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Abstract

The learning problem for Factorial Hidden Markov Mod-
els with discrete and multi-variate latent variables remains a
challenge. Inference of the latent variables required for the E-
step of Expectation Minimization algorithms is usually com-
putationally intractable. In this paper we propose a varia-
tional learning approach mimicking the Baum-Welch algo-
rithm. By approximating the filtering distribution with a vari-
ational distribution parameterized by a recurrent neural net-
work, the computational complexity of the learning problem
as a function of the number of hidden states can be reduced
to quasilinear instead of quadratic time as required by tradi-
tional algorithms such as Baum-Welch whilst making mini-
mal independence assumptions. We evaluate the performance
of the resulting algorithm, which we call Variational BOLT,
in the context of unsupervised end-to-end energy disaggre-
gation. Specifically, we conduct experiments on the publicly
available REDD dataset and show competitive results when
compared with a supervised inference approach and state-of-
the-art results in an unsupervised setting.

Introduction

Because of its potential to discover and unlock energy sav-
ing opportunities in buildings, the problem of energy disag-
gregation (Hart 1992) has received increased interest from
various academic communities. The objective of this single-
channel source separation problem, also known as non-
intrusive load monitoring (NILM), is to infer appliance-level
power consumption information given data from only a sin-
gle sensing point at the main electrical panel of a building.
The observed aggregate power measured at the main panel
constitutes the sum of the power of the individual appli-
ances. Since, appliance states (e.g., on, off) can be assumed
to evolve independently and the aggregate observation is de-
pendent on the joint state of all appliances, Factorial Hidden
Markov Models (FHMM) (Ghahramani and Jordan 1997)
have emerged as a prominent model for the generative pro-
cess of the aggregate observations. However, because latent
states become conditionally dependent given the observa-
tions, exact inference of the posterior, i.e. the distribution
of appliance states given the aggregate observation, is as-
sumed to be intractable. Numerous approximate inference
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techniques have been proposed and employed in the past to
tackle this problem. Authors in (Kolter and Jaakkola 2012)
introduced the one-at-a-time constraint that postulates that
only a single appliance can change its state at any given
time. This constraint allows for posterior inference by ei-
ther posing the problem as an integer programming prob-
lem (Kolter and Jaakkola 2012) or by truncating the Viterbi
algorithm (Lange and Bergés 2016b). However, these ap-
proaches were focused on the decoding rather than the learn-
ing problem. On the other hand, (Jia, Gao, and Spanos
2015) proposed a solution to the learning problem based on
MCMC sampling but this approach seems to struggle with
slow mixing of the posterior.
The model introduced in this paper makes use of a highly
tractable auxiliary distribution that approximates the true fil-
tering distribution. This tractable distribution is parameter-
ized by a deep recurrent neural network, specifically stacked
LSTMs (Hochreiter and Schmidhuber 1997). We build on
recent results showing how neural networks in conjunction
with Variational Inference can be used as a powerful tool for
statistical inference (Kingma and Welling 2013). This com-
bination is favorable because Variational Inference allows
one to pose statistical inference as a (non-linear) optimiza-
tion problem and neural networks have become a dominant
approach for non-linear optimization.
Because we assume the latent variables to be binary (i.e. a
Bernoulli auxiliary distribution) we face the additional dif-
ficulty of dealing with non-conjugate discrete distributions,
which pose significant challenges in the context of neural
networks and variational inference (Kingma and Welling
2013). As we will show later, this problem is circumvented
by directly approximating the expectation of the true filter-
ing distribution and introducing a loss function that directly
penalizes the neural network outputs for deviating from that
approximation. By making use of a tractable auxiliary dis-
tribution and making minimal independence assumptions
(i.e. only posterior independence of the latent variables at
a single time point) computations required for the filtering
distribution that are typically quadratic in the number of
hidden states can be reduced to quasilinear time. This ul-
timately allows modeling rich temporal dependencies be-
tween latent variables whilst keeping computational costs
low. Although we focus on the application of energy dis-
aggregation in this paper, our proposed method could find
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applications in other fields where FHMMs with binary la-
tent states are employed such as in certain Bioinformat-
ics problems, e.g., (Stanculescu, Williams, and Freer 2014;
Asif and Sanguinetti 2011).
The decreased computational costs for inference afford our
solution with the additional advantage of addressing security
and privacy concerns associated with energy disaggregation
solutions. In other words, disaggregation can, in principle,
be carried out in real-time on cheap off-the-shelf embedded
hardware located within the premises.
In the next section, we introduce Factorial Hidden Markov
Models and explain the need for variational approximation
of the filtering distribution. The section that follows shows
how variational estimates of the filtering distribution can be
obtained efficiently. The next section highlights the impor-
tance of modeling temporal dependencies and shows how
this can be achieved by additionally modeling the difference
signal of the aggregate observations. We then present exper-
iments/results on the REDD dataset and conclusions.

Factorial Hidden Markov Models and

Variational Inference

FHMMs are a generalization of Hidden Markov Models
in which multiple hidden states evolve independently in
parallel. See Figure 1c for a representation of the associ-
ated graphical model. When the parameters of the individ-
ual HMM chains are known, energy disaggregation can be
posed as the decoding problem for FHMMs. However, ob-
taining these paramaters is usually prohibitively expensive.
On the other hand, unsupervised energy disaggregation can
be posed as the learning problem on this graphical model.
Because of its factorial nature, the probability of the obser-
vation at time t, xt, is a function of the joint hidden state
zt, with t ∈ {1, ..., T}. In general, the latent variables of
FHMMs are modeled as categorical variables, which could
lead to computationally tractable solutions (e.g., (Jang, Gu,
and Poole 2016)). In our case we restrict zt to be binary,
specifically Bernoulli distributed. Assuming binary hidden
states removes some of the ambiguity inherent to the learn-
ing problem: every latent representation with categorical
variables can be decomposed into a representation with bi-
nary variables, i.e. by assigning a binary variable for each
categorical state. This binary decomposition is unique and
in a sense maximal. However, binary decompositions can be
aggregated into exponentially-many categorical decomposi-
tions, i.e. any combination of binary latent variables can be
joined into one categorical variable. In order to avoid this
ambiguity, we restrict the latent variables to be binary.
Since hidden states are assumed to be binary and multiple
hidden states evolve in parallel, zt ∈ Z = {0, 1}C with C
being the number of parallel hidden chains. Thus, the joint
likelihood can be expressed as:

p(x1:T , z1:T ) =
T∏

t

p(xt|zt)
C∏

i

p(zt,i|zt−1,i)p(z0,i) (1)

For the application of energy disaggregation, we choose
a representation of the aggregate observation similar to our
prior work (Lange and Bergés 2016a), i.e. the observation

xt constitutes the aggregate instantaneous power waveform
aligned by zero-crossings detected in the voltage line, thus
xt ∈ R

N with N being the number of samples per volt-
age cycle. Figure 1a shows aggregate instantaneous power
waveforms alongside the observed aggregate active power
over time. Since instantaneous power is additive, we model
p(xt|zt) to be a Gaussian distribution with p(xt|zt) =
N (xt|Wzt, αI) where α is a variance parameter, W ∈
R

N×C is a matrix containing the power waveforms of the
inferred components and is not assumed to be known. Fig-
ure 1b shows an example of inferred power waveforms.
Baum-Welch, an Expectaction-Maximization algorithm, is
a prominent algorithm for the learning problem in Hidden
Markov Models. Baum-Welch makes model updates based
on the expected time spent in states, the expected num-
ber of state transitions and the expected number of times a
state emits an observation. An efficient algorithm to com-
pute these quantities is the forward-backward algorithm.
The forward-probabilities (2) can be computed recursively.
Given the forward probabilities, the filtering distribution can
be computed according to (3).

p(x1:t, zt) = p(xt|zt)
∑

z′∈Z
p(zt|z′)p(zt−1, x1:t−1) (2)

p(zt|x1:t) =
p(x1:t, zt)∑

z′∈Z p(x1:t, z′)
(3)

Because the number of possible latent states z grows ex-
ponentially with the number of components, evaluating (2)
is intractable for FHMMs. However, as we will show later,
ideas from Variational Inference can be used to approximate
forward-probabilities.
Variational Inference is a tool to deal with intractable pos-
terior distributions and relies on an auxiliary or variational
distribution Q governed by the variational parameter Θ. Pos-
terior inference in Q is required to be tractable, which is
usually achieved by making independence assumptions. To
paraphrase the main idea behind Variational Inference: in or-
der to perform inference on a distribution P with intractable
posterior, variational parameters Θ are chosen in such a way
that Q best approximates P and then inference is performed
on Q instead of P . For our application, P is the filtering dis-
tribution, i.e. (3), and we choose Q to be an independent
multivariate Bernoulli distribution with density qσ(zt) =∏C

i σ
zt,i
i (1−σi)

1−zt,i and with σi being the coin-flip proba-
bilities of the latent variables. For the conditional qσ(zt|xt),
we assume the coin-flip probabilities to be functions of the
conditioning variable xt, i.e. qσ(zt = �1|xt) = σt = fΘ(xt).
Because we want Q to capture the temporal dependencies
present in P , we chose f to be a recurrent deep neural net-
work governed by the variational parameters Θ (which in
this case constitute the weights of the neural network). This
in turn means that σt = fΘ(x1:t) is a function of all previ-
ous observations x1:t, i.e. Q is also a filtering distribution:
q(zt|x1:t). Note that this implies that the auxiliary distri-
bution does not assume temporal independence between la-
tent variables but assumes independence between elements
of the latent variable at any given time.
The evidence lower bound (ELBO) as a variational objective
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(a)

(b) (c)

Figure 1: (a): Matrix X containing aggregate instantaneous power waveforms alongside the aggregate power. (b): Matrix W
containing candidate component waveforms. (c): Representation of a Factorial Hidden Markov model

can be derived as follows (Blei 2011):

L = log p(x1:t)−DKL(q(zt|x1:t)||p(zt|x1:t)) (4)
= EQ[log p(x1:t, zt)]− EQ[log q(zt)] (5)

Note that because of the equivalence of (4) and (5), max-
imizing (5) is equivalent to maximizing (4). This means
that optimizing the parameters of P and Q w.r.t. to (5)
leads to maximization of the log-likelihood of the data
as well as minimization of the posterior divergence. Al-
though the second expectation of (5) usually has an ana-
lytical solution, evaluating the first expectation is usually
achieved by sampling from Q. However, approximating the
expression by sampling disconnects the optimization prob-
lem from the variational parameters Θ, i.e. Q vanishes
from the optimization problem. For some continuous non-
conjugate distributions, this problem can be avoided by the
re-parameterization trick, i.e. by finding a deterministic and
differentiable function that provides samples of Q given the
variational parameters Θ and some random noise. For bi-
nary non-conjugate distributions such as the Bernoulli such a
function does not seem to exist (Kingma and Welling 2013).
We circumvent this problem by approximating the true filter-
ing distribution, i.e. estimate p̂(zt|x1:t) with the help of Q.

Given estimates p̂(zt|x1:t), the σ∗ as a function of Θ result-
ing in the lowest forward KL-divergence can be obtained,
i.e. σ∗ = argminσ

∑
t DKL(p̂(zt|x1:t)||qσ(zt|x1:t)).

Given σ∗, the binary cross-entropy loss between σ and σ∗
(H(σt, σ

∗
t )) is then minimized in order to minimize the for-

ward KL-divergence of the posterior.
Minimizing the binary cross-entropy loss between σ and σ∗
minimizes the posterior divergence but since the parame-
ters of P (the component waveforms W ) are not known, the
model needs to be forced to explain the aggregate signal ex-
plicitly. Otherwise the free parameter W will be abused to
minimize the divergence without explaining the data. Thus,
we additionally maximize EQ[p̂(zt, x1:t)] in order to explain
the aggregate waveforms. Hence, the objective function be-
comes:

L(σ,W ) =
∑

t

EQ[p̂(zt, x1:t)]−H(σt, σ
∗
t )

with: σ∗t = min
σ

DKL(p̂(zt|x1:t)||q(zt|x1:t))

= Ep̂(zt|x1:t)[z]

and: −H(σt, σ
∗
t ) = σ∗t log(σt) + (1− σ∗t ) log(1− σt)
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To sum up the main ideas of this paper:

• Computing the filtering recursion required for the E-step
of Baum-Welch is prohibitively expensive since it re-
quires a summation over exponentially-many latent con-
figurations.

• An auxiliary distribution q(zt|x1:t) that assumes indepen-
dence between elements in zt is introduced, which allows
for approximating p̂(zt|x1:t). Note that q does not assume
independence over time steps. The independence struc-
ture of the auxiliary distribution is then exploited to ap-
proximate the filtering recursion efficiently circumventing
summation of exponentially-many latent configurations.

• In order to optimize the parameters of the auxiliary dis-
tribution, the variational parameters minimizing the KL-
divergence between P and Q, i.e. σ∗, are estimated and
the binary cross-entropy loss between the predicted pa-
rameters σ and the optimal σ∗ is minimized. As we
will show later, this is equivalent to minimizing the KL-
divergence but circumvents the re-parameterization trick
and allows for a compact representation of the problem.

Note that we interchangeably call σ and Θ variational pa-
rameters. However, in reality, σ is a function of the true vari-
ational parameters, i.e. the neural network weights Θ, and
when a loss is defined w.r.t. σ gradients w.r.t. Θ can be ob-
tained by application of the chain rule, i.e. back-propagation.
In the next section, we will discuss how to obtain estimates
of the filtering distribution probabilities, i.e. p̂(zt|x1:t).

Estimating filter distribution probabilities

When using the forward-algorithm to obtain the filtering
distribution p(zt|x1:t) for FHMMs, the computational com-
plexity is in O(22CT ′) with C being the number of com-
ponents and T ′ being the number of discrete time steps. In
this work, we propose a learning algorithm that operates in
O(Cε+1T ) with Cε being the number of candidate latent
state configurations being considered and T � T ′ (by re-
ducing decision variables) and ε < C (by enforcing spar-
sity).

Reducing decision variables

For the problem of energy disaggregation, the aggregate ob-
servation is highly non-iid, i.e. instantaneous power wave-
forms tend to repeat themselves over time since they are as-
sociated with the operational state of appliances (and these
do not change very often). This implies that, as long as the
aggregate observations have not changed significantly, the
latent states will not have changed and no new decision
needs to be made. Thus, by employing a simple change-
point detector that extracts points in time, so called events,
where a significant change in the aggregate power was ob-
served, the number of decision variables can be reduced sig-
nificantly. Let the number of detected events be T . Reducing
the number of decision variables reduces the complexity to
O(22CT ). Depending on the change point detector, T is of-
ten three orders of magnitudes smaller than T ′.

Enforcing sparsity

A portion of the latent space can be excluded by enforcing
sparsity of the latent variables. Usually only a small num-
ber of appliances are active at any given time. Thus latent
configurations where more than ε components are active can
be excluded. Let Z = {z ∈ {0, 1}C |∑i zi < ε} be the
set of sparse candidate latent configurations. We assume that
p(x1:t, zt = zi) = 0 for all zi /∈ Z . This assumption allows
us to evaluate p(zt|x1:t), since the denominator of equation
(3) has become tractable. This assumption reduces the com-
plexity to O(C2εT ) with |Z| ∈ O(Cε).

Variational approximation of p(zt|x1:t)

For many problems modeled with FHMMs, such as energy
disaggregation, p(zt|xt) and therefore p(zt|x1:t) are highly
multi-modal distributions. However, since the auxiliary con-
ditional distribution Q assumes independence between el-
ements of z, Q is unable to learn the multi-modality of
p(z|x). However, Q is able to either learn argmaxz p(z|x)
or Ep(z|x)[z]. These two modeling choices are reflected
in either minimizing the forward DKL(P ||Q) or reverse
DKL(Q||P ), respectively. It can be shown that:

argmin
σ

DKL(P ||Qσ) = Ep(z|x)[z]

argmin
σ

DKL(Qσ||P ) = argmax
z

p(z|x)

Viterbi learning was proposed as a faster alternative to
Baum-Welch. For Viterbi learning the model parameters
are updated based on the most probable path z∗1:T =
argmaxz1:T p(z1:T |x1:T ).
Since minimizing the reverse KL-divergence forces Q to
learn the most probable mode of P , minimizing the reverse
KL-divergence approximates Viterbi learning but tends to
underfit considerably. On the other hand, minimizing the
forward KL-divergence seems to preserve more information
about state posterior probabilities. However, as we will show
later, our proposed method does not correspond fully to
learning like Baum-Welch, i.e. updating the model based on
p(zt|x1:T ), but rather updating based on p(zt|x1:t), that is,
making model updates based on forward-probabilities alone
whilst ignoring backward-probabilities.
As discussed earlier, the Baum-Welch algorithm as well as
Viterbi learning require computations that are quadratic in
the numbers of hidden states. Even with the domain-specific
sparsity assumptions introduced earlier, computations that
are quadratic in the number of latent configurations are still
prohibitively expensive. The key insight into circumventing
these computations is the fact that the filtering distribution at
time t, i.e. p(zt|x1:t) can be approximated by exploiting the
independence structure of Q, i.e. the fact that the auxiliary
distribution assumes independence between components at
any single point in time. Starting with equation (2):

795



p(x1:t, zt)

= p(xt|zt)
∑

z′∈Z
p(zt|z′)p(zt−1 = z′, x1:t−1)

≈ p(xt|zt)
∑

z′∈Z
p(zt|z′)q(zt−1 = z′|x1:t−1)p(x1:t−1)

= p(xt|zt)
∑

z′∈Z
p(zt|z′)

∏

i

σ
z′i
t−1,i(1− σt−1,i)

1−z′ip(x1:t−1)

Note that FHMMs components switch independently, i.e.
p(z|z′) = ∏

i p(zi|z′i) and let π(m,n) be the state-transition
probabilities. Because q(zt|x1:t) assumes independence be-
tween elements of zt, we can simplify the expression by re-
cursively pulling out elements of q(zt|x1:t), ultimately al-
lowing us to rewrite a sum over all possible z into a sum
over the number of components, i.e. circumventing compu-
tations that grow exponential with the number of parallel la-
tent states:

p(x1:t, zt)

≈ p(xt|zt)p(x1:t−1)
∑

z′∈Z

∏

i

p(zt,i = zi|zt−1,i = z′i)σ
z′
i

t−1,i(1− σt−1,i)
1−z′

i

= p(xt|zt)p(x1:t−1)
∑

z′∈Z

∏

i

(ziπ(1, z
′
i) + (1− zi)π(0, z

′
i))σ

z′
i

t−1,i(1− σt−1,i)
1−z′

i

= p(xt|zt)p(x1:t−1)∑

i

ziσt−1,iπ(1, 1) + zi(1− σt−1,i)π(1, 0)

+ (1− zi)σt−1,iπ(0, 1) + (1− zi)(1− σt−1,i)π(0, 0)

= p̂(x1:t, zt)

This allows us to approximate the forward probabilities
p(zt, x1:t) based on σt−1 as provided by Q and W as a
parameter of P . Since we can compute p̂(zt, x1:t) for all
sparse z ∈ Z , we can approximate the filtering distribution
p̂(zt|x1:t) according to equation (3). Note that, since we are
only interested in the filtering distribution, p(x1:t−1) does
not need to be modeled because it cancels out.
Let σ∗ = Ep̂(zt=z|x1:t)[z]. Even though σ∗ is a function of
W , we treat σ∗ as a constant and do not allow the gradi-
ent of W to flow into σ∗. This avoids W being exploited to
minimize the posterior divergence instead of explaining the
aggregate data. Note that, when allowing the gradient of W
to flow into σ∗, the algorithm will infer nonsensical compo-
nent waveforms, i.e. waveforms that draw significant power
when the voltage is 0. Based on the same reasoning, we do
not allow the gradient of σ to flow into EQ[p̂(zt, x1:t)].
Thus by exploiting the independence assumption of the aux-
iliary distribution, the computational complexity estimating
the filtering distribution can be reduced to O(Cε+1T ).
There is at least one example in the literature showing an
application of variational inference for learning in FHMMs:
in (Ng, Chilinski, and Silva 2016) Gaussian copulas are
paired with variational inference to minimize an objective
including the reverse KL-divergence, thus circumventing the
problem of having to approximate the filtering distribution.
Furthermore, although not applied to sequential data and

therefore not modeling temporal dependencies between la-
tent variables, previous work has proposed approaches for
the subproblem of estimating the gradient through binary
stochastic units, e.g. (Raiko et al. 2014; Bengio, Léonard,
and Courville 2013). When temporal dependencies are re-
moved, (Tang and Salakhutdinov 2013) arrive at a sim-
ilar solution to ours. Their respective loss is derived as:
LT&S =

∑
m w(m)[log p(x|z(m)) + log pσ(z

(m)|x)] with
w(m) being normalized importance weights of configura-
tion z(m). Note that, if the sparsity constraints introduced
here were to be applied, the importance weights would ap-
proximate p(z|x). Also note that in that case, even though
motivated differently, the gradient updates w.r.t. the compo-
nent activation probabilities σ are equivalent when temporal
dependencies are not modeled. This justifies the seemingly
arbitrary choice of minimizing the cross-entropy loss, i.e.
H(σ, σ∗) (instead of e.g. (σ − σ∗)2).

It can be shown that:

∂LT&S

∂σi
=

1

−(1− σi)
[1− σ∗i ] +

1

σ1
[σ∗i ]

=
∂(1− σ∗i ) log(1− σi) + σ∗i log(σi)

∂σi

=
∂H(σ, σ∗)

∂σi

Modeling temporal dependencies

Building on experience from previous work (Lange and
Bergés 2016a), the main objective of modeling the temporal
dependencies between latent states is temporal regulariza-
tion. Specifically for the problem of energy disaggregation,
this means that when a single appliance changes its state,
only one and not multiple components change state. With-
out modeling the temporal dependencies, models tend to
‘stitch’, i.e. when a single appliance turns on, multiple model
components switch states. Also without modeling temporal
dependencies, the model ‘recycles’ components, e.g. appli-
ance a might be explained by components 1 and 2, then ap-
pliance b is explained by components 2 and 3 and appliance
c is explained by components 1 and 3. A linear mapping
from components to appliances then becomes impossible.
Furthermore, for energy disaggregation, introducing fixed
state transition probabilities is problematic because of vast
differences in the power consumption of appliances. When
every component pays a fixed cost for switching (π(0, 1) or
π(1, 0)), appliances with a high power consumption can still
afford to be explained by multiple components because the
cost for under-estimating the aggregate is higher than multi-
ple switching costs. At the same time, appliances that con-
sume little power will be ignored, since when they turn on,
the associated increase in aggregate loss does not outweigh
the switching cost.
To overcome this problem, we additionally model the differ-
ence signal δxt = xt−xt−1 similar to (Kolter and Jaakkola
2012). Note that although technically the graphical model
changes (see Figure 2), π can also be viewed as a function
of δxt, i.e. the switching probabilities depend on how well
each component explains δxt. We define switching proba-
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Figure 2: Graphical Model when additionally modeling the
difference signal δxt

bilities associated with each component turning on or off at
time t. Additionally, we define a switching probability asso-
ciated with no component switching.

Let,

I(t, i) = exp[−β||Wi: − δxt||] (on-switch)
O(t, i) = exp[−β||Wi: + δxt||] (off-switch)

X (t) = exp[−β||δxt||] (no-switch)

Following the intuition gained earlier, we estimate the fil-
tering distribution as,

p̂(zt = z, x1:t) = p(xt|zt = z)p(x1:t−1)

[
C∑

i

(σt−1,i(1− zi)O(t, i) + (1− σt−1,i)ziI(t, i))

+
C∏

i

(ziσt−1,i + (1− zi)(1− σt−1,i))X (t)]

(6)

Note that the model described in equation (6) models depen-
dencies between components to some degree. The product in
the last line can be expanded into all combinations of com-
ponent configurations where no component switches from
t − 1 to t. This factorization allows for a compact and dif-
ferentiable representation of ‘no component’-switches with-
out having to enumerate an exponential number of config-
urations, therefore modeling limited dependencies between
components efficiently.

Resulting Algorithm: Variational BOLT

The resulting algorithm, which we call Variational BOLT,
operates in temporal mini-batches of a fixed time-horizon h,
i.e. the data is sequentially fed into the neural network and
model parameters Θ and W are updated before a new mini-
batch of data is processed. This process is repeated until con-
vergence. Algorithm 1 explains the process in pseudo-code.

The resulting algorithm has similarities to Variational Au-
toencoders (VAE) as well as Expectation Maximization,
specifically the Baum-Welch algorithm. Like VAE, an ef-
ficient auxiliary recognition distribution is trained to predict
the parameters of the latent distribution. However, the aux-
iliary distribution is solely used to speed up computations
of the filtering recursion. Unlike VAE and like EM, instead

Algorithm 1: Variational BOLT in pseudo-code
input : Dataset X of size T ×N
output: Trained model parameters W and Θ

1 Initialize W by clustering and Θ randomly;
2 while not converged do
3 t ← 0;
4 σ0 ← �0;
5 while t < T do
6 for t′ ∈ t : t+ h do
7 Neural Network forward pass;
8 σt′ = fΘ(X[1 : t′, :]);
9 for z ∈ Z do

10 Compute p̂(x1:t′ , z) based on (6);
11 for z ∈ Z do
12 Compute p̂(z|x1:t′) based on (3);
13 σ∗t′ ← Ep̂(z|x1:t′ )[z];

14 Maximize
∑t+h

t′=t H(σt′ , σ
∗
t′) w.r.t. Θ;

15 Maximize
∑t+h

t′=t EQ[p̂(z, x1:t′)] w.r.t. W ;
16 t ← t+ h;

Figure 3: Topology of the neural network

of approximating intractable expectations by sampling latent
states from the recognition distribution, updates are com-
puted based on a fixed set of possible hidden states.

Experiments

Experiments were conducted on the publicly-available
REDD (Kolter and Johnson 2011) dataset. The dataset con-
tains current and voltage readings at the main distribution
panel with a sampling rate of 16kHz and breaker level power
readings with a sampling frequency of 0.3Hz. The neural
network used to predict q(zt = �1|x1:t) is a 4 layer recur-
rent neural network. The bottom two layers constitute non-
recurrent tanh layers with 200 output units each. The top
two layers are LSTM-layers with sigmoid-activations each
with 100 and 10 output units respectively. This means that 10
components were extracted and maximally 6 out of these 10
inferred components were allowed to be active at any given
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(a) AFAMAP VarBOLT
Circuit (supervised*) (unsupervised)
Microwave 97.5% / 66.1% 88.8% / 8.0%
Bath GFI 82.7% / 70.8% 71.9% / 40.2%
Electronics 41.6% / 0.8% 87.8% / 40.7%
Kitch. Out. 1 37.5% / 12.9% 8.6% / 32.8%
Furnace 91.7% / 70.8% 85.0% / 50.6%
Kitch. Out. 2 . 45.2% / 16.0% 5.3% / 70.1%
Washer/Dryer 98.8% / 73.6% 97.3% / 72.3%

(b) NFHMM VarBOLT
(unsupervised) (unsupervised)

Overall panel 0.25 0.63

Table 1: (a) Performance comparison to AFAMAP, a su-
pervised inference technique paired with an unsupervised
strategy of obtaining ground truth. Performance is mea-
sured in Precision / Recall. (b) Performance comparison
with NFHMM, another end-to-end unsupervised approach,
in GSPA.

time (ε = 6). Figure 3 shows a graphical depiction of the
neural network.
Change points of the aggregate power were detected by an
event detection algorithm: Let p(t) be the aggregate power
at time t. The maximum value of the absolute difference in
the power signal within a window of 5 time steps was ex-
tracted. Every window then casts a vote for the highest ab-
solute power difference. However, only these timestamps for
which |p(t)−p(t−1)| > 50W holds can receive a vote. Ev-
ery time stamp that received more than 3 votes is considered
an event. Then, in order to reduce the number of decision
variables, the mean instantaneous power waveforms in be-
tween events was extracted, and these constitute the set of T
values of xt.
The neural network was then fed xt and δxt = xt−xt−1 and
tasked to explain xt+1 and δxt. In order to speed up conver-
gence, the appliance waveforms W were initialized by the
cluster centroids obtained by applying K-Means to the dif-
ference signal δxt. In the experiments the hyper-parameters
α and β, i.e. the variance of the difference and aggregate
model were kept at 1. The model was trained for 200 iter-
ations. For inference, the filtering distribution probabilities
were simply binarized: z = σ > 0.5.

Results

Since appliances were sub-metered at the circuit level and
some circuits contain multiple appliances, precision and re-
call are used as a metric. “Recall measures what portion of
a given circuits energy is correctly classified, while preci-
sion measures, of the energy assigned to a circuit, how much
truly belonged to that circuit” (Kolter and Jaakkola 2012).
For every pair of inferred component and circuit, precision
and recall were computed and the component resulting in
the highest (prec+ recall)/2 was selected for this circuit.
Note that because we assume z to be binary, we implic-
itly assume appliances to be 2-state, i.e. they can either be

Figure 4: Top: Inferred components as well as circuit level
ground truth. Bottom: An example of ‘over-disaggregation’
of the furnace.

on or off. However, appliances like e.g. a furnace are com-
posed of multiple sub-elements. In that case, the proposed
model ‘over-disaggregates’, i.e. it assigns a component for
every sub-element. An example of ‘over-disaggregation’
can be seen in Figure 4. Furthermore, some appliances
have different power levels according to their operational
state, i.e. a hair-dryer has different heat settings. In this
case, the proposed methods assigns different components for
the same appliances. Note that supervised inference tech-
niques usually do not suffer from these problems. This is
why we expect supervised inference algorithms to outper-
form our approach. Table 1(a) shows a comparison with
AFAMAP (Kolter and Jaakkola 2012). AFAMAP is a super-
vised inference algorithm paired with an unsupervised strat-
egy of obtaining model parameters for the individual HMM
chains. We also compare the performance to a fully unsuper-
vised method based on Non-parametric FHMMs (NFHMM)
proposed in (Jia, Gao, and Spanos 2015) (1(b)). As a per-
formance criterion, they propose GSPA (worst 0 - 1 best).
GSPA does not measure differences in power but rather dif-
ferences between activations, i.e. circuit power traces are bi-
narized and then GSPA measures a weighted ratio between
the intersection and union between binarized ground thruth
and estimates.
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Conclusion & Future Work

We proposed a variational learning algorithm for discrete
Factorial Hidden Markov Models and applied it to the
problem of energy disaggregation. The algorithm compares
promisingly to a supervised inference algorithm that is
paired with an unsupervised approach of obtaining ground
truth. When compared to another end-to-end unsupervised
approach, our proposed method significantly outperforms it.
An implementation in keras (Chollet 2015) can be found
at: https://github.com/INFERLab/varbolt. Once the auxil-
iary distribution is trained, the corresponding neural network
could in principle be deployed to sensing hardware located
at the electrical panel for on-premise real-time inference.
Furthermore, we believe that our proposed method opens
many interesting research paths as there is still much room
for improvement. A possible research path is to combine our
methods with ideas from (Tang and Salakhutdinov 2013).
By sampling candidate hidden configurations, the sparsity
constrains made in Section 3 can, in principle, be relaxed.
This may allow the model to scale up to more components
while keeping computational cost low. Furthermore, the cur-
rent model for the difference signal uses the Euclidean dis-
tance to judge the similarity between component waveforms
and the difference signal, so investigating other similarity
measures could further refine the model since Euclidean dis-
tances might overemphasize differences in power over dif-
ferences in the shape of the waveform.
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