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Abstract

Revenue forecasting is required by most enterprises for strate-
gic business planning and for providing expected future re-
sults to investors. However, revenue forecasting processes in
most companies are time-consuming and error-prone as they
are performed manually by hundreds of financial analysts. In
this paper, we present a novel machine learning based revenue
forecasting solution that we developed to forecast 100% of
Microsoft’s revenue (around $85 Billion in 2016), and is now
deployed into production as an end-to-end automated and
secure pipeline in Azure. Our solution combines historical
trend and seasonal patterns with additional information, e.g.,
sales pipeline data, within a unified modeling framework. In
this paper, we describe our framework including the features,
method for hyperparameters tuning of ML models using time
series cross-validation, and generation of prediction intervals.
We also describe how we architected an end-to-end secure
and automated revenue forecasting solution on Azure using
Cortana Intelligence Suite. Over consecutive quarters, our
machine learning models have continuously produced fore-
casts with an average accuracy of 98-99 percent for various
divisions within Microsoft’s Finance organization. As a re-
sult, our models have been widely adopted by them and are
now an integral part of Microsoft’s most important forecast-
ing processes, from providing Wall Street guidance to man-
aging global sales performance.

1 Introduction
Revenue forecasting is a key function of any finance or-
ganization in an enterprise. Most companies continuously
need to plan future spending, such as marketing budgets or
employee hiring. Accurate revenue forecasts allow compa-
nies to estimate their future spending ability thereby sig-
nificantly improving their strategic business planning. Ac-
curate revenue forecasts also allow companies to provide
a precise view of their financials to shareholders and con-
vince investors to fund necessary investments. Despite the
importance of the forecasting process, finance organizations
in large enterprises face significant challenges today as the
amount and availability of relevant data has grown exponen-
tially. Most organizations currently manage their forecasts
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using a variety of off-the-shelf packages that rely on basic
statistical analysis. In addition to being error prone, the fore-
casts are biased by human judgment, are time-consuming to
create, and cannot easily incorporate new data streams as
they become available nor easily adapt to changing business
environments.

In this paper, we present our secure and automated rev-
enue forecasting solution developed for Microsoft’s Finance
organization. Our solution generates automated forecasts for
100% of Microsoft revenue across all geographies and prod-
ucts in a few hours, and has implemented security con-
trols needed to protect the high business impact (HBI) data
such as revenue. Owing to the consistent accuracy over the
past few quarters, the machine learning forecasts have been
widely adopted by various Finance teams within Microsoft.

As an overview, we first review classical time series mod-
els in Section 2. We then propose our machine learning
based modeling framework in Section 3 which extends clas-
sical time series models into a generic regression framework
and allows us to easily combine external sources of data
with historical information. We also include details on the
methods we used for tuning of hyperparameters of machine
learning models, selection of best model, and computation
of calibrated confidence intervals. We then provide detail ar-
chitecture of our automated solution using services from the
Cortana Intelligence Suite (e.g., Azure Data Factory, Azure
Machine Learning, etc.) in Section 4. We built this solution
on Azure since it is a scalable and cost-efficient platform for
building and operationalizing data-intensive advanced ana-
lytics workloads. However, since it is a public cloud with
many multi-tenant services, strict controls are required to
ensure the security of sensitive data like revenue. Hence, we
mention the steps taken to meet the corresponding stringent
security standards recommended by our enterprise IT team.
The key contributions of our paper are twofold.

1. We propose a machine learning based modeling frame-
work for time series data that uniquely combines external
data sources like macroeconomic factors, sales pipeline
data, social data, product launches with the historical rev-
enue data to generate accurate long range (multi-quarter
or multi-year) forecasts. This gives more visibility to busi-
ness leaders about their business allowing them to manage
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it better. We also provide a method for computing predic-
tion intervals which provides statistical estimates on the
confidence of the forecast to the financial executives al-
lowing them to better manage the risk.

2. We propose an architecture for running advanced analyt-
ics workloads over highly sensitive enterprise data like
revenue on a public cloud such as Azure. This architec-
ture allows us to build a secure and automated revenue
forecasting solution that can run on desired frequency,
such as daily or weekly, something which is not possible
with manual forecasts. This allows finance executives to
track their likelihood to achieve the quarterly goals within
the quarter, thereby making the forecasts more actionable.
Further, this also reduces the time to generate the fore-
casts to hours as compared to weeks if the forecasts were
generated manually.

2 Related Work

Classical time series forecasting models have been well
studied by researchers in the statistics community for the
past few decades (Winters 1960; Holt 2004; Box et al. 2015).
Many of these methods rely on decomposing the time series
into three primary components:

1. Trend: The long term increase or decrease in the data af-
ter higher frequency patterns and noise are removed.

2. Seasonality: The repeating pattern of a fixed interval that
is seen in the data.

3. Noise: Irregular component in the data.
Some of the popular classical time series forecasting mod-
els include Auto-Regressive Integrated Moving Average
(ARIMA) and Exponential Time Smoothing (ETS). ARIMA
model has three main components, the auto-regressive part
which represents how much past values of a series directly
influence its current value; the integrated part which repre-
sents the order of differencing required to make the time
series stationary over time; and the moving average part
which represents how much inter-period dependence there
is in the noise component of the time series. ETS is an-
other popular time series model which has many specifi-
cations depending on how one chooses to model the trend
and seasonal components, and whether errors are additive
or multiplicative. These classical time series models work
well on capturing historical trends and seasonality. How-
ever, these models have trouble incorporating external in-
formation, which can be key to accurate forecasts. For ex-
ample, it is known that temperature has a strong effect on
electricity demand (Weron 2007) as with a rise in tempera-
ture more people use energy intensive appliances such as air
conditioning units. Day of week can also have an effect as
on weekdays there is higher demand in industrial areas and
lower demand in residential areas compared to the demand
on weekends. These factors are key in producing accurate
energy forecasts to meet energy demand, and therefore it is
essential that they are incorporated into the models.

Leveraging this information in classical time series mod-
els is not trivial. Incorporating external data into ETS mod-
els is particularly difficult. While some researchers have

been able to do it (Athanasopoulos and Hyndman 2008;
Osman, King, and others 2015), it has been at the cost of
forecast-ability and interpret-ability of the models. ARIMA-
based models can accommodate features (Young and White-
head 1977), but most of the existing implementations do not
include any regularization mechanisms, and therefore they
have a strong tendency to overfit on high dimensional data.
For this reason, regression frameworks are appealing as they
allow to easily incorporate external factors. Regression mod-
els like support vector machines (Ruping and Morik 2003;
Kim 2003) and neural networks (Dorffner 1996) have been
applied to time series forecasting in the past. Such models
have also been applied for business forecasting problems
like supply chain demand forecasting (Carbonneau, Lafram-
boise, and Vahidov 2008), energy load forecasting (Chen,
Chang, and others 2004), and to a limited extent for revenue
forecasting (Lin et al. 2013).

Fitting regression models on time series data has addi-
tional concerns which are not relevant to most of the ma-
chine learning applications, e.g., data are not independent.
This causes problems in selecting model hyperparameters,
e.g., regularization parameters α and λ for an elastic net
model (Zou and Hastie 2005). Standard cross-validation
where samples are in some way randomized and divided
into groups for training and testing relies on the assump-
tion that data are independent and identically distributed
(Opsomer, Wang, and Yang 2001). This results in overfit-
ting on dependent data (Hart and Wehrly 1986). As a result,
many new methods for cross-validation in time series have
been developed and evaluated to reduce overfitting (Ar-
lot, Celisse, and others 2010; Bergmeir and Benı́tez 2012;
Bergmeir et al. 2015).

In addition to the accuracy, it is also important to consider
how these machine learning models can be deployed into the
production environment. With an availability of cloud com-
puting (Armbrust et al. 2010), many enterprises have now
started to migrate their existing applications and build new
applications on the cloud. Cloud allows these applications
to be cost-efficient and elastically scale storage and process-
ing without requiring significant upfront hardware invest-
ments. However, with public clouds like Azure and Amazon
Web Services, enterprises need to carefully architect their
solutions in order to avoid the risk of leaking any sensitive
data (Mather, Kumaraswamy, and Latif 2009). In this pa-
per, we describe the security controls that can be followed to
build a secure enterprise application on the public cloud.

3 Revenue Forecasting Models

We now describe a modeling framework that extends time
series forecasting to a generic regression problem.

3.1 Feature Extraction for Time Series Data

The idea at the core of feature extraction for forecasting is
to create predictive features for forecast values using only
information that would have been known at the time of fore-
cast. Different data will be available to forecast the same
data point from different horizons, or lengths of time into
the past from when the forecast was made. This means
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that in order to train a model to forecast data at horizons
h ∈ 1, . . . , H , each time point in the training set will have
features extracted H times; each time using only data known
h time points prior to the time being forecast. For example,
if we desire to forecast the value of a series in 2016-Q4 at
horizon 1, it would be fair to use all data known up to 2016-
Q3. However if we wanted to make the 2016-Q4 forecast at
horizon 2, it would only be fair to use information known up
to 2016-Q2. Including two sets of features for the 2016-Q4
data point, one at horizon 1 and one at horizon 2, allows the
models to make future forecasts at both horizons.

Features Derived from Historical Values As discussed
in the Section 2, traditional statistical methods for time se-
ries forecasting strongly leverage patterns in the historical
values for a time series when creating a model. Our method
builds on this by creating features both from the historical
data, as well as from the forecasts made by other time series
forecasting methods (Gajewar and Bansal 2016). The three
main classes of features derived from historical data are:

1. Core Data: Features characterizing core elements of the
forecast (i.e. time, seasonality, horizon).

2. Forecast Features: Forecasts derived from the classical
methods.

3. Lag Features: Previous data points from the time series.
The Core Data features are simple features and provide in-
formation about the time point that is being forecast, rather
than the values of the data. Forecast features leverage the
previously developed statistical models to inform the ma-
chine learning forecasts. These features are the forecasts
computed using the classical models, e.g. ARIMA or ETS
forecasts, made for the series at time t and horizon h. Param-
eters for the classical models are selected using the method-
ology described in (Hyndman, Khandakar, and others 2007).
Lag features are previous values of the series starting at the
time of forecast (time t− h) and moving backwards. This is
done to both incorporate the most recent information possi-
ble into the forecast, and avoid using data which would be
unknown at the time of forecast. These features allow the
model to find patterns in the data which do not conform to
the structure imposed by the classical models. Finally, the
response variable is simply the value of the series (yt) at
time t. Taken together, these features allow the models to
build on the success of previous models while also poten-
tially discover patterns the previous models do not allow.

Features Derived from External Data One of the advan-
tages of transforming a forecasting problem into a regression
problem is the ease of adding external data. Such data can
become features in the model and existing solutions can be
employed to avoid over-fitting. Much as with the features de-
rived from historical values of the series (Section 3.1), care
must be taken to avoid incorporating information that would
be unknown at the time of forecast into the features set. At
the same time, it may be possible to know a future value of
the series, e.g. in product retail forecasting, the sale price of
the product next month. When data are known in advance
it is possible to incorporate lags relative to the time of fore-
cast, and even create lags representing future values. This

can be advantageous as it provides information temporally
closer to the time of forecast, and therefore, more likely to
be informative to the forecast.

3.2 Modeling with Time Series Cross-Validation

Our modeling framework uses a form of time series cross-
validation based on that described in (Hyndman and Athana-
sopoulos 2014) to avoid overfitting in time series data. This
method, also known as “rolling forecasting origin” valida-
tion, tries to replicate how forecasting would be performed
in practice. The number of validation folds K is chosen for
the time series of length N . In each fold, the training and
validation sets are defined such that:

Tk = {xt|t < N −K + k}
Vk = {xt|N −K + k ≤ t < N −K + k +H}

Where Tk is the training set for fold k ∈ 1, . . . ,K, Vk is the
validation set for fold k, xt is the data corresponding to time
t, and H is the maximum forecast horizon desired. Since our
data have H instances for each time point t, a slight modifi-
cation of this method was required. In the modified form of
cross validation, we define our training and validation sets
such that:

Tk = {xt,h|t < N −K + k;h ∈ 1, . . . , H}
Vk = {xt,h|t = N −K + k + h− 1 for h ∈ 1, . . . , H}
Where xt,h are the data corresponding to time point t as

calculated at horizon h ∈ H .
A concrete example of two folds of cross-validation (Fig-

ure 1) demonstrates how the process works. In the first fold
of cross-validation the training set includes data from 2010-
Q1 to 2010-Q4 and the test set would be the data from 2011-
Q1 at horizon 1, 2011-Q2 at horizon 2, 2011-Q3 at hori-
zon 3, and 2011-Q4 at horizon 4. The next fold of cross-
validation would move one step forward in time and the
training set would contain data from 2010-Q1 to 2011-Q1
while the test set contains 2011-Q2 at horizon 1, 2011-Q3 at
horizon 2, etc.

This cross-validation framework is model agnostic, so any
regression model can employ it for forecasting purposes.
In order to maintain this flexibility, the framework allows a
user to specify multiple models. For the results presented in
this paper, we used an Elastic Net model, a Random Forest
model, a K-Nearest Neighbors (kNN) model, and a Support
Vector Machine (SVM) with a radial kernel. All of these
models have mechanisms to avoid overfitting in high dimen-
sionality data, e.g., regularization in Elastic Net and SVM.
However, when multiple models can be implemented, the
problem of model selection arises. Section 3.3 discusses how
our proposed framework addresses this problem.

3.3 Model Selection Methodology

Our method allows for easy back testing by leveraging the
time series cross-validation used to train the models (Sec-
tion 3.2). For each fold of cross-validation k, we use the
data from cross-validation folds 1, . . . , (k − 1) to select
hyperparameters for the model with the lowest root mean
square error (RMSE). We only use the errors for data whose
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Figure 1: An illustration of how data would be allocated into
training and testing data for two folds of cross-validation. In
the diagram, each of the two groups of boxes represent a
fold of cross-validation. Within each cross-validation fold
each box represents one set of features to be used to make
a forecast, with the box located in the same location in each
fold representing the same set of data. The columns repre-
sent the time point of the forecasts, and the rows represent
the horizon of the forecast.

error would have been known at time of forecast (where
t ≤ N −K + k). We then collect the error for the held out
testing data in fold k using those hyperparameters selected
using the error of the previous folds.

Once these back testing errors are collected, it is possible
to compare model errors on historical data. A “best” model
can be selected using a metric of choice. We have empiri-
cally found best results using a weighted RMSE where the
weight of the error decays exponentially with an increase in
time since present forecast. For a forecast made at time t

wRMSE =

√√√√
t∑

v=N−K+1

H∑
h=1

e2v,h
wv

where

wv ∝ 1

2t−v
and

∑
wv = 1,

where ev,h is the validation error at index v and horizon h
and wv is the weight for the validation data at index v.

3.4 Prediction Interval Generation

Most common methods for prediction interval quantification
rely on the hypothesis that the actual value of a forecast is
the sum of the modeled value and a normally distributed er-
ror term (the noise in the system) (Chatfield 1993). This er-
ror distribution is generally estimated using the in-sample
errors of the model (Hyndman and Athanasopoulos 2014).
However, it is a known phenomenon that prediction inter-
vals for forecasting using this assumption tend to be too nar-
row. For example, one study found that for ETS models, the
the estimated 95% prediction intervals only in fact covered
71−87% of the actual forecasts (Hyndman et al. 2002). This
is likely because this assumption only takes into account er-
ror due to noise in the system, and not other sources of error

such as error in model parameter estimates and changes in
the data from historical norms (Chatfield 1993).

In the traditional method the prediction interval is esti-
mated as a Gaussian distribution with a mean of zero and
a standard deviation equal to the standard deviation of the
residuals around the assumed mean of zero. Our method is
very similar to the first except in one key aspect; the errors
used to approximate the Gaussian distribution are out-of-
sample errors. In most methods, this would be computation-
ally expensive, and this is likely the reason in-sample errors
are used. In our method, we can leverage the back testing er-
rors described in Section 3.3 with almost no additional cost.
This avoids reduction of the prediction interval size due to
over fitting on the in-sample data, and it helps to account for
some of the effect of uncertainty in the model hyperparam-
eters. Additionally, it allows for the computation of predic-
tion intervals on models which would not support them with
in-sample errors, e.g. a kNN forecast with k = 1.

One thing to note is that unlike in classical time series
methods, the prediction interval computed here may not
grow wider at longer horizons. Classical methods use a re-
cursive strategy for long horizon forecasts where forecasts
for earlier time points are used as inputs for later ones. As
a result uncertainty in the model compounds. Here we use
a direct strategy where longer horizon forecasts are not de-
pendent on shorter horizon ones. This means that uncertainty
may or may not grow with time depending on observed pat-
terns in the data.

4 Cloud-based automated and secure

forecasting solution

We have developed an automated solution to generate fore-
casts for 100% of Microsoft’s revenue on Azure using
Cortana Intelligence Suite (CIS) services like Azure Data
Factory (ADF), Azure Machine Learning (AML), Azure
database (Azure DB), PowerBI (an interactive data visual-
ization tool from Microsoft) and ExpressRoute. We provide
the end-to-end solution architecture in Subsection 4.1. Fur-
ther, since most enterprises would consider their revenue
data as highly sensitive, they would require strict security
controls for storing and processing these data using multi-
tenant services on a public cloud. Hence we needed to im-
plement desired security controls as part of the solution ar-
chitecture. We illustrate the security controls for each of the
components in our architecture in Subsection 4.2. Although
we provide a reference architecture on Azure, the security
controls can be generalized to other public clouds.

4.1 Automated Workflow on Azure

The end-to-end revenue forecasting workflow as depicted in
Figure 2, can be divided into four main activities:
(1) Moving historical revenue data from the SQL server
within Microsoft’s corporate network to Azure SQL
database. (2) Generating forecasts by invoking AML-based
web-service. (3) Storing the forecasts back in the Azure DB.
(4) Updating PowerBI dashboard to reflect the most up-to-
date actual and forecasted revenue along with historical fore-
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Figure 2: Revenue Forecasting Solution Architecture.

cast accuracies.The following services from the Cortana In-
telligence Suite were used to build this workflow:

1. Azure Data Factory: ADF is a managed service that al-
lows for orchestration of advanced analytics workflows on
Azure. We used ADF to automate the activities described
above and configured it to run at the required cadence of
the respective forecasts (e.g. weekly, monthly, etc.). The
data management gateway (component 2 in Figure 2) was
also required in this ADF to migrate data from Microsoft’s
corporate network to Azure.

2. Azure SQL Database: We used Azure DB (component
(3)) to store the actual historical data along with machine
learning based forecasts. Specifically, we used temporal
tables to store the data. Using temporal tables allowed us
to automatically archive historical data and only retain the
most recent data in the main table.

3. Azure Machine Learning: The training experiments cor-
responding to the modeling workflow described in Sec-
tion 3 were done in AML. The scoring experiments used
to generate the forecasts were published as REST APIs
(web services). These web services were integrated in
ADF to enable the end-to-end workflow.

4. PowerBI: We created a PowerBI dashboard to visualize
the historical and forecasted data, confidence intervals and
historical forecast accuracy metrics. This dashboard was
automatically updated when either the actual data or the
forecasts in Azure DB were refreshed.

4.2 Security Controls

In this subsection, we provide details on the security con-
trols used in our end-to-end automated workflow for rev-
enue forecasting on Azure. These security controls can be
summarized as below

1. Encryption: Data in transit should be over a secure and
encrypted channel (SSL/TLS etc.). Data at rest should be
encrypted. Any keys used for encryption should be se-
curely managed and regularly rotated to defend against
potential future attacks.

2. Logging and Monitoring: User activity logs should be
continuously captured and monitored for all cloud ser-
vices.

3. Access control: Multi-factor authentication should be
used for logging into production solution. All users should
have minimum required access rights to data sources
and cloud resources. Strong password generators should
be used to generate passwords and no password should
be stored in clear text anywhere. Further, any connec-
tion strings containing sensitive passwords should be en-
crypted.

4. Threat Modeling and Penetration Testing: A detailed
threat model including the solution architecture, attack
surface and data flows should be periodically updated and
reviewed. Penetration testing should be done periodically
or when significant architectural changes are performed.

5. Security Updates: Security updates should be applied
immediately after they are available for any of the com-
ponents in the solution.

6. Incident Response Plan: A detailed incident response
plan including methods for detecting, response, deter-
rence, post-mortem of security events along with roles
and responsibilities of teams should be prepared.

We now describe the security controls used for each of the
components in our pipeline below.
1. On-premise SQL Server: Microsoft’s historical revenue

data resides inside its corporate firewall in an on-premise
SQL Server as indicated by component (1) in the Figure
2. We created a unique service account to access this SQL
Server from our automated solution. This service account
was not shared with any other application and its pass-
word was generated by a strong password generator to
prevent misuse of its credentials.

2. Azure Data Factory: All connection strings configured
in ADF were encrypted and Data Management Gateway
was installed on a Microsoft domain joined virtual ma-
chine (VM) on Azure. ExpressRoute was used to create a
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private connection between this VM and Microsoft’s cor-
porate network. Further, this VM had strict access con-
trols and continuous monitoring to track any misuse.

3. Azure SQL Database: We enabled Transparent Data En-
cryption (TDE) for Azure DB to ensure that all of the data
at rest is encrypted. TDE allowed the database service to
transparently use secret keys to encrypt any data while
storing on the disk and decrypt while retrieving from disk.
Further, we also enabled logging for Azure DB and setup
regular monitoring to detect any malicious user action.

4. Azure Machine Learning: During the execution of an
experiment, AML stores intermediate outputs in Azure
Blob storage. To ensure security of these intermediate
data outputs, we configured AML to use encryption keys
to encrypt and decrypt the data at rest stored in Blob stor-
age. These keys were generated by us and uploaded to
Azure Key Vault, which is a service that helps safeguard
cryptographic keys and secrets used by cloud applications
and services.We also enabled a feature in AML which pre-
vented any user of our AML experiments to share these
experiments with a user outside the company. Finally, we
enabled continuous collection and monitoring of user au-
dit logs.

5. PowerBI: The Power BI tenant used Azure Active Direc-
tory (AAD) for authentication. Further, the Power BI ser-
vice managed an encrypted Azure Blob Storage account
where datasets like the uploaded metadata files (e.g. pbix)
were securely stored.

5 Results

Forecasts for 100% of Microsoft’s revenue were generated
using the previously described framework and shared with
Microsoft’s Finance Team for the last four quarters. Fore-
casts were created for about 30 individual products which
make up the three segments which are reported to Wall
Street. These segments are 1) Intelligent Cloud, which in-
cludes a portfolio of server products, Azure and Enterprise
Services, 2) Productivity and Business Processes, which is
comprised of commercial and consumer Office, and Dy-
namics, and 3) More Personal Computing, which includes
Windows, Devices, and Search. These time series represent
a wide variety of properties ranging from slowly evolving
contract-based series to highly dynamic consumer products.

5.1 Forecast Accuracy

In order to compare the forecasts at higher granularity, the
mean absolute scaled error (MASE) statistic (Hyndman and
Koehler 2006) was computed for each product. The MASE
is defined as:

MASE =
1
H

∑N+H
t=N+1 |et|

1
N−s

∑N
t=s+1 |yt − yt−s|

,

where s is the seasonality of the data. The denominator
of the MASE computes the in-sample mean absolute error
(MAE) for the seasonal naive model, which is generally con-
sidered to be a good reference forecast. The numerator com-
putes the out-of-sample MAE for the forecasting method.

Figure 3: Barplot comparing the MASE value for ML and
manual forecasts in all three External Segments computed
over the last four quarters.

MASE is the preferred metric for forecast accuracy as it
is independent of data scale and helps to normalize across
time series forecasting difficulty, making comparing fore-
cast results easier. It has an additional benefit in our data as
it makes it possible to quantitatively report errors without
disclosing highly sensitive data.

Approximately 70% of the time the machine learning
forecasts were more accurate at the segment level than the
manual forecasts, which are those computed by traditional
methods. Additionally the MASE showed an overall im-
provement in all three segment level forecasts when com-
puted across the four quarters (Figure 3).

Figure 4 compares the error distributions of the ML and
manual forecast MASEs at the product level using a density
plots for the errors. ML errors for More Personal Comput-
ing and Intelligent Cloud both peak at a lower value and
skew more to the left, indicating more accurate forecasts.
In particular, Intelligent Cloud shows a much greater skew
towards lower forecast errors. The MASE density for Pro-
ductivity and Business Processes peaks at a similar value for
both manual and machine learning forecasts, however, the
machine learning forecasts have a much higher density at
the lower values, indicating higher accuracy.

5.2 Prediction Interval Accuracy

In order to fully leverage the power of machine learning
forecasts, it is important to have prediction intervals that
the Finance team can use to quantify the risk in the fore-
casts. However none of the machine learning methods used
for forecasting have prediction interval methods available as
an intrinsic part of the model. Our pipeline creates predic-
tion intervals using back testing of the models (Section 3.4)
to create an error distribution based on out-of-sample errors.

Prediction intervals were evaluated by computing the
quantile of the predicted error distribution for the actual rev-
enue value for each of the forecasts created in each quarter.
If the prediction intervals accurately reflect the actual error
distribution, we would expect the distribution of quantile er-
rors to be uniform on the interval of [0, 1]. Put more simply,
we would expect 10% of the errors to be in the bottom 10%

7662



Figure 4: Density plots for the product breakdown MASEs for each of the External Segments. For both More Personal Com-
puting and Intelligent Cloud the ML forecasts are skewed more tightly to the low end of the graph, indicating lower errors.

of the distribution, 20% in the bottom 20%, etc. The distri-
bution of error quantiles can easily be visualized by plotting
a CDF of forecast error quantiles similar in concept to a Q-Q
plot. The ideal distribution would be a line through the origin
with a slope of 1. Since it is important that accurate predic-
tion intervals are created for all machine learning methods
evaluated, error distributions were evaluated for all forecasts
made by each method, not only for the “best” forecasts (Fig-
ure 5). While there was some deviation from the expected
distribution in the tails of the distribution, the errors closely
followed the expected distribution, indicating the pipeline’s
prediction intervals characterize the error distribution well.

Together these data show our framework’s ability to lever-
age both regression modeling and classical methods to pro-
duce accurate forecasts and calibrated prediction intervals.

6 Discussion

Our revenue forecasting solution described in this paper has
evolved over the period of two years wherein we ran sev-
eral experiments to fine tune the models and cater the re-
quirements of Finance team, worked with IT team to ensure
security of the HBI data in the cloud, developed automated
pipelines, and created dashboards. The core team consisted
of four data scientists and one program manager, and had
help from IT team for production support.

Our fully automated pipeline has been used to securely
provide revenue forecasts for Microsoft’s Finance team for
the past four quarters. The proven track record of high accu-
racy combined with the fast turnaround time of the forecasts
has led to a wide spread adoption throughout the Finance
organization. Unbiased, automated forecasts in an easily di-
gestible format (i.e. Power BI dashboard) provided the Fi-
nance team a powerful tool to improve their own forecast
accuracy. In particular, the prediction intervals have proven
useful to the team as these intervals allow them to estimate
the risk in these forecasts. Additionally, since the framework
is generic, with minor adaption it can be applied to other
companies or even other types of forecasting problems.

Our work has some limitations. While the framework has
been tested on a wide variety of Microsoft’s financial data,

Figure 5: CDF plot for the error quantiles of the actual rev-
enue for the last 2 quarters based on the forecast prediction
interval. Prediction intervals were not produced for the ear-
lier forecasts. The red dashed line represents the ideal uni-
form distribution of error quantiles. Data for all four ma-
chine learning methods evaluated fall very near this line.

these time series extend back at most 10 years. It is possible
there may be some computational challenges to overcome
for longer time series. These problems can likely be solved
by reducing the search space for the univariate models used
as features and limiting the machine learning methods to
those that are computationally more efficient. Additionally,
when the data are very short (i.e. less than 3 seasons), there
may not be enough historical data to generate time series
features and validate models. However, many of the frame-
work elements can still be used on such short time series. For
example, the methods for creating univariate forecast fea-
tures (Section 3.1) can be used to create historical forecasts,
which can then be used by the methods for model selection
(Section 3.3) and prediction interval generation (Section 3.2)
to create forecasts on these short data.

The success of this solution has generated high demand
for expanded pipeline features. These forecasts can provide
a starting point for the manual forecasts to build on, making
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the manual process less labor intensive. One work already
in progress is the creation of updateable in-quarter forecasts,
which will allow the Finance team to evaluate whether they
are likely to hit their targets. Since manual forecasts are la-
bor intensive, high quality in-quarter forecasts are not avail-
able, but automated forecasts can easily fill this gap.

7 Conclusion

The secure, automated revenue forecasting pipeline de-
scribed in this paper shows a strong track record of high
accuracy and proven value in a high business impact appli-
cation. This work creates a general platform which can be
deployed for many forecasting applications.
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