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The Benefits Hiding in Electrical Data

Machine learning applications to electrical time series data
will have wide-ranging impacts in the near future. Electric-
ity disaggregation holds the promise of reducing billions of
dollars of electrical waste every year. In the power grid, auto-
matic classification of disturbance events detected by phasor
measurement units could prevent cascading blackouts be-
fore they occur. Additional applications include better mar-
ket segmentation by utility companies, improved design of
appliances, and reliable incorporation of renewable energy
resources into the power grid. However, existing machine
learning methods remain unimplemented in the real world
because of limiting assumptions that hinder performance.

My research contributions are summarized as follows: In
electricity disaggregation, I introduced the first label correc-
tion approach for supervised training samples. For unsuper-
vised disaggregation, I introduced event detection that does
not require parameter tuning and appliance discovery that
makes no assumptions on appliance types. These improve-
ments produce better accuracy, faster computation, and more
scalability than any previously introduced method and can
be applied to natural gas disaggregation, water disaggrega-
tion, and other source separation domains. My current work
challenges long-held assumptions in time series shapelets, a
classification tool with applicability in electrical time series
and dozens of additional domains.

Electricity Disaggregation

Electricity disaggregation identifies individual appliances
from one or more aggregate data streams. By inexpensively
collecting and reporting individual appliance power con-
sumption to consumers, disaggregation has the potential to
reduce billions of dollars of annual waste. Such data could
also be fed into an automated system that could turn off un-
used appliances or shift their operation to a later time.

Label Correction for Supervised Disaggregation

Supervised learning methods first train on appliance samples
recorded in isolation. Afterwards these methods can then
identify appliances that are operating simultaneously while
being recorded by a single smart meter. However, existing
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approaches assume error-free labels in training data, an un-
realistic assumption for data labeled by naı̈ve consumers.
In (Valovage and Gini 2016), I introduced the first method
to automatically correct labels in consumer-labeled training
samples, enabling realistic application of supervised meth-
ods to a single house. I improved this method in (Valovage
and Gini 2017) to use a parameter-free model, making it
scalable to millions of homes. While these improvements
overcome limiting assumptions, supervised learning still re-
quires hours of work by consumers to meticulously label in-
dividual appliance samples. To enable a system that requires
no consumer setup, unsupervised learning is required.

Unsupervised Electricity Disaggregation

It is more challenging for unsupervised learning methods
to accurately identify appliances since they lack training
samples and must be able to identify a wide range of ap-
pliances. Unsupervised disaggregation requires two distinct
steps. First, during event detection, the aggregate power data
stream is segmented into significant events that represent a
state change in one or more appliances. Second, appliance
discovery reconstructs appliances from these events. Exist-
ing methods for both of these steps have their own short-
comings that limit real-world deployment, detailed below.

Parameter-Free Event Detection: Previously introduced
event detection methods depend on parameters optimized
for a single appliance or dataset, limiting scalability to mil-
lions of buildings. In (Valovage and Gini 2017), I introduced
the first event detection method that does not require pa-
rameter tuning using a modified version of Bayesian change
detection. Tests on 2 publicly available datasets containing
7 different houses showed Bayesian change detection per-
formed on par with or better than existing state-of-the-art
event detection methods without the need to tune parame-
ters, making it scalable to millions of homes. Furthermore,
my modifications to Bayesian change detection reduced its
space and time complexity from O(n2) to O(n), enabling it
to run in real-time on inexpensive hardware.

Model-Free Iterative Appliance Discovery: Following
event detection, events must be recombined into their re-
spective appliances. Doing this with no previous assump-
tions is challenging since appliances can operate for differ-
ent amounts of time and often overlap in operation. In addi-
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tion, while simple appliances consistently generate the same
power signatures, more complex appliances produce a dif-
ferent signature every time they are operated.

To overcome limitations of existing methods, in (Valo-
vage, Shekhawat, and Gini 2018) I introduce iterative ap-
pliance discovery, an algorithm built around the concept of
identifying the simplest appliances first. Once the simplest
appliances have been identified, events associated with them
are marked so they are not included in subsequent searches
for more complex appliances. By iteratively reducing the
search space, iterative discovery has the unprecedented abil-
ity to discover complex appliances other methods cannot.

Work in Progress: Time Series Shapelets
Shapelets are small subsequences of time series that can be
used for fast, accurate classification of unlabeled time se-
ries (see figure). Electrical applications of shapelets include
electricity disaggregation (Patri et al. 2014) and classifica-
tion of phasor measurement unit disturbance data (Biswal et
al. 2016). However, the accuracy of a shapelet during classi-
fication relies solely on its distance from a tested sample, and
existing approaches are limited by long-held assumptions.

Shapelets: To Normalize or Not To Normalize

Z-normalizing data prior to calculating distance has been ac-
cepted as a necessary step in all previous shapelet research.
Z-normalization is intended to capture variation in scale and
offset in local time series features. However, initial results on
datasets from dozens of domains show that Z-normalization
actually decreases accuracy more often than it increases it.

Shapelets typically capture a well-defined local feature
from a single class. Z-normalization tends to improve accu-
racy when this feature has low variability and high similarity
between samples from that class. However, rescaling caused
by Z-normalization can also produce better fits to similar
features from other classes. This undesirable side effect can
diminish the classification ability of a shapelet by reducing
(or even eliminating) the distance separation between sam-
ples of different classes.

This is especially true for electrical data. In all 6 electrical
datasets studied, Z-normalization significantly reduced ac-
curacy. In the most extreme case, shapelet classification on
one dataset was 42% using Z-normalized distances, while
using raw distance improved shapelet accuracy to over 81%.

In addition to challenging the assumption that Z-
normalization always improves accuracy, I am exploring the
ability to reliably predict the impact of Z-normalization prior
to learning by using cross-validation on the training data.

Learning Distance Metrics for Shapelets

Euclidean distance is the only distance metric that has been
attempted with shapelets. While this has worked in the past,
deeper analysis of the data shows that different distance met-
rics have the potential to significantly improve the accuracy
of shapelets discovered. I am currently exploring the impact
of alternative distance metrics on the accuracy of discovered
shapelets and with learning distance metrics in the space
specific to a shapelet, enabling higher classification accuracy
through finer-tuned measurements.

Figure 1: Shapelet example from the LargeKitchenAppli-
ances dataset.

Introducing Virtual Shapelets

By definition, a shapelet must be a subsequence of a training
sample in the training data provided. While this limits the
search for shapelet candidates to a finite space, any noise
present in the sample will also be present in the shapelet.

I am exploring a new structure called virtual shapelets.
A virtual shapelet is a short time series that can be used
in classification the same way a shapelet can, but a virtual
shapelet does not have to exist in the training data. Instead, a
virtual shapelet can be built from multiple similar shapelets
and can better represent a locally discriminative feature.

Virtual shapelets will remove the dependency on a single
training sample. By doing so, virtual shapelets will be more
robust to noise in any given sample and will have the ability
to better capture locally discriminative features. However,
since virtual shapelets live in an infinite space, care must
be given when crafting any algorithm that produces them
to avoid overfitting the training data and ensure the algo-
rithm is robust enough to find virtual shapelets for different
domains. I am currently experimenting with multiple algo-
rithms that have the potential to produce virtual shapelets
that better represent locally discriminative features and pro-
duce higher classifying power.
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