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Abstract

Learning analytics applies data analysis techniques to learn-
ing data in order to support students’ learning processes and
to improve the quality of education. Despite the increasing
attention to learning analytics for higher education, it has not
been fully addressed in primary and preschool education. In
this research, we apply learning analytics to preschool educa-
tion to predict the continuation of learning of preschool chil-
dren. Based on our hypothesis that temporal patterns in the
assessment scores of development tests are effective features
for prediction, we extract the temporal patterns using time-
series clustering, and use them as the features of prediction
models. The experimental results using a real preschool edu-
cation dataset show that the use of the temporal patterns im-
proves the predictive accuracy of future continuation of study.

Introduction

Learning analytics applies data science technologies to edu-
cation in order to support learners and educators to improve
learning effectiveness and to obtain insights for better educa-
tion. Typical analyses include predicting future performance
of learning, identifying learners who have problems, and
making recommendations of appropriate materials to learn-
ers, based on various kinds of data such as learning time,
teaching materials, and performance scores. In recent years,
the growing adoptions of information technologies to edu-
cational fields including on-line education such as MOOCs
have accelerated collection of large amount of data associ-
ated with learning, and learning analytics has been actively
carried out, mainly in higher education (Siemens and Long
2011).

Despite the wide applications of learning analytics in
higher education, learning analytics for early childhood ed-
ucation and primary education has not been addressed thor-
oughly. A part of the reason is that evaluation metrics such as
learning time and examination scores cannot be interpreted
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Figure 1: Time-series data of the development test results of
a particular child.

in the same way as those in higher education. For example,
it is often difficult for children to take written exams, and
interventions by parents or teachers are necessary to con-
duct exams and to measure the ability of children, and there-
fore evaluation metrics are often affected by their subjective
judgments. In addition, lectures using the Internet and com-
puters are not performed very often in early childhood edu-
cation and primary education, and therefore the number of
collectable types of data and the amount of data are limited,
which makes application of learning analytics difficult. Fur-
thermore, when we consider dropout prediction, which is of
great interest in learning analytics in higher education, the
meaning of “dropout” is different in early childhood educa-
tion and primary education, because decisions on whether or
not a child will continue learning does not depend only on
the child herself, and it is usually her parents who observe
the motivation of children and make judgments on whether
or not the continuation is worthwhile.
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Motivated by the above concerns, in this research, we an-
alyze the learning data of preschool children and attempt
predictive modeling of continuation of learning, which cor-
responds to the dropout prediction problem in higher edu-
cation. Our dataset provided by Shichida Educational Insti-
tute includes the time series data of development test results
(Fig. 1), which we expect are useful information for predic-
tion. However, the results of the development tests are sub-
jective evaluations by parents, and therefore are noisy and
biased. To cope with the noisy and biased subjective data,
we apply time-series clustering to extract robust temporal
patterns of the evaluation scores, and include them as fea-
tures in our prediction model.

In our experiments, we use logistic regression to predict
whether each child will continue to learn after two years
of age from the data of zero to two years of age children.
The predictive performance is evaluated in terms of the area
under the curve (AUC). The result using the temporal pat-
terns is 0.8001 at the maximum, which outperforms the re-
sult without temporal patterns that is 0.7549. Another exper-
iment using data from two to four years of age for children
to predict whether the child will continue to learn after four
years of age also shows similar results; the AUC is 0.8421
for the model using temporal patterns, and it is 0.8093 for
the one without temporal patterns. Our results indicate the
temporal patterns of the scores of development tests are use-
ful for predicting the continuation of learning.

Related work

One of the main objectives of learning analytics is to predict
poor performers and dropouts and to make early and effec-
tive interventions. Machine learning and statistical methods
are used to find such students who need help.

Tamhane et al. (2014) made predictions of poor grades
at Grade 8 using logistic regression, and showed long term
grade information from Grade 1 to Grade 7 were effective
for prediction. Aguiar et al. (2015) predicted dropouts and
their timings for students of grades from 6 to 12, in which the
prediction models predict whether or not a particular student
dropouts at the end of each grade. Lakkaraju et al. (2015)
developed a framework for predicting students leaving high
school, where various machine learning methods such as
random forest and logistic regression can be compared, and
important features for prediction are visualized. They used
data including class absences, late-arrival rate, economic sit-
uations as well as GPA scores. Vihavainen, Luukkainen, and
Kurhila (2013) predicted poor performance in a university
programming lecture based on behaviors of writing codes.
Predictive features such as the amount of time required for
coding or correction and edit distance of the codes before
and after the modification were extracted from the modifi-
cation history of the codes. He et al. (2015) applied logistic
regression to prediction of learners who would not complete
MOOC courses. Hlosta, Zdrahal, and Zendulka (2017) pre-
dicted whether or not a learner who had not yet submitted an
assignment would submit the assignment by the final dead-
line based on the information of other learners who had al-
ready submitted the assignment.

Most of the existing studies target secondary education,
higher education, and MOOC; however, the effectiveness of
learning analytics and predictive modeling in primary and
preschool education has not been fully investigated yet.

Problem settings

In this research, we analyze a dataset of preschool children
to obtain a prediction model of their learning continuation.
Our dataset is provided by Shichida Educational Institute
consisting of the results of development tests, where each
result is associated with the time stamp of the test being per-
formed (Fig. 1). We divide the dataset into two parts at a
particular point of time, that are, the ones before and after
the time point, respectively. We predict learning continua-
tion based on the first part (the dataset available before the
time point). We define the learning continuation of a partic-
ular child as the existence of data of the child after the time
point. For each child, we give a feature vector x using data
before the time point and a label y ∈ {+1,−1} that indi-
cates whether the child continues learning (+1) or not (−1).
Our goal is to obtain a prediction model that predicts y given
x.

Methods

The important issue in predictive modeling of continuation
of learning is how to design the feature vector x for a child.
For this purpose, we use both the personal information of the
child and the temporal patterns in his/her results of develop-
ment tests. We use time-series clustering to extract the tem-
poral patterns from data, and construct features indicating if
each pattern is observed in the results of the development
tests, based on the assumption that children who show sim-
ilar temporal patterns in their development test results tend
to have similar tendencies in continuation of learning.

Design of feature vectors using temporal patterns

Two kinds of information is available for each child; one
is static information like the date of birth of the child, and
the other is time-series information like the results of de-
velopment tests. The static information is easily included
in the features with some appropriate coding and scaling.
However, the time-series information cannot be included as
it is, since they are sometimes noisy and biased as in our
present case; our time-series data includes subjective eval-
uations by parents. Therefore, we extract temporal patterns
from the time-series data using time-series clustering. Sup-
pose the clustering results in K clusters, we create K corre-
sponding features; each of them indicates whether the child
is included in the corresponding cluster (1) or not (0). This
means that only one of the K features is set to 1.

Hierarchical clustering

In principle, we can use arbitrary clustering methods for
time-series data; we employ hierarchical clustering which
repeats calculation of the distance between all data points
and all clusters and merging two data points or clusters hav-
ing the smallest distance as a new cluster until the number
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of clusters reaches a predetermined number. There are sev-
eral choices in the ways to calculate distances among data
points and clusters; we use the single linkage method, com-
plete linkage method, and group average method.

The single linkage method, or the nearest neighbor
method, takes smallest distance between two data points
from two different clusters C and C ′ as the distance between
the two clusters:

dSL(C,C ′) = min
x∈C,x′∈C′

d(x, x′),

where d is a distance measure between two data points, in
our case, the distance between two time-series sequences.
On the other hand, the complete linkage method, or the fur-
thest neighbor method, takes the greatest distance between
two data points instead of the smallest distance used in the
single linkage method:

dCL(C,C ′) = max
x∈C,x′∈C′

d(x, x′).

The group average method uses the average of the distances
between all pairs of data points from the two clusters:

dGA(C,C ′) =
1

|C||C ′|
∑

x∈C,y∈C′
d(x, x′).

Distance between time series data

In hierarchical clustering, we need a distance measure be-
tween two time-series sequences. A simplest choice would
be the Euclidean distance which regards two time series se-
quences as two vectors and takes the 2-norm of their differ-
ence. The Euclidean distance assumes the two sequences has
the same length; this is not true in our case. Therefore, we
need interpolation to align their lengths, which will be dis-
cussed later in this section. Another option is to use another
distance measure applicable to different-length time series.
The dynamic time warping (DTW) distance (Keogh and
Ratanamahatana 2005) is a typical choice of such distance.
The DTW distance allows distance calculation between
two asynchronous time-series data with different lengths by
shifting the times of the elements in two time series to best
align with each other. The DTW distance dDTW(s, s′) be-
tween two time-series sequences s = (s1, s2, · · · , sn) and
s′ = (s′1, s′2, · · · , s′n′) is efficiently calculated by using
dynamic programming (Berndt and Clifford 1994):

dDTW(s, s′) = γ(n, n′),

γ(i, j) = δ(si, sj) + min

⎧⎨
⎩
γ(i− 1, j − 1)

γ(i− 1, j)

γ(i, j − 1)

,

γ(i, 0) = 0, γ(0, j) = 0.

where δ(·, ·) is the distance between two elements. We use
the Euclidian distance in our experiments.

Interpolation

We need interpolation of time-series data with different
length to use the Euclidian distance. In this research, we use

(a) Extension method (b) Overlap method

Figure 2: Interpolation methods

linear interpolation which interpolates two consecutive ob-
servations with a straight line connecting them. For two data
points (t1, s1), (t2, s2) such that t1 < t2, the data point (t, s)
for arbitrary t1 < t < t2 is given as

s =
(t− t1)s1 + (t1 − t)s0

t2 − t1
.

However, we still cannot give the Euclidian distance be-
tween two time series when the first or last elements of two
time series have different time, for which we try two possi-
ble solutions.

The first solution is to introduce a virtual data point (0, 0)
and extend the interpolation, that is, to set the value of data at
time 0 as 0 when we need to interpolate before the first data
point. When we need to interpolate after the last data point,
we interpolate with the same value of the last data point (See
Figure 2a). We call this solution the extension method

The second solution is to use only the time period in
which two time series overlap. Let the first time point and
the last time point of a time series be t1 and tn, respectively.
Similarly, let those for the other time series be t′1 and t′n′ .
We calculate the Euclidean distance focusing on the time
period between min{t1, t′1} and max{tn, t′n′} (See Fig-
ure 2b). We call this solution the overlap method.

In both the Euclidean distance and the DTW distance, as
the number of data points of the time series increases, their
distance increases. For this reason, we normalize the dis-
tance with the number of data points. In our experiments,
we consider both the normalized distance and the original
distance.

Experiments

Our experiments demonstrate that the temporal patterns in
the development test results improve the prediction accuracy
of learning continuation in two settings: the one for predict-
ing learning continuation after two years of age and the other
for after four years of age. We also interpret several obtained
temporal patterns effective for prediction.

Dataset

Our dataset provided by the Shichida Educational Institute
includes personal information such as children IDs, the num-
bers of children in each family, and the dates of birth. In ad-
dition, it also includes the time series data of the results of
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development tests provided by Shichida Educational Insti-
tute. A development test consists of four subjects: ‘physical
development’, ‘perceptual development’, ‘linguistic devel-
opment’, and ‘development of sociality’. Each subject has
several check items; for example in the physical develop-
ment section, items like “Can hold on to a climbing pole for
5 seconds” and “Can throw a baseball ball for four meters”
(Figure 3) are given.

The parents of a child complete the check items, and the
score for each subject is determined based on the answers.
As mentioned before, there are four categories in the check
items; therefore, four scores are obtained at each time de-
velopment test performed. Most of the check items are ob-
jective; however, since the evaluator is a parent of the child,
there is not a small possibility that the parent’s subjectivity
comes in.

For our experiments, we prepare two datasets for two pre-
diction settings. One of them is the dataset with 1, 540 zero-
to-two year old children, 803 of which are children who con-
tinued learning, and 737 of which are not. Another dataset
is with 1, 322 two-to-four year old children, in which 529 of
them continued learning and the other 903 children did not.

Experimental procedure

Features representing a child consist of static features and
temporal features. The static features include a child ID, the
number of older or younger brothers and sisters, the age at
the time of the first examination, the average of the age at the
time of examinations, the average of the examination inter-
val, the number of tests, and the average of the development
test scores.

The temporal features are extracted from the time series
of the development test scores by using the time-series clus-
tering methods as described before. Since we have four cat-
egories of the scores, if we set the number of clusters as K,
the total number of features becomes 4K.

To extract the temporal features, we calculate the dis-
tance between the time series and create a distance matrix.
For both the DTW distance and the Euclidean distance, we
calculate both the original distance and the normalized dis-
tance. We also use the two types of interpolation methods in
calculating the Euclidean distance. Hierarchical clustering is
performed by either of the single linkage method, the com-
plete linkage method, and the group average method. The
number of clusters K is chosen from {10, 20, 50, 100, 200}.
Using the clustering results, we construct 4K-dimensional
feature vectors; they are concatenated with the feature vec-
tors of static information to obtain the final feature vectors.

The dataset is divided into the training dataset for con-
structing a classifier and the verification data for evaluating
the prediction accuracy of the trained classifier. The ratio of
the training dataset and the verification data is 80% and 20%,
respectively. We train the logistic regression model using the
training dataset, and make predictions for the verification
dataset using the resultant classifier, and the prediction ac-
curacy is measured in the area under the curve (AUC). We
perform predictions both with and without using temporal
patterns of the development tests, and compare their accu-
racy. In time series clustering, the results are different de-

Table 1: Estimated feature weights in the prediction model
for learning continuation after two years of age using the
data of zero-to-two year old children without the temporal
patterns.

Feature name Weight
Child ID -0.0440
Day of the first examination -1.0622
Average day of examinations 2.3269
Average examination interval 0.2380
Number of examinations 0.3985
Average total score 0.1282
Average body growth score 0.0437
Average perceptual growth score -0.1585
Average linguistic growth score 0.3448
Average social growth score 0.1993

Table 2: Estimated feature weights in the prediction model
for learning continuation after four years of age using the
data of two-to-four year old children without the temporal
patterns.

Feature name Weight
Child ID -0.0862
Day of the first examination -1.1626
Average day of examinations 2.7068
Average examination interval 0.1916
Average number of examinations 0.5335
Average total score 0.0028
Average body growth score -0.1828
Average perceptual growth score 0.3219
Average linguistic growth score 0.1287
Average social growth score -0.2765

pending on the choice of distance between time series, the
one between clusters, as well as the number of clusters. We
compare the maximum prediction performance among the
models with or without temporal patterns.

Results

Which static features are effective? We first show the re-
sult of prediction of learning continuation after two years of
age using the data of zero-to-two year old children, when the
model does not use the temporal patterns. The AUC value is
0.7549, which is a reasonably high predictive performance.
The weights of the features used in the estimated model are
shown in Table 1. A large absolute value of a weight means
a large influence of the corresponding feature on the pre-
dictions. The average day at the time of examinations has
a large positive weight, which means that the more exami-
nations a child takes at a higher age, the more likely he/she
continues learning. The day at the time of the first examina-
tion has a relatively large negative value, which means that
the lower the age at the time of the first examination is, the
easier the child continues learning.

Similarly, Table 2 shows the weights of the features in the
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Check Item number Check item
...

...
...

� 85 Can hold on to a climbing pole for 5 sedonds
86 Can throw a baseball ball for four meters

� 87 Can jump and move back, forth, right, and left
� 88 Can jump over 20-centimeter height

89 Can ride on a swing in the upright position
90 Can jump for 70-80 centimeters long

...
...

...

Figure 3: An example of checklist in the ‘physical development’ category (quoted from ‘Development Study Book Part 3’
by Shichida Educational Institute). The check marks are given by parents if they think the corresponding check items are
accomplished by the child.

Table 3: Comparison of the predictive performance of the
model using the temporal patterns and the one without the
temporal patterns in prediction for continuation after two
years old.

Prediction model AUC
Without temporal patterns 0.7549
With temporal patterns 0.8001

prediction model for learning continuation after four years
of age using data of two-to-four years old children. We ob-
serve the similar features are effective compared with the
previous results (Table 1). The AUC is 0.8093, which is a
better performance than the previous setting.

Do temporal patterns improve prediction? We investi-
gate the effectiveness of the temporal patterns. Tables 3 and
4 show the comparison of the predictive performance of the
model using the temporal patterns and the one without the
temporal patterns. Table 3 shows the result for prediction of
the continuation after two years old, and Table 4 is for after
four years old. The results with the temporal patterns show
the best performance.

Table 3 indicates that, when the clustering method is ap-
propriately selected, prediction accuracy is reasonably im-
proved. The maximum value was obtained in the experi-
ments when we set the number of clusters K = 200, and
use the normalized Euclidean distance with the overlap-type
interpolation in the single linkage method. Similarly, Table
4 also shows a reasonable improvement by the use of tem-
poral patterns. The best choices were K = 200 clusters, and
the single connection method using the DTW distance cal-
culated without normalization.

Insights from effective temporal patterns. Let us look
closely at some of the temporal patterns that turned out to be
effective in prediction.

Figures 4a and 4b show two temporal patterns. The hor-
izontal axis is the age at the time of examination and the
vertical axis is the perceptual development score.

Figure 4a shows a temporal pattern correlated with chil-
dren who did not continue learning, which includes 15 chil-

Table 4: Comparison of the predictive performance of the
model using the temporal patterns and the one without the
temporal patterns in prediction for continuation after four
years old.

Prediction model AUC
Without temporal patterns 0.8093
With temporal patterns 0.8421

dren who continued learning and 157 who did not. Children
in this cluster took examinations at the early stage but the
frequency decreased with advancing age. Figure 4b shows
a temporal pattern correlated with children who continued
learning, which includes 19 children who continued learn-
ing and 5 who did not. They started to take examinations
recently and the scores grew rapidly. These observations are
consistent with our previous observation in the model with-
out temporal patterns that the average day of examinations
positively correlates with learning continuation.

Figures 4c and 4d show other examples; Figure 4d is a
temporal pattern including 34 continuing children and 133
non-continuing children, and Figure 4d is a temporal pat-
tern including 27 continuing children and 4 non-continuing
children. In Figure 4c which shows the group of a low con-
tinuation rate, they regularly took examinations but the im-
provement of the scores is not significant. On the other
hand, Figure 4d which shows a group of a high continua-
tion rate, they regularly took examinations and continuously
improved their scores.

The above observations are based on the results with
K = 50 clusters by the group average method with the
DTW distance calculated without linear interpolation; simi-
lar trends were often observed for other settings.

Conclusion

In this study, we applied learning analytics to preschool chil-
dren education, especially, we predicted the continuation of
learning, which is a similar problem to the dropout predic-
tion problem in higher education. To cope with the noisy
and biased time-series scores of development tests based on
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(a) An example of temporal patterns represented
by non-continuing children; children in this clus-
ter took examinations at the early stage but the fre-
quency decreased with advancing age.

(b) An example of temporal patterns represented
by continuing children; they started to take exami-
nations recently and the scores grew rapidly.

(c) An example of temporal patterns represented by
non-continuing children; they regularly took exam-
inations but the improvement of the scores is not
significant.

(d) An example of temporal patterns represented
by continuing children; they regularly took exami-
nations and continuously improved their scores.

Figure 4: Temporal patterns which turned to be effective in prediction.

subjective evaluation, we used robust temporal patterns ex-
tracted by using time-series clustering. Using experiments
with a real preschool education dataset, we demonstrated
that the prediction accuracy of learning continuation was
improved by using the temporal patterns as a part of fea-
tures for prediction. In addition, the temporal patterns which
turned out to be useful for prediction characterized children
who continued learning and those who did not.

Although our present study demonstrated the effective-
ness of the temporal patterns, the best performing choices
of the clustering methods and the other parameters depend
on the datasets. Investigation for more insights about most
appropriate choices for the learning continuation problem
is left for the future work. In addition, we only focused on
the logistic regression model, which is a simple linear pre-
diction model, and obtained reasonable prediction accuracy;
using more complex prediction models such as deep neural
networks such as recurrent neural networks should further
improve the performance, which would also be addressed in
the future work.
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