but also
the output at the timestep τ -1. To train an RNN, the standard
method is “backpropagation through time” (BPTT).

Our goal is to build an Urban Mobility Model for short-
term prediction described by Equation (1) using an RNN.
A simple recurrent network structure is depicted in Fig.2-
(a), which typically contains an input layer, a hidden layer
and an output layer, where tanh is used in the hidden layer
for mapping inputs into a s single latent vector also called
the latent representation. ReLU is used as the final activa-
tion function, and mean-squared-error (mse) is the objective
function defined in Definition 8.

The formulas that govern the whole computation in our
architecture are as follows:

sτ = tanh(Uiτ +Wsτ−1) (2)

oτ = ReLU(V sτ ) (3)

where iτ represents the input (li, li+1, ..., li+α−1), oτ repre-
sents the output lα+i described in Equation (1), W and U
are weight matrices in the hidden layer and V is weight ma-
trix in the output layer. All these weight parameters will be
determined by applying the BPTT algorithm as mentioned
above; the algorithm details will be omitted in this paper.

With this construction, an n-gram-like mobility regression
model called SimpleRNN is built; the model can take con-
tinuous value of location coordinates as input and output.

DeepRNN Modeling Architecture

Short-Term mobility can be modeled and computed as de-
fined in (1) in an iterative one-by-one manner. One major
limitation of this model is to predict a relatively long short-
term mobility. With the iteration going on, the accumulated
iteration error will become large, which can result in terrible
performance on the last several predicted steps. To tackle
this problem, we improve the multi-step-to-one-step model-
ing in (1) with multi-step-to-multi-step modeling aimed at
achieving better performance on “long” short-term predic-
tions. This is defined as follows:

P (lα+1, ..., lα+β)

=

� β
m �−1∏
i=0

P (lα+i·m+1, ..., lα+i·m+m | l1+i·m, ..., lα+i·m)

(4)

where m is multiple output steps at one time.
To deliver this idea, a deep-learning architecture called

DeepRNN is constructed as shown in Fig.2-(b). It works in
the following steps: (1) the first hidden layer of RNN maps
the α steps of the inputted mobility into a single latent vector
h, which contains information about the entire sequence; (2)
this vector is repeated m times; and (3) another hidden layer
of RNN is used to turn this constant sequence into the m
steps of the output mobility. Similarly, SimpleRNN, tanh,
and ReLU are used as activation functions in these two

RNN layers. Our deep architecture is similar to a sequence-
to-sequence model (Sutskever, Vinyals, and Le 2014), and
the two RNN layers act as an encoder and a decoder.

Experiment

Experimental Setup and Parameter Setting

From our big human mobility database, we select one month
of data (October 2011) and divide them into two parts, week-
day dataset and weekend dataset, since urban human behav-
iors on weekdays and weekends are distinct from each other.
Based on these, we construct two independent urban human
mobility streams, denoted as uhmsd (weekday) and uhmse
(weekend), respectively, where uhmsd.n ≈ 112, 360 and
uhmse.n ≈ 94, 812 averaged by each day, uhmsd.Δt
and uhmse.Δt are both set to be 10 min, uhmsd.ur and
uhmse.ur are both set to the Greater Tokyo Area by default
(Long. ∈ [139.5, 139.9], Lat. ∈ [35.5, 35.8]).

Then, the two types of UrbanMomentum predictions are
tested on these two streams. One is called “Next 60 min-
utes” with X̂t+1.β equal to 6, and another is called “Next
30 minutes” with X̂t+1.β equal to 3. This means our system
will predict the next-one-hour or next-half-hour urban hu-
man mobility in each report. Based on the empirical tuning
result, we found the current urban mobility Xt.α = 3 and m
= 3 in DeepRNN would be appropriate.

Lastly, all settings about modeling training and testing are
kept the same in these two cases. For both SimpleRNN and
DeepRNN, a 64-dimension vector is used as the latent rep-
resentation Zt of the entire Xt. The RMSprop algorithm
is adopted in our system to govern the whole training pro-
cess. We randomly select 80% of the data for model train-
ing and use the remaining 20% for validation, which is used
to early-stop our training algorithm if the validation error
is converged. This early-stopping strategy is very crucial
for an online learning system like ours. Python and some
Python libraries including Keras(Chollet 2015) and Tensor-
Flow(Abadi et al. 2015) are used to implement our system.

Performance Evaluation

Comparison models: (1) N-Gram. It is a widely used algo-
rithm for modeling sequential data, especially in the filed
of natural language processing. In our study, we applied
this model basing on a gridded space to predict next possi-
ble grid. Then the location coordinates were generated ran-
domly inside the predicted grid from a uniform distribu-
tion. In order to avoid sparsity problem on a large urban
area, we utilized Four-Gram model with ΔLong.=0.01 ×
ΔLat.=0.008 (approximately 900m × 900m) as the mesh-
size. (2) CityMomentum (Fan et al. 2015). It was firstly pro-
posed for this kind of momentary mobility prediction at the
citywide level. It is a predicting-by-clustering framework
using a mixture of multiple random Markov chains. Each
of them is an improved first-order markov model that con-
siders not only the next-step probability from one subject’s
movements, but also the probability based on the cluster’s
movements, where the cluster is a bunch of subjects sharing
similar movements with the subject. The parameter settings
used in our experiment were kept same with the original
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Figure 3: Performance Evaluation of Weekday and Weekend.

paper. (3)∼(4) SimpleRNN and DeepRNN. These are the
two models proposed by us. (5) DeepLSTM. We also im-
plement another comparison model with LSTM(Hochreiter
and Schmidhuber 1997) called DeepLSTM, which shares
the same architecture with DeepRNN except that ordinary
neurons in traditional RNNs are replaced with special com-
putation blocks namely LSTM. It has shown superior per-
formance to traditional RNNs for long time-series model-
ing; therefore, we want to test if it can further improve the
performance for our short-term prediction system.
Evaluation metrics: For n trajectories in a given uhms, the
next β steps of locations will be predicted by every report
of our online system. Therefore, to evaluate the overall ac-
curacy of simulation results in a simpler way, we redefine
two different metrics, the mean absolute error (MAE) and
the root-mean-square error (RMSE), as follows:

MAE =
1

n

n∑
i=1

⎡
⎣ 1

β

β∑
j=1

||lij − l̂ij ||
⎤
⎦

RMSE =
1

n

n∑
i=1

⎡
⎣ 1

β

β∑
j=1

||lij − l̂ij ||2
⎤
⎦

1
2

where ||l− l̂|| means the Euclidean distance between the real
location and the predicted one for each trajectory at each
step, which will be measured in meters.
Performance comparison: Using the two metrics above,
we compared the performances of the baseline models and
our proposed deep-learning-based models for each hour by
averaging each day’s result. The evaluation results are sum-
marized in Fig.3, and the results of the “Next 60 minutes”
and “Next 30 minutes” are listed as Fig.3-(a)∼(d) and Fig.3-
(e)∼(h), respectively. We can see that the DeepRNN model
outperformed N-Gram, CityMomentum and SimpleRNN in
each subfigure, and the advantage over SimpleRNN is more
obvious for a relatively long-term “Next 60 minutes” pre-
diction than a short “Next 30 minutes” one. Furthermore,
DeepLSTM achieved better performances than DeepRNN,
which demonstrates that the traditional RNN is not sufficient
for modeling short momentary human movements. All the
models performed relatively badly around 8:00 am and 6:00
pm of weekday-the typical morning and evening rush hours
in Tokyo. Urban human mobility running on a highly com-
plicated transportation system will change drastically during
these hours, and UrbanMomentum becomes hard to predict
by just using a few recent observations, which are a major
limitation of our system for the normal weekday scenario.
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Figure 4: Visualization for human mobility in the core area of Tokyo in first six hours after the Great East Japan Earthquake. The
prediction results are listed on the top in blue, and the corresponding ground truths are at the bottom in red. The 64-dimensional
latent representations of UrbanMomentum learned by RNN at each timestamp are listed in the middle. The maximum, average
and minimum are calculated across each dimension (0∼63) separately as a concise summary of the entire representations. 1

Application to Real-World Scenario

We apply our prototype system to two real-world scenarios:
(1) 3.11 Japan Earthquake (2011-03-11). On March 11,
2011, at approximately 2:46 pm local time, the 9.0 magni-
tude Great East Japan Earthquake occurred off the east coast
of Japan; this is considered one of the most powerful earth-
quakes worldwide. The earthquake caused a great impact on
people’s behaviors in the Great Tokyo Area. We apply our
system to this major emergency scenario to validate its ap-
plicability by using a constructed mobility stream of 2011-
03-11 00:00∼23:59. Our system gave out reports of “next
60 minutes” and “next 30 minutes” short-term urban mobil-
ity prediction every hour. Taking about 30,000 people who
were in the core area of Tokyo at 3:00 pm as observation
targets, we selected 15:30, 17:30, 19:30, and 21:30 (approx-
imate 6 hours after the earthquake happened) as four eval-
uation timestamps, and compared their predicted locations
with the ground truth. The visualization results are shown
in Fig.4. This figure shows that our system can work with a
relatively high accuracy level to predict urban human mobil-
ity after such a huge disaster and a slow evacuation process.
Fig.4 also demonstrates the encoding RNN has effectively
learned the latent representations of UrbanMomentum for
the different timestamps after the earthquake. Furthermore,
we used the same quantitative measures and summarized the
evaluation results as Fig.5-(a)(c)(e)(g). Through the figures,

we can see the different performance result around 3:00 pm
comparing with normal weekdays because of the huge in-
fluence of the earthquake on urban transportation system.
(2) New Year’s Day (2012-01-01). New Year can also be
treated as a kind of rare event although it is not that rare
as 3.11 earthquake. There are a number of New Year cel-
ebrations in Tokyo area, such as Disney Land New Year
party and Shibuya square countdown. Especially, for “Hat-
sumode” (the first visit in Buddhist temple or shrine), a
large crowd of people gather at Meiji Shrine, Sensoji Tem-
ple and Zojoji Temple, and most of the railway lines operate
overnight on the New Year’s Eve for this. All these make ur-
ban human behaviors very different from normal days. We
constructed a mobility stream of 2012-01-01 00:00∼23:59
to test the performance of our system under this scenario and
summarized the evaluation results as Fig.5-(b)(d)(f)(h). Dif-
ferent performance result during midnight (01:00∼05:00)
can also be observed through the figures. DeepLSTM still
achieved the best performances under both of the scenarios.

Related Work

CityMomentum (Fan et al. 2015) is the most closely re-
lated work with ours; however, our deep-learning-based ap-
proach can outperform it as shown in our experiments.
Simulating human emergency mobility following disasters
was addressed in (Song et al. 2014; 2015), but it required
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Figure 5: Performance Evaluation of 3.11 Japan Earthquake and New Year’ Day.

disaster information such as intensity of earthquake and
damage level as additional input data. Modeling human
mobility for very large populations (Song et al. 2010a;
Isaacman et al. 2012; Konishi et al. 2016) are research top-
ics close to ours, but still different from our problem defini-
tion. Moreover, traffic flow has also been studied in (Castro,
Zhang, and Li 2012; Chen, Chen, and Qian 2014). How-
ever, all of these approaches did not use the power of deep
learning technologies. Forecasting citywide crowd density
(Hoang, Zheng, and Singh 2016; Zhang, Zheng, and Qi
2017) is a related endeavor based on deep learning, which
builds a long time-series model for each region of a city,
whereas our system predicts citywide short-term mobility
based on the recent observations rather than a long-period’s.
Some researchers also have applied deep learning to pre-
dict traffic flow, traffic speed, congestion, and transporta-
tion mode along with human mobility (Huang et al. 2014;
Lv et al. 2015; Ma et al. 2015a; 2015b; Song, Kanasugi,
and Shibasaki 2016). Moreover, various studies conducted
on human mobility data, are summarized as urban comput-
ing in (Zheng et al. 2014). C. Song (Song et al. 2010b) ex-
plored the upper bound of predictability of human mobility.
J. Zheng (Zheng and Ni 2012) proposed an unsupervised
learning algorithm for location prediction.

Conclusions

In this study, we collected big human mobility data to con-
struct artificial mobility data streams for large urban area.
Based on this, we build an intelligent system call DeepUr-
banMomentum for online short-term mobility prediction at a
citywide level based on momentary human movements that
we achieved. A deep RNN was specially designed as an ef-
fective multistep-to-multistep prediction model. Experimen-
tal results demonstrated the superior performance of our pro-
posed model compared to the existing approaches and other
shallow models. Furthermore, we applied our system to a
real-world scenario and verified its applicability.

Our system has some room for improvement in the fol-
lowing areas: (1) Our system is still struggling to deal with
the situation when urban mobility is full of sudden changes
such as morning rush hours. (2) Other heterogeneous data,
such as transportation network and Point-of-Interest data,
can also be used as auxiliary features for deep-learning mod-
els. (3) More sophisticated preprocessing will be included to
improve the overall performance of our system. Particularly,
we will apply map matching algorithm and trajectory cali-
bration algorithm (Su et al. 2013) to improve the quality of
the raw trajectories.
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