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Abstract

Worldwide, conservation agencies employ rangers to protect
conservation areas from poachers. However, agencies lack the
manpower to have rangers effectively patrol these vast areas
frequently. While past work has modeled poachers behavior
so as to aid rangers in planning future patrols, those models
predictions were not validated by extensive field tests. In my
thesis, I present a spatio-temporal model that predicts poach-
ing threat levels and results from a five-month field test in
Ugandas Queen Elizabeth Protected Area (QEPA). To my
knowledge, this is the first time that a predictive model has
been evaluated through such an extensive field test in this
domain. These field test will be extended to another park in
Uganda, Murchison Fall Protected Area, shortly. Main goals
of my thesis are to develop the best performing model in
terms of speed and accuracy and use such model to generate
efficient and feasible patrol routes for the park rangers.

Introduction

Wildlife poaching continues to be a global problem as key
species are hunted toward extinction. For example, the latest
African census showed a 30% decline in elephant popula-
tions between 2007 and 2014 (Chase et al. 2016). Wildlife
conservation areas have been established to protect these
species from poachers, and these areas are protected by park
rangers. These areas are vast, and rangers do not have suffi-
cient resources to patrol everywhere intensively.

At many sites now, rangers patrol and collect data related
to snares they confiscate, poachers they arrest, and other ob-
servations. Given rangers’ resource constraints, patrol man-
agers could benefit from tools that analyze these data and
provide future poaching predictions. However, this domain
presents unique challenges. First, this domain’s real-world
data are few, extremely noisy, and incomplete. To illustrate,
one of rangers’ primary patrol goals is to find wire snares,
which are deployed by poachers to catch animals. However,
these snares are usually well-hidden (e.g., in dense grass),
and thus rangers may not find these snares and (incorrectly)
label an area as not having any snares. Second, poaching
activity changes over time, and predictive models must ac-
count for this temporal component. Third, because poach-
ing happens in the real world, there are mutual spatial and
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neighborhood effects that influence poaching activity. Fi-
nally, while field tests are crucial in determining a model’s
efficacy in the world, the difficulties involved in organizing
and executing field tests often precludes them.

Related Works

(Nguyen et al. 2016) introduced a two-layered temporal
Bayesian Network predictive model (CAPTURE) that was
also evaluated on real-world data from QEPA. CAPTURE,
however, assumes one global set of parameters for all of
QEPA which ignores local differences in poachers’ behavior.
While CAPTURE includes temporal elements in its model,
it does not include spatial components and thus cannot cap-
ture neighborhood specific phenomena. In contrast to CAP-
TURE, (Kar et al. 2017) presented a behavior model, IN-
TERCEPT, based on an ensemble of decision trees and was
demonstrated to outperform CAPTURE. While their model
accounted for spatial correlations, it did not include a tem-
poral component. In contrast to these predictive models, our
model addresses both spatial and temporal components.

In game theory literature, learning adversary models has
been mostly done based on simulated games where data is
collected by human subject experiments in the laboratory
(Gholami et al. 2016) rather than real world poachers. It
is vital to validate predictive models in the real world, and
both (Critchlow et al. 2016) and (Kar et al. 2017) have con-
ducted field tests in QEPA. (Kar et al. 2017) conducted a
one month field test in QEPA and demonstrated promising
results for predictive analytics. Unlike the field test we con-
ducted, however, that was a preliminary field test and was
not a controlled experiment. On the other hand, (Critchlow
et al. 2016) conducted a controlled experiment where their
goal, by selecting three areas for rangers to patrol, was to
maximize the number of observations sighted per kilometer
walked by the rangers. Their test successfully demonstrated
a significant increase in illegal activity detection, but they
did not provide comparable evaluation metrics for their pre-
dictive model. Also, our field test was much larger in scale,
involving 27 patrol posts compared to their 9 posts.

Wildlife Crime Dataset

This study’s wildlife crime dataset is from two wildlife con-
servation parks in Uganda. There are several patrol posts sit-
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uated across the parks from which Uganda Wildlife Author-
ity rangers conduct patrols to apprehend poachers, remove
any snares or traps, monitor wildlife, and record signs of il-
legal activity. Along with the amount of patrolling effort in
each area, both datasets contain 14 years (2003-2016) of the
type, location, and date of wildlife crime activities.

Rangers lack the manpower to patrol everywhere all the
time, and thus illegal activity may be undetected in unpa-
trolled areas. Patrolling is an imperfect process, and there
is considerable uncertainty in the dataset’s negative data
points (i.e., areas being labeled as having no illegal activity);
rangers may patrol an area and label it as having no snares
when, in fact, a snare was well-hidden and undetected. These
factors contribute to the dataset’s already large class imbal-
ance. It is thus necessary to consider models that estimate
hidden variables (e.g., whether an area has been attacked).
We divide the parks into 1 square kilometer grid cells, and
we refer to these cells as targets. Each target is associated
with several static geospatial features such as terrain (e.g.,
slope), distance values (e.g., distance to border), and animal
density. Each target is also associated with dynamic features
such as how often an area has been patrolled (i.e., coverage)
and observed illegal activities (e.g., snares).

Completed Steps

Up to the present, we have provided the following contri-
butions. (1) We introduced a new hybrid model that en-
hances an ensemble’s broad predictive power with a spatio-
temporal model’s adaptive capabilities. Because spatio-
temporal models require a lot of data, this model works in
two stages. First, predictions are made with an ensemble
of decision trees. Second, in areas where there are suffi-
cient data, the ensemble’s prediction is boosted via a spatio-
temporal model. (2) In collaboration with the Wildlife Con-
servation Society and the Uganda Wildlife Authority, we
designed and deployed a large, controlled experiment to
QEPA. Across 27 areas we designated across QEPA, rangers
patrolled approximately 452 kilometers over the course of
five months; to our knowledge, this is the largest controlled
experiment and field test of Machine Learning-based pre-
dictive models in this domain. In this experiment, we tested
our model’s selectiveness: is our model able to differenti-
ate between areas of high and low poaching activity? In ex-
perimental results, (1) we demonstrated our model’s supe-
rior performance over the state-of-the-art (Kar et al. 2017)
and thus the importance of spatio-temporal modeling. (2)
During our field test, rangers found over three times more
snaring activity in areas where higher poaching activity is
predicted. When accounting for differences in ranger cover-
age, rangers found twelve times the number of findings per
kilometer walked in those areas. These results demonstrate
that (i) our model is selective in its predictions and (ii) our
model’s superior predictive performance in the laboratory
extends to the real world (Gholami et al. 2017).

Future Works and Progress Schedule

• Develop new problem set-up and a hierarchical model of
ensemble of decision trees which not only handles both

spatial and temporal dimensions of the problem, but also
inherits the fast running time speed of the decision tree
based models. However, MRF based models are able to
take the hidden states (i.e., actual poaching attacks in our
problem) into account but they are relatively slow in train-
ing process. So the main challenge is to develop a hybrid
of decision trees which possess all positive features of ex-
isting best performing models. This step of the project is
in progress and will be definitely completed by February
2018.

• Similar to the experiments conducted in QEPA, we are
planning to conduct field test in Murchison Fall park
to evaluate the selectiveness of our predictive model for
that protected area, as well. This step of the project is in
progress and will be completed by February 2018.

• Build a patrol planning tool to generate detailed patrol
routes for park rangers based on the best performing de-
veloped model and conduct field tests to evaluate them.
This step of the project will be started in February 2018.
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