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Introduction

Motivations and Goal Graphical models provide a pow-
erful framework for reasoning under uncertainty, and an in-
fluence diagram (ID) is a graphical model of a sequential
decision problem that maximizes the total expected utility
of a non-forgetting agent. Relaxing the regular modeling
assumptions, an ID can be flexibly extended to general de-
cision scenarios involving a limited memory agent or multi-
agents. The approach of probabilistic planning with IDs is
expected to gain computational leverage by exploiting the
local structure as well as representational flexibility of influ-
ence diagram frameworks. My research focuses on graph-
ical model inference for IDs and its application to proba-
bilistic planning, targeting online MDP/POMDP planning
as testbeds in the evaluation.

Related Works The computation of the maximum ex-
pected utility (MEU) of IDs involves the sum of utility func-
tions as well as the product of conditional probability func-
tions. Thus, most algorithms for solving IDs use a pair of
probability and utility functions, called a potential, to trace
the partial expected utility while marginalizing or combin-
ing functions (Jensen, Jensen, and Dittmer 1994). Previous
works on search algorithms for solving IDs are depth-first
AND/OR search exploiting the decomposition of graphical
model (Marinescu 2010), and depth-first branch and bound
with a heuristic generated by relaxing the constrained elim-
ination ordering (Yuan, Wu, and Hansen 2010). Although
depth-first search only requires linear memory, the space
complexity for finding the optimal strategy is exponential
in the length of history due to the non-forgetting assump-
tion. Local search algorithms improving a subset of policies
are proposed for IDs with limited memory in (Lauritzen and
Nilsson 2001) and (Mauá and Cozman 2016).

On the other hand, translation based approaches al-
low applying existing inference algorithms to planning.
MPD/POMDPs are translated as a mixture of finite hori-
zon dynamic Bayesian networks and planning is formulated
as likelihood maximization in (Toussaint, Harmeling, and
Storkey 2006). Belief propagation algorithms are presented
in (Liu and Ihler 2012) when utilities are multiplicative.
A generic translation scheme between MEU and marginal
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MAP was shown in (Mauá 2016) , hence any marginal MAP
inference could solve IDs. However, a naive application of
translation often produces larger scope size functions and
larger number of variables.

Online planning considers generating a single action at a
time while interacting with a simulator in the loop of alter-
nating planning and execution phases, hence it avoids expo-
nential complexity for finding optimal decisions for all pos-
sible trajectories. The baseline algorithms and benchmark
problems are available at the previous ICAPS planning com-
petitions.

Current Progress

Generalized Dual Decomposition for IDs Generalized
Dual Decomposition method (GDD) is a generalization of
Lagrangian dual decomposition to Lp space with Hölder’s
inequality (Ping, Liu, and Ihler 2015). I presented a decom-
position based approximate inference algorithm in (Lee, Ih-
ler, and Dechter 2018). In this work, an ID is decomposed
as a join-graph, a graph of clusters of subproblems with
bounded number of variables (Dechter, Kask, and Mateescu
2002), Hence, the space and time complexity is bounded by
the maximum cluster size. Then, the GDD is applied to the
join-graph; equality constraints for the variables shared be-
tween clusters are augmented to the relaxed problem to en-
force local consistency, and non-negative weights for each
variable are distributed to bound MEU by Hölder’s inequal-
ity. To optimize the bound, current implementation employs
a gradient based local search, called GDD-ID. Since the
bound from GDD-ID is formulated under the potential rep-
resentation of IDs, it is free from translation and the bound
can be computed by combining local expected utilities. The
experimental evaluation on random factored MDP/POMDP
instances demonstrated fast convergence to local optima,
and generation of bounds for problem instances that an of-
fline POMDP planner failed because of the large number of
states.

Anytime AND/OR Search AND/OR search space for
graphical model captures problem decomposition by con-
ditioning, and it exhibits exponential improvement from OR
search space (Dechter and Mateescu 2007). In collabora-
tion with Radu Marinescu, I investigated several anytime
AND/OR search algorithms. In (Lee et al. 2016), weighted
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best-first search algorithms were introduced to produce any-
time marginal MAP solutions by inflating heuristic. The
best-first scheme is in favor of expanding less number of
nodes since evaluation of summation node involves high
computational cost. On the other hand, the depth-first
scheme can generate suboptimal solutions faster. Hybrids
of both schemes can produce upper and lower bounds from
each component and empirical evaluation demonstrated the
effectiveness of best+depth-first search algorithms (Mari-
nescu et al. 2017). The AND/OR search space for IDs can
be defined by incorporating expected utilities as the value of
each node. There are four types of nodes: the decision vari-
able OR node for selecting the best action, the decision value
AND node for combining expected utilities of subproblems,
the chance variable AND node for computing the average
expected utility of its children, and the chance value AND
node for also combining expected utilities of subproblems.

Translation of Planning Benchmarks In earlier works,
I presented translation schemes from a subset of PPDDL
to dynamic Bayesian network for probabilistic conformant
planning. Anytime AND/OR search algorithms for marginal
MAP were applied to solve translated instances (Lee, Mari-
nescu, and Dechter 2016). The marginal MAP guarantees
the optimality of the plan in terms of both length and prob-
ability of reaching the goal. However, the translation didn’t
scale up because of the large number of constraints required
to encode frame axioms, mutual exclusivity of actions, etc.
Recently, I also implemented a translation from a subset of
RDDL to grounded IDs to avoid the overhead of aforemen-
tioned constraints.

Research Plan
Short Term Plan My short term plan by Feb. 2018 is to
integrate currently developed components into a single on-
line planner. The basic architecture of the online planner
can be described as follows. At the preparation step, the
planner reads an RDDL planning domain and converts it
to grounded IDs unrolled up to desired time steps. Then,
GDD-ID generates heuristics and suboptimal policies. In
the online planning loop, anytime best+depth-first AND/OR
search traverses the search space until the end of planning
phase and submits the best action; the search restarts after
the execution phase.

There are several issues need to be addressed. The cur-
rent AND/OR search algorithms are guided by static heuris-
tic. Since planning problem requires look-ahead of suffi-
ciently long time horizon, dynamic heuristic is worth being
considered especially for POMDP problems of which the
tree width grows linearly with the length of history. Most
planning problems contain deterministic relations that often
generate huge scope size factors which can’t be even stored
as a discrete table. Therefore, it is desirable to separate de-
terministic constraints and encode them over the join-graph
independently of GDD-ID. Such deterministic information
should be propagated by a stand-alone CP/SAT solver before
addressing the GDD-ID heuristic to prune search space.

Long Term Plan The GDD bound for MEU could be
improved; the local search could discover the global min-

imum or escape local optima more efficiently; and more
importantly, the convex dual of the GDD bound could be
formulated to provide more efficient algorithms with better
theoretical guarantees. The bottleneck of AND/OR search
is evaluation of summation subproblems rooted at chance
nodes, so sampling methods could be integrated to search
and reduce the computational burden as Monte Carlo tree
search. The large scope size factors are unavoidable when
IDs are translated from relational and symbolic languages
like RDDL. Thus, the alternative approach of learning IDs
from data would be also promising, which will generate
compact and scalable models.
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