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Abstract
Combinatorial optimisation problems often contain uncer-
tainty that has to be taken into account to produce realistic
solutions. A common way to describe the uncertainty is by
means of scenarios, where each scenario describes different
potential sets of problem parameters based on random dis-
tributions or historical data. While efficient algorithmic tech-
niques exist for specific problem classes such as linear pro-
grams, there are very few approaches that can handle general
Constraint Programming formulations subject to uncertainty.
The goal of my PhD is to develop generic methods for solving
stochastic combinatorial optimisation problems formulated in
a Constraint Programming framework.

Introduction
Machine learning and statistical inference are popular tech-
niques to forecast customer demand, patient flow in health-
care, or travel times. However, to harness the real value of
predictions, one has to understand how to use this informa-
tion to improve decision making. Importantly, predictions
are always subject to a certain confidence level and in or-
der to make realistic decisions, it is thus crucial to take this
inherent uncertainty into account.

The focus of my work is on stochastic optimisation prob-
lems with a combinatorial structure (SCOP), e.g. integer
variables and non-linear constraints. Scenarios are used to
characterise the random variables. Each scenario describes,
with a certain probability, the problem when all the ran-
dom variables are fixed to a specific value. Stochastic prob-
lems are composed of multiple stages, the simplest being
a two-stage problem. The first-stage denotes the problem
before information about the random variables is revealed
and first-stage decisions are taken with respect to all sce-
narios. Second-stage decisions are made once the scenario
parameters are observed. An example is the stochastic fa-
cility location problem, where in the first-stage we have to
decide which facilities to open, such that the demand of all
customers revealed in the second-stage can be satisfied. I
will first introduce a contribution for two-stage problems and
then elaborate how the multistage case relates.

Combinatorial optimisation problems can be formulated
using Mixed Integer (MIP) or Constraint Programming (CP)
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technologies. This abstract only addresses CP, as it is most
relevant for my research. In CP, modelling frameworks that
allow solver agnostic modelling have been developed, e.g.
MiniZinc (Nethercote et al. 2007). Problems described in
MiniZinc can be solved using standard CP or MIP tech-
nology, without tailoring the model for a specific solver.
The idea is to separate modelling and solving, such that a
model can be expressed without understanding the solving
approach used to determine solutions. To solve SCOPs with
standard MIP or CP technology one has to formalise the de-
terministic equivalent (DE), a single model composed of all
scenarios. The goal of my research is to develop algorithms
that can be used to solve scenario-based SCOPs modeled in
a problem independent, high-level modelling language, such
as MiniZinc.

Background
Multiple methods to solve stochastic programs have been
developed in the past (Schultz 2003). The most straight for-
ward method is to formalise the DE and then use standard
solving technology to find solutions. The advantage of the
DE is its generality and ease of use, yet solving the DE
is intractable for all but the smallest problem instances. To
solve more challenging SCOPs various research directions
have been explored, yet a substantial amount of work has
focussed on decomposition algorithms.

Decomposition Methods
An alternative to the DE is to decompose the SCOP, in one of
two ways. The problem can either be relaxed by time stages,
where a master problem describes the first-stage and con-
tains an approximation of the second stage. This is similar to
Benders decomposition and named L-Shaped method in the
context of SCOP. Secondly, the problem can be decomposed
by scenarios. For each scenario, a copy of the first-stage
variables is introduced. To ensure feasibility, additional con-
sistency constraints that enforce the first-stage variables to
agree across all scenarios are added. These consistency con-
straints can be relaxed by breaking up the model into sub-
parts. Progressive hedging (PH) and the dual decomposition
(DD) method are examples that work based on the scenario
decomposition, both are complete for linear problems with
continuous variables, however not for combinatorial prob-
lems (Hemmi, Tack, and Wallace 2017).
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Contributions
This section introduces first work by Ahmed (2013) that pro-
vides the basis for my contribution that is introduced after.

Evaluate & Cut Ahmed (2013) proposes a scenarios de-
composition algorithm for SCOPs with a binary first-stage
that works independently of the second-stage structure. Ev-
ery scenario is modeled as an independent deterministic op-
timization problem - the result of relaxing the consistency
constraints. First, the algorithm solves each scenario inde-
pendently to optimality, yielding a lower bound and a set of
candidates. A candidate is a first-stage variable assignment
that can be evaluated against all scenarios, i.e. the first-stage
assignment of a specific scenario solution. Secondly, each
candidate is evaluated by projecting its variable assignment
onto the first-stage variables of all scenarios and solving
them again. This yields a feasible solution to the SCOP, as
the consistency constraints are satisfied, and an upper bound.
Thirdly, by means of candidate nogoods, the evaluated can-
didates are cut off from the search, by adding a nogood con-
straint to each scenario. Repeating this three steps is guar-
anteed to find the optimal solution and terminate once the
lower bound meets the upper bound, as the first-stage vari-
ables have finite support.

Diving Evaluate & Cut (E&C) can be applied to a wide
range of problems. An optimality gap is provided during the
search and according to Ahmed, early candidate solutions
are likely to be the optimal solution to the SCOP. However,
the time to prove optimality can be long, as each candidate
nogood prunes exactly one complete first-stage assignment.
On top of that, the number of evaluation steps required in
each iteration is quadratic with the number of scenarios. The
scenarios may return distinct candidates that in turn have
to be evaluated against all scenarios. We have proposed a
framework called Diving (Hemmi, Tack, and Wallace 2017),
which generates strong nogoods that prune multiple candi-
dates at once. During diving, the partially converged can-
didates are not evaluated. As a result we avoid the quadratic
evaluation step, while remaining complete (able to proof op-
timality).

After each iteration in E&C the algorithm enters a div-
ing loop with the aim to find partial nogoods. In contrast
to a candidate nogood, a partial nogood cuts off multi-
ple candidates at once. Consider a SCOP with 5 first-stage
variables x1 to x5. A candidate nogood contains all first-
stage variables, e.g. cc = {x1 �= 3 ∨ x2 �= 6 ∨ x3 �=
1 ∨ x4 �= 8 ∨ x5 �= 3}. The added constraint prunes ex-
actly one solution. A nogood composed of only a subset of
first-stage variables would be much stronger. For example,
assume that we can prove that even the partial assignment
x1 = 3 ∧ x2 = 6 ∧ x3 = 1 cannot be completed to an
optimal solution to the SCOP.

During diving, a set of consistency constraints is enforced,
e.g. x1 = 3 ∧ x2 = 6 ∧ x3 = 1. Then, every sce-
nario is solved independently, yielding a temporary lower
bound (with respect to the set of consistency constraints). If
the temporary lower bound exceeds the upper bound, it is
proven that none of the partially consistent candidates can

be extended to a complete first-stage assignment that is bet-
ter that the incumbent solution. Therefore, a partial nogood
excludes all first-stage assignments that are a superset of the
partial assignment, is added to the scenarios. If the tempo-
rary lower bound remains below the upper bound, an addi-
tional consistency constraint is enforced.

Multistage Oftentimes, SCOPs are composed of multiple
decision stages. Examples of multistage problems are the
management of inventory over multiple weeks with uncer-
tain customer demands, or production planning over a long
time horizon with uncertain processing times or due dates.
A multistage SCOP can be seen as a sequence of two-stage
SCOPS. A first-stage decision is made with respect to all fu-
ture decisions and scenarios. Thereafter, in the second-stage,
a set of decisions that compensates for the first-stage choices
is made (as in the two-stage case), yet an additional set of
decisions is taken with respect to the proceeding stages. We
have shown how to develop a complete recursive algorithm
for multistage SCOPs on the basic principles of E&C; obtain
and evaluate candidates, then prune solutions (Hemmi, Tack,
and Wallace 2018). The recursive algorithm uses bounds in
a clever way and remembers candidates with their respective
objective value, to speedup the search.

I am the primary author of the mentioned contributions,
however I would like to acknowledge and thank my super-
visors Guido Tack and Mark Wallace for their guidance and
mentorship.

Conclusion
We have introduced diving and shown a substantial perfor-
mance improvement compared to E&C for the two-stage
case. Furthermore, we have shown how to develop a pow-
erful method to solve multistage SCOPs based on the prin-
ciples of E&C.

To strengthen the diving procedure, various diving heuris-
tics can be implemented. Preliminary results have indicated
increased efficiency. Furthermore, it would be interesting to
explore whether E&C could be improved using logic based
benders cuts.
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