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Abstract

My research addresses the problem faced by a defender who
must screen objects for potential threats that are coming into
a secure area. The particular domain of interest for my work
is the protection of cyber networks from intrusions given the
presence of a strategic adversary. My thesis work allows for
a defender to use game-theoretical methods that randomize
her protection strategy and introduces uncertainty to the ad-
versary that makes it more difficult to attack the defender’s
network successfully.

Introduction

Screening for threats represents a significant security chal-
lenge, whether it is preventing an attack at on an enterprise
network, a sports complex, or interdicting illicit cargo ship-
ping. For computer network security, automated intrusion
detection and prevention systems (IDPS) and security infor-
mation and event management tools (SIEM) are used which
generate alerts that must be investigated by human cyber-
security analysts. These analysts assess whether the alerts
were generated by malicious activity, and if so, how to re-
spond. Unfortunately, these automated systems are notori-
ous for generating high rates of false positives. Expert an-
alysts are in short supply, so organizations face a key chal-
lenge in managing the enormous volume of alerts they re-
ceive using the limited time of analysts. Failing to solve this
problem can render the entire system insecure, e.g., in the
2013 attack on Target, IDPS raised alarms, but they were
missed in the deluge of alerts.

Threat Screening Games (TSGs) (Brown et al. 2016)
have been introduced to model screening domains where the
screener must process a set of people or objects coming into
an secure area, while an adversary tries to sneak in an attack
through screening. The goal of the screener is then to find
the most effective way to allocate the incoming objects to
screening resources while ensuring the capacity constraints
of the resources are met. Although TSGs are broadly appli-
cable, in many real world domains TSGs fail to account for
salient features in problem settings like cyber security. In my
thesis work, I have addressed three of these limitations; (1)
I extend TSGs to model general-sum games, (2) I introduce
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a time component for screening resources to model domains
where screening certain objects takes varying amounts of
time, and (3) I allow for attack methods to show up as dif-
ferent alert types with varying probabilities.

Current Results

Threat Screening Games

A threat screening game (TSG) is a Stackelberg game
played between the screener (leader) and an adversary (fol-
lower) in the presence of a set of non-player screenees
that pass through a screening checkpoint operated by the
screener. The defender has a set of screening resources
which are used to screen the incoming objects and must
determine a randomized screening strategy to use. In secu-
rity games the defender can commit to a randomized strat-
egy by computing an optimal mixed strategy q to commit
to. A mixed strategy q for the defender is a commitment
to a probability distribution qP over a set of pure strate-
gies P , where a pure strategy is an integer assignment of
incoming passengers to screening resources. Every mixed
strategy q can be represented compactly by a marginal strat-
egy n, where each entry in the marginal strategy essentially
denotes the expected number of passengers to be screened
by a given resource. Unfortunately, computing the optimal
mixed strategy q is an NP-hard problem in many security
settings due to exponentially many pure strategies and scal-
ing up to handle large problem sizes becomes an issue. In
the security games literature, two approaches are commonly
used to handle scale-up: directly computing marginal strate-
gies (Kiekintveld et al. 2009) and column generation (Jain et
al. 2010). To solve large-scale zero-sum TSGs a marginal-
based approach is employed, and it is shown that such an
approach significantly outperforms the use of column gener-
ation. Hence, my thesis continues to use marginal strategies.

When computing the optimal marginal strategy n the
defender must deal with the issue of implementable. A
marginal strategy n is said to be implementable if there
is a corresponding mixed strategy q which implements the
marginal strategy (which is needed for the real world im-
plementation of a strategy). The issue of implementability
in zero-sum TSGs was resolved by using a special condi-
tion on the constraints, called a “bihierarchy”, which can
guarantee when marginals returned for the defender are im-
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plementable. The Marginal-Guided Algorithm (MGA) was
then developed which converts the constraints to a bihierar-
chy and then computes the defender’s marginal strategy.

Addressing Limitations of TSGs

The first contribution in my thesis work concentrated on
solving for a defender’s optimal strategy in general-sum
TSGs (Schlenker et al. 2016). I first show this problem be-
comes NP-hard even when solving for the defender’s opti-
mal strategy in the relaxed marginal space because of the
presence of multiple types of adversaries. To provide a so-
lution method for general-sum TSGs, I develop the GATE
algorithm which is able to solve large-scale problem in-
stances. GATE uses hierarchical adversary type trees to
break a TSG down into smaller, restricted games containing
a subset of the adversary types. These restricted games are
then solved using an efficient branch-and-bound search tree
combined with MGA; the solution information from these
‘child’ nodes are then passed up to the ‘parent’ nodes in the
hierarchical tree where the information provides (i) infeasi-
ble strategy information for pruning, (ii) tighter bounds, and
(iii) branching heuristics which provide faster computation
at the parent nodes. I also provide heuristics based upon the
properties of TSGs that increase the computational speed of
the algorithm for large scale instances.

Cyber-alert Allocation Games (CAGs)

Beyond solving TSGs with general-sum payoffs, another
limitation of TSGs comes from the cyber security domain.
In particular, TSGs fail to model the unique time it may
take a resource to screen an object and that attacks show-
ing up as different alert types and that attacks show up as
probability distributions over alert types. To remedy these
limitations, I introduce the Cyber-alert Allocation Game
model (Schlenker et al. 2017) which incorporates both of
these features when calculating the defender’s optimal strat-
egy. I show this problem to be NP-hard due to each individ-
ual resource having a unique screening time for the different
incoming objects. To solve CAGs, I develop an algorithm
which leverages the “bihierarchy” constraint structure and
a branch-and-bound search to quickly find implementable
marginal strategies for the defender. Further heuristics are
developed by taking advantage of several domain features
that significantly increase the computational speed of the al-
gorithm to solve large scale problems.

Future Work

Alert Allocation

While my current work has addressed three significant limi-
tations of the TSG model, numerous more will emerge when
applying TSGs and CAGs to real world domains that I plan
to address in my future work. For instance, in my work I
assume that the adversary has perfect knowledge of the de-
fender’s strategy. This assumption, however, fails to capture
the reality in many real world domains. Specifically, in cy-
ber defense an adversary attempting to hack a network might
only receive partial observations about how often their at-
tacks are thwarted along with the time it takes the defender

to stop the attack. Another assumption of both the TSG
and CAG models is that the number of incoming passen-
gers/alerts are known a-priori. However, in many domains
these parameters are difficult to know exactly for the de-
fender and not being robust to this uncertainty could lead
to large losses for the defender. Even further, CAGs assume
the time for a cyber analyst to resolve a specific alert type,
T r
a , is known exactly. In reality, this value represents an esti-

mate for the time it takes an analyst to resolve an alert where
the analyst may take more or less time in a specific instance.
In my future work, I plan to incorporate these features into
CAGs to improve it’s applicability in the cyber domain and
beyond.

Deception

A new thrust of my research is in developing game-theoretic
methods for using deception to introduce uncertainty to an
adversary attacking the defender’s network. The defender
is able to deceive the adversary during the adversary’s re-
connaissance phase when he gathers information about the
network by probing all accessible machines. When an ad-
versary is probing machines on the network, the defender is
able to partially control the part of the configuration that an
adversary sees for each machine on the network. By hiding
part of each machine’s configuration, the defender can make
it more difficult for the adversary to determine the best tar-
gets for them to attack. In order to take advantage of the
defender’s asymmetric information advantage we propose a
model which captures the belief state of an adversary and
uses it to lower the expected loss to the defender. At a high-
level, the adversary’s perception about the expected value
for exploiting a machine is based upon the observable con-
figuration they see. This perception is then taken advantage
of to divert the adversary to attack less valuable machines
on the network first. The problem for the defender then is
to determine how best to alter the adversary’s perception of
the game to minimize their expected loss from a potential
attack. The work on this initial model is planned to be com-
pleted before the Doctorial Consortium.
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