
PegasusN: A Scalable and
Versatile Graph Mining System

Ha-Myung Park,1 Chiwan Park,2 U Kang2

1KAIST, 2Seoul National University
hamyung.park@kaist.ac.kr, chiwanpark@snu.ac.kr, ukang@snu.ac.kr

Abstract

How can we find patterns and anomalies in peta-scale graphs?
Even recently proposed graph mining systems fail in process-
ing peta-scale graphs. In this work, we propose PegasusN,
a scalable and versatile graph mining system that runs on
Hadoop and Spark. To handle enormous graphs, PegasusN
provides and seamlessly integrates efficient algorithms for
various graph mining operations: graph structure analyses,
subgraph enumeration, graph generation, and graph visual-
ization. PegasusN quickly processes extra-large graphs that
other systems cannot handle.

Introduction
Graphs are everywhere: friendship networks, the World
Wide Web, knowledge bases, biological networks, etc. Many
machine learning tasks are directly or indirectly related to
graphs; some tasks such as clustering, partitioning, and clas-
sification operate directly on graphs, while others use graph
properties such as degrees, graph patterns, connected com-
ponents, and centralities (Faloutsos, Faloutsos, and Falout-
sos 1999; Kang et al. 2010; 2011; Jung et al. 2017). Mean-
while, with the rapid development of technologies, graphs
that do not fit into the memory are now commonplace: e.g.,
more than one billion Facebook users form a huge friend-
ship network, and trillions of web pages are linked to each
other on the Web.

Several systems have been developed to handle such enor-
mous graphs but they all fail in processing web-scale graphs.
Single machine systems like GraphChi (Kyrola, Blelloch,
and Guestrin 2012) and distributed memory systems like
GraphX (Gonzalez et al. 2014) cannot process graphs ex-
ceeding the external memory space and the distributed mem-
ory space, respectively. Even Pegasus (Kang, Tsourakakis,
and Faloutsos 2009), a MapReduce based system resolv-
ing the space shortage problem, cannot process extra large
graphs because of heavy network and disk I/Os by reading
and shuffling the entire data many times.

In this work, we introduce PegasusN, a scalable and ver-
satile graph mining package that runs on Hadoop and Spark.
To handle enormous graphs, PegasusN provides and seam-
lessly integrates distributed algorithms for the following four
types of operations with various applications (see Figure 1).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Subgraphs

Node
Features

Graph Gra
ph

Graph

PegasusN>

Interactive
Shell

Seed
graph Intermediate

graph Result
graph

Graph
Generation

Graph
Structure
Analyses

D
es
ti
n
a
ti
o
n

Source
Triangle

Degree

T
ri
a
n
g
le

Graph
Visualization

Subgraph
Enumeration

Figure 1: System overview.

Graph structure analyses on a peta-scale graph with
PageRank, radii/diameter, shortest-paths, random walk with
restart, connected components, and label propagation (Park
et al. 2016; 2017). Applications: pattern and anomaly detec-
tion, spectral analysis, personalized recommendation, graph
partitioning, and node importance measurement.
Subgraph enumeration to find all subgraphs of a large
graph that are isomorphic to a pattern graph (Park, Myaeng,
and Kang 2016). Applications: social network analysis, sig-
nificance measurement of motifs, web spam detection, and
community detection.
Peta-scale graph generation of R-MAT, Kronecker, and
Erdős-Rényi random graph (Jeon, Jeon, and Kang 2015).
Applications: simulation for new algorithm, graph model-
ing, and graph sampling/extrapolation.
Graph visualization providing a quick and useful view of
peta-scale graphs (Jeon, Jeon, and Kang 2015).

The codes of PegasusN are available at http://datalab.snu.
ac.kr/pegasusn.

System Overview

PegasusN provides an integrated interactive shell manag-
ing all the functionalities. Graph structure analyses and sub-
graph enumeration enable us to compute various graph fea-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

8214



PegasusN (Spark)

(Proposed)

PegasusN (Hadoop)

(Proposed)
Pegasus Pregelix GraphX PowerGraph Hama Giraph

100

101

102

103

LJ TWT YW CW09 CW12

R
u

n
n

in
g

 t
im

e
 (

m
in

.)

PageRank

100

101

102

103

LJ TWT YW CW09

R
u

n
n

in
g

 t
im

e
 (

m
in

.)

Connected Components

100

101

102

103

LJ TWT YW CW09 CW12

R
u

n
n

in
g

 t
im

e
 (

m
in

.)

Triangle

Figure 2: Running times of various systems on three tasks. Missing methods for some datasets mean they failed on the datasets.

tures. Visualization of the distribution and correlation of the
features helps us find patterns and anomalies from the graph,
and model the graph along with the graph generator of Pega-
susN; we verify how well the model represents the original
graph by visualizing the model’s synthetic graphs generated
by the graph generator. Then, the synthetic graphs are re-
garded as samples of the original graph and they are used
for various purposes including graph algorithm testing.

Each module in PegasusN is designed to reduce interme-
diate data and balance workloads for superior performance
in distributed systems. Pre-partitioning – many iterative
graph algorithms require dividing the entire graph into over-
lapping or non-overlapping subgraphs multiple times. In-
stead of generating subgraphs from scratch in every itera-
tion, PegasusN partitions the graph into blocks that do not
share any edges with each other and makes each subgraph by
combining blocks. The blocks are created in consideration
of the sparsity of the graph so that subgraphs are similar in
size, and thus workloads are evenly distributed. By caching
the blocks in memory or on disk once at the beginning, Pe-
gasusN avoids the generation of massive intermediate data
in every iteration. Pruning – in iterative algorithms, data to
process change over time and dwindle rapidly in size. Pe-
gasusN significantly reduces communication cost as well as
computational cost by excluding from the next iteration the
data that will not change in the future.

Performance

Figure 2 shows the running times of PegasusN and existing
graph mining systems on three tasks: PageRank, connected
components, and triangle enumeration. We use a cluster of
20 machines equipped with an Intel Xeon E5-2640v3 and
32GB RAM. We use five real-world graphs summarized in
Table 1. PegasusN is the only one that succeeds in process-
ing CW12, the largest graph used in this experiment.

Conclusion

PegasusN is a scalable graph mining system for Hadoop and
Spark. The system supports four types of graph algorithms
(graph structure analyses, subgraph enumeration, graph gen-
eration, and graph visualization) in a distributed manner. Pe-
gasusN shows the best performance on real world graphs,
processing CW12, the largest graph used in this paper with
6.2 billion nodes and 72 billion edges. PegasusN provides
extremely useful toolsets that are needed by data mining and
machine learning researchers and practitioners.

Table 1: Summary of datasets.
Dataset Nodes Edges Description

CW12 6231126594 71746553402 Webgraph by Lemur Proj. (2009)
CW09 1684876525 7939647897 Webgraph by Lemur Proj. (2012)

YW 720242173 6636600779 Webgraph by Yahoo (2002)
TWT 41652230 1468365182 Follow network in Twitter

LJ 4847571 68993773 Friendship network in LiveJournal

Acknowledgments

This work was supported by Institute for Information &
communications Technology Promotion(IITP) grant funded
by the Korea government(MSIT) (No.R0190-15-2012, High
Performance Big Data Analytics Platform Performance Ac-
celeration Technologies Development). U Kang is the corre-
sponding author.

References
Faloutsos, M.; Faloutsos, P.; and Faloutsos, C. 1999. On power-law
relationships of the internet topology. In SIGCOMM, 251–262.
Gonzalez, J. E.; Xin, R. S.; Dave, A.; Crankshaw, D.; Franklin,
M. J.; and Stoica, I. 2014. Graphx: Graph processing in a dis-
tributed dataflow framework. In OSDI, 599–613.
Jeon, B.; Jeon, I.; and Kang, U. 2015. Tegviz: Distributed tera-
scale graph generation and visualization. In ICDMW, 1620–1623.
Jung, J.; Park, N.; Sael, L.; and Kang, U. 2017. Bepi: Fast
and memory-efficient method for billion-scale random walk with
restart. In SIGMOD, 789–804.
Kang, U.; McGlohon, M.; Akoglu, L.; and Faloutsos, C. 2010.
Patterns on the connected components of terabyte-scale graphs. In
ICDM, 875–880.
Kang, U.; Papadimitriou, S.; Sun, J.; and Tong, H. 2011. Cen-
tralities in large networks: Algorithms and observations. In SDM,
119–130.
Kang, U.; Tsourakakis, C. E.; and Faloutsos, C. 2009. PEGASUS:
A peta-scale graph mining system. In ICDM, 229–238.
Kyrola, A.; Blelloch, G. E.; and Guestrin, C. 2012. Graphchi:
Large-scale graph computation on just a PC. In OSDI, 31–46.
Park, H.; Park, N.; Myaeng, S.; and Kang, U. 2016. Partition
aware connected component computation in distributed systems.
In ICDM, 420–429.
Park, C.; Park, H.; Yoon, M.; and Kang, U. 2017. PMV: pre-
partitioned generalized matrix-vector multiplication for scalable
graph mining. CoRR abs/1709.09099.
Park, H.; Myaeng, S.; and Kang, U. 2016. PTE: enumerating tril-
lion triangles on distributed systems. In KDD, 1115–1124.

8215


