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Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, NY, USA 14623

den9562@rit.edu

Abstract

The last two decades have seen extraordinary advances in
industrial applications of constraint satisfaction techniques,
while combinatorial problems have been pushed to the side-
lines. We propose a comprehensive analysis of the state of the
art in constraint satisfaction problems when applied to com-
binatorial problems in areas such as graph theory, set theory,
algebra, among others. We believe such a study will provide
us with a deeper understanding about the limitations we still
face in constraint satisfaction problems.

Introduction

In recent years, constraint satisfaction problems (CSPs) have
drawn much attention due to their applications to several ar-
eas of industrial research. This research focus has brought
a torrent of positive results in areas like SAT solvers, sat-
isfiability modulo theories, answer set programming, etc.
These results often rely on the fact that even though deter-
mining the satisfiability of a constraint program is NP-hard,
many industrial applications exhibit constraints that comput-
ers are able to deal with easily. Benchmarks stemming from
these applications often showcase the advantages of the dif-
ferent techniques presented, and seldom are there references
to where these techniques perform poorly. Often times their
worst-case scenarios can be found in combinatorial prob-
lems which are more structured, have more symmetries and
encode deeper questions in discrete mathematics. These
problems fall conveniently outside the common definition
of what an industrial application is, and thus new techniques
are seldom analyzed for these problems. In this sense, the
fact that we have come a long way from determining the
satisfiability problem is NP-complete to solving answer set
programs with thousands of variables can be reinterpreted as
a change of the yardstick used to measure advances.

Neglecting these combinatorial problems has a negative
effect not only in the study of discrete mathematics but in
our true understanding of constraint satisfaction. The lack
of a formal definition of what an industrial application of
CSP is makes it hard to understand exactly what distribu-
tion of CSPs arises from these. In the case of combinato-
rial problems, their definition and structure is much better
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understood, giving us a better benchmark to understand the
behavior of algorithms on a class of problems. This is sup-
ported by a number of results that have used combinatorial
problems to exemplify the limitations of well-known tech-
niques in constraint satisfaction and theorem proving in gen-
eral: Tseitin’s expander graphs (Urquhart 1987), Ramsey
formulas (Krishnamurthy and Moll 1981), and pigeon hole
formulas (Krajı́ček 2001) were used to provide hard cases
for resolution; while pebble games are used to study proof
complexity (Järvisalo et al. 2012) given the well-understood
structure of pebbling formulas.

Background and Definitions

In its more general form, constraint satisfaction problems
(CSPs) consist of a set of variables X each taking values in
a domain D and a set of constraints C involving variables
in X and operations over these variables. For instance, in
Boolean satisfiability problems the domain D takes the form
of {⊥,�} and the constraints are expressed over the opera-
tions ∧, ∨, ¬. In the case of integer linear programs (ILP),
the domain of the variables is the set of integers, and the
constraints are inequalities over the operations of addition
and multiplication.

Many problems can be modeled as CSPs, where differ-
ent encodings offer different advantages and nuisances. The
types of problems for which CSPs have been applicable can
be roughly divided into two categories: industrial applica-
tions and abstract applications. While no formal definition
of these has been given in the literature, one can informally
define industrial applications as those arising from prac-
tical applications like circuit design and hardware check-
ing, whereas abstract applications correspond to CSPs aris-
ing from problems in discrete mathematics. The work by
Ansótegui et. al (Ansótegui, Bonet, and Levy 2009) shows
a structural characterization of industrial SAT instances by
looking at the bi-partite graph representing the relationships
between clauses and variables.

Preliminary Result on Boolean Formulas

Since my goal is to study the applications of state-of-the-art
techniques in CSPs to combinatorial problems, it is natural
to start by looking at the SAT problem and its variations.
Within this domain, my strategy is to understand what are
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the key concepts and techniques and how they can be ap-
plied to combinatorial problems. The next two subsections
summarize preliminary work that follows these two lines of
research.

Backbones and Backdoors in Satisfiability

Backbones and backdoors have been identified as hidden
structures that are related to the hardness of SAT instances
(Williams, Gomes, and Selman 2003). Given that our hy-
pothesis is that combinatorial problems provide hard in-
stances of SAT problems, we wish to study these structures
closely and determine the role they play in the instances we
are interested in. In (Hemaspaandra and Narváez 2017a) we
looked at a separation in the complexity of finding a back-
bone versus that of finding the value to which that backbone
must be set in order to find a satisfying assignment. This
separation is true under the widely-believed assumption that
P �= NP ∩ coNP. As a continuation of this work (Hemas-
paandra and Narváez 2017b), we prove, under the assump-
tion that P �= NP, the existence of easily-recognizable sets
of Boolean formulas for which it is hard to tell if they have a
backbone, and easily-recognizable families of formulas for
which it is easy to find a backdoor but the problem of de-
termining the satisfiability of a formula in these sets is still
NP-complete.

The ALLSAT Problem for Ramsey Colorings

We say that a graph F arrows the pair of graphs (G,H)
(written F → (G,H)) when every 2-coloring of the edges
of F contains a monochromatic G in the first color or a
monochromatic H in the second color. This can be modeled
as a Boolean formula where the variables correspond to the
edges of F and the clauses are of the form e1∨e2∨. . . ek for
every subgraph isomorphism from G to F and e1∨e2∨. . . ek
for every subgraph isomorphism from H to F . If the result-
ing formula is not satisfiable, then F → (G,H). If F does
not arrow the pair (G,H), then every model of the formula
represents a 2-coloring of the edges of F witnessing the fact
that F �→ (G,H). Generating complete sets of witnesses
for the arrowing property is an important building block in
computational Ramsey theory.

In (Narváez 2018) I study the effect of symmetry breaking
techniques in ALLSAT problems encoding the negation of
the arrowing property. Specifically, I look at the use of the
popular Shatter (Aloul, Sakallah, and Markov 2006) tool
for symmetry breaking for formulas generated from this en-
coding. Through this study, I was able to pinpoint two issues
of using Shatter for ALLSAT. The first one is a blow-up
in the number of models of the resulting formula after sym-
metry breaking. The second one is related to properties that
exist in the combinatorial domain that are not carried over
by the encoding and are thus not accessible to Shatter,
resulting in incomplete sets of colorings generated from the
formula with symmetry breaking.

Research Plan

In the immediate future, I expect to shift my attention to
using QBF solvers to model the problem of equivalence

of nondeterministic finite automata (NFAs), for educational
purposes. While it is known that it is possible to encode
NFA equivalence as a QBF problem, we are not aware of
any implementation that links this to teaching automata the-
ory. Before AAAI-18 I expect to fill this gap by prototyping
an integration between QBF solvers and some of the most
common tools used to teach computing theory.

Moving forward, I expect to connect the theoretical work
made on backbones and backdoors with specific combinato-
rial problems, e.g., by showing that, under that measure of
hardness, Boolean formulas arising from encodings of cer-
tain combinatorial problems are provably hard.

I am interested in exploring other paradigms of constraint
satisfaction, namely Answer Set Programming and Satisfia-
bility Modulo Theories, which are two paradigms that have
shown great progress in later years. Nevertheless, the wide
array of constraint satisfaction paradigms and the inclusions
between them (for example, Boolean formulas can be con-
sidered a special case of ASP which in turn is a special
case of SMT) pose an interesting question for combinatorial
problems: given a combinatorial problem, at which point
does the power of a generalization of the current paradigm
provides no advantage to solving this problem? This is an
interesting question to address since it will shed light on the
research done on these combinatorial problems as well as
help understand the powers and limitations of the different
paradigms in constraint satisfaction.

Acknowledgments

The author would like to thank the anonymous reviewers of
AAAI-18 for their valuable comments.

References
Aloul, F. A.; Sakallah, K. A.; and Markov, I. L. 2006. Efficient
symmetry breaking for boolean satisfiability. IEEE Transactions
on Computers 55(5):549–558.
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