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Abstract

Understanding source code of large open-source software
projects is very challenging when there is only little docu-
mentation. New developers face the task of classifying a huge
number of files and functions without any help. This paper
documents a novel approach to this problem, called FEAT,
that automatically extracts topoi from source code by using
hierarchical agglomerative clustering. Program topoi summa-
rize the main capabilities of a software system by present-
ing to developers clustered lists of functions together with
an index of their relevant words. The clustering method used
in FEAT exploits a new hybrid distance which combines
both textual and structural elements automatically extracted
from source code and comments. The experimental evalu-
ation of FEAT shows that this approach is suitable to un-
derstand open-source software projects of size approaching
2,000 functions and 150 files, which opens the door for its
deployment in the open-source community.

Introduction

The development of large-scale open-source projects in-
volves many distinct developers contributing to the creation
of large code repositories. As an example, the July 2017 re-
lease of the Linux kernel (v. 4.12), amounting to almost 20
MLOC (lines of code), requested the effort of 329 develop-
ers marking a growth of 1 MLOC respect to its predeces-
sor. This figures make clear that, whenever a new developer
wants to become a contributor, he/she has to face the prob-
lem of understanding a huge amount of code, organized as
an unclassified set of files and functions.

Organizing the code in a more abstract way, closer to hu-
mans is an attempt that received interest from the Software
Engineering community. Unfortunately, there is no recog-
nized recipe or tool that can concretely provide any help in
dealing with large software repositories.

We propose an effective solution to this problem by auto-
matically extracting program topoi which are ordered lists of
function names associated with an index of relevant words.
How does the sorting take place? FEAT does not con-
sider all functions as equal: some of them are considered
like a gateway to the implementation of high-level, user-
observable capabilities of a program. We call these special
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functions entry points and the sorting criterion is based on
the distance between common functions and entry points.
The whole method can be summarized according to its three
main steps:

1. Preprocessing. Source code, with its comments, is parsed
generating for every code unit (either functions in proce-
dural languages or methods in object oriented ones) a cor-
responding textual document. Additionally, a graph rep-
resentation of the caller-callee relationship (call graph) is
also created in this step.

2. Clustering. Code units are grouped together by means of
hierarchical agglomerative clustering (HAC).

3. Entry Point Selection. Within the context of every cluster,
code units are ranked and those placed in higher positions
will constitute a program topos.

The contribution of this paper is three-fold:

1. FEAT is a novel, fully automated approach for program
topoi extraction based on clustering units directly from
source code. To exploit HAC, we propose an original hy-
brid distance combining structural and semantic elements
of source code. HAC requires the selection of a partition
among all those produced along the clustering process,
our approach makes use of a hybrid criterion based on
graph modularity (Donetti and Muñoz 2004) and textual
coherence (Foltz, Kintsch, and Landauer 1998) to auto-
matically select the appropriate one;

2. Clusters of code units need to be analyzed to extract pro-
gram topoi. We define a set of structural elements ob-
tained from source code and use them to create an alter-
native representation of clusters of code units. Principal
Component Analysis (PCA), with its capability of dealing
with multi-dimensional data, provides us a way to mea-
sure the distance of code units respect to an ideal entry
point. This distance is the basis for code units’ ranking
shown to end-users.

3. We implemented FEAT on top of a general-purpose soft-
ware analysis platform and performed an experimental
study over some open-source software projects. During
the evaluation we analyzed FEAT under several perspec-
tives: the clustering step, effectiveness in topoi discovery
and, scalability of the approach.
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Related work

Our research spans the domain of program understanding
focusing mainly on feature extraction (Rubin and Chechik
2013; Chen and Rajlich 2000; Marcus and Haiduc 2013)
that aims to automatically discover the main characteristics
of a software system by analyzing source code or other arti-
facts. It must be distinguished from feature location, whose
objective is to locate where and how these characteristics
are implemented (Rubin and Chechik 2013). Feature lo-
cation requires the user to provide an input query where
the searched characteristic is already known, while feature
extraction tries to automatically discover these characteris-
tics. Since several years, software repository mining is con-
sidered mainstream in feature extraction. However, we can
distinguish between software-repository mining approaches
dealing with software documentation only and, those deal-
ing with source code only.

Mining Software Documentation. In (Dumitru et al.
), both text-mining techniques and flat clustering are used
to extract feature descriptors from user requirements kept
in software repositories. By combining association-rules
mining and k-Nearest-Neighbour, the proposed approach
makes recommendations on other feature descriptors to
strengthen an initial profile. More recently (McBurney, Liu,
and McMillan 2016) presented four automatic generators of
list of features for software projects, which select English
sentences that summarize features from the project docu-
mentation.

FEAT has two distinguishing elements w.r.t. these tech-
niques. Firstly, FEAT deals with both software documen-
tation and source code by applying at the same time code
and text analysis techniques. Secondly, FEAT uses HAC as-
suming that software functions are organized according to a
certain (hidden) structure that can be automatically discov-
ered.

Mining Source Code. (Linstead et al. 2007) proposes
dedicated probabilistic models based on code analysis us-
ing Latent Dirichlet Allocation to discover features under the
form of so-called topics (main functions in code). (McMillan
et al. 2012) present a source-code recommendation system
for software reuse. Based on a feature model (a notion used
in product-line engineering and software variability model-
ing), the proposed system tries to match the description with
relevant features in order to recommends the reuse of exist-
ing source code from open-source repositories. (Abebe and
Tonella 2015) proposes natural language parsing to automat-
ically extract an ontology from source code. Starting from a
lightweight ontology (a.k.a, concept map), the authors de-
velop a more formal ontology based on axioms.

Conversely, FEAT is fully automated and does not re-
quire any form of training or any additional modeling activ-
ity (e.g., feature modeling). It uses an unsupervised machine
learning technique making its usage and application much
simpler.

(Kuhn, Ducasse, and Gı̂rba 2007) use clustering and LSI
(Latent Semantic Indexing) to assess the similarity between
source artifacts and to create clusters according to their sim-
ilarity. The most relevant terms extracted from the LSI anal-
ysis are reused for labeling the clusters. FEAT instead ex-

ploits both text mining and code structure analysis to guide
the creation of clusters.

We believe that there are several differences between
FEAT and the above mentioned approaches and that FEAT
fosters program understanding by creating a novel hybrid
approach blending structural and semantic aspects of source
code.

Background

Software Clustering

Software clustering methodologies create group of entities,
such as classes, functions, etc. of a software system in order
to ease the process of understanding the high-level structure
of a large and complex software system (Shtern and Tzerpos
2012). The basis for any cluster analysis to group entities is
their set of attributes.

The application of clustering to a software system re-
quires the identification of the entities which are the object
of the grouping. Several artifacts can be chosen but the most
popular one is source code (Mitchell 2003). The selection
of entities is affected by the objective of the method. For
program restructuring at a fine-grained level, function call
statements are chosen as entities (Xu et al. 2004) while for
design recovery problems (Andritsos and Tzerpos 2005) en-
tities are often software modules but also classes or routines.

Extracting facts from source code can be done follow-
ing two different conceptual approaches: structural and se-
mantic. Structure-based, approaches rely on static relation-
ships among entities: variable references, procedure calls,
inheritance etc. Semantic approaches take into account the
domain knowledge information contained in source code
and extracted from comments and identifier names (Kuhn,
Ducasse, and Gı̂rba 2005). The software clustering commu-
nity widely adopts structure-based approaches but it has to
be noted that the output produced by semantic approaches
tends to be more meaningful. That is why some try to com-
bine the strengths of both methods like (Tzerpos and Holt
2000).

The actual cluster creation is accomplished through a
clustering algorithm. Clustering is the most common form
of unsupervised learning and the key input to a clustering
algorithm is the distance measure. Different distance mea-
sures give rise to different clusterings.

There are two categories of hierarchical algorithms: ag-
glomerative (bottom-up) and divisive (top down). In soft-
ware clustering, according to (Kaufman and Rousseeuw
1990), divisive algorithms offer an advantage over agglom-
erative ones because users are mostly interested in the struc-
ture revealed by the large clusters created during the early
stages of the process. On the other hand, the way agglom-
erative clustering proceeds towards large clusters may be
affected by unfortunate decisions made in the first steps.
Agglomerative hierarchical clustering are most widely used
however. This is because it is infeasible to consider all pos-
sible divisions of the first large clusters (Wiggerts 1997).
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Figure 1: FEAT process’s overview

Call Graph

A Call Graph (CG) is a convenient way of representing the
unit caller-callee relationship in a software program. Given
a program P composed of a collection of units {ui}i∈1...n,
the CG of P is a graph where each node is associated with a
unit ui and there is an arc from ui to uj if and only if uj is
called by ui at some location in the source code. Note that
even though ui may call uj several times, there is only a
single arc from ui to uj in CG.

FEAT Approach

Understanding a software system through its source code
can be pursued following two conceptual approaches: struc-
tural and semantic. Structure-based approaches focus on the
static relationships among entities while semantic ones in-
clude all aspects of a system’s domain knowledge that can
be obtained from comments and identifier names (Shtern
and Tzerpos 2012). Discovering the main capabilities of a
software system can benefit from structural information that
can be used to identify a capability as a set of structurally
close code units contributing to its implementation. On the
other hand, under the semantic view, those parts of a system
showing commonalities in terms of natural language words
can be considered part of a system’s capability as well.

Structural and semantic approaches convey two different,
both valuable, perspectives of a system. FEAT combines
them in order to achieve a more accurate picture. FEAT,
whose overview is depicted in Fig.1, is based on a three steps
process: preprocessing (box noted 2), clustering (3) and, en-
try point selection (5). The input to FEAT is a software sys-
tem SW considered as its source code and comments (1).
In the preprocessing step (2) FEAT parses source code and
comments creating a representation of SW which supports

the twofold assumption lying behind the approach. Hence, if
SW is a software system counting n code units its represen-
tation can be defined through the call graph of SW and the
set of unit documents D as:
Definition 1. (FEAT model) SW � 〈CG,D〉

The first element (structural) of the pair is the call graph
CG = (U , E) where U = {u1, u2, · · · , un} is the set of
units and E the set of edges representing the caller-callee
relationships. The second one (semantic) is the set of unit-
documents: D = {d1,d2, · · · ,dn}.

The creation of the semantic part of FEAT requires that,
for every unit, we extract the following elements: code unit
names, variable names, string literals 1 and, comments. All
these elements contribute to the creation of a set of tex-
tual documents; one for each unit. This preliminary text,
where the original words’ order is ignored (bag of words),
undergoes several transformations (tokenization, stop words
removal, stemming, weighting) producing a unit-document
noted as du = [w1, w2, · · · , wm] ∈ IRm where wi is the
weight associated to the ith-word.

Distance between Code Units

The key input to a clustering algorithm is the distance mea-
sure allowing to group data points together. In FEAT we
have two distances, one for each of the two components
included in Def.1. Let us begin with the distance over the
structural part of SW.

Given the (undirected) call graph CG, the distance be-
tween two code units ua and ub is computed by using the
length of a shortest path (noted as |π(ua, ub)| = k) between
them:

dCG(ua, ub) =

⎧⎪⎪⎨
⎪⎪⎩
0 if ua = ub

1−λ
1−λD

k−1∑
i=0

λi if |π(ua, ub)| = k

1 if |π(ua, ub)| = ∞

(1)

where D is the call graph diameter (the length of the longest
shortest-path) and λ > 1 is a parameter used to provide an
exponential growing of the distance.

The distance over the semantic part of the system’s repre-
sentation is computed through the angular distance defined
as:

dD(ua, ub) =
2

π
arccos

(
dua

· dub

‖dua‖‖dub
‖

)
(2)

Hybrid distance

Both dD and dCG are proper distance measures satisfying
the three axioms: symmetry, positive definiteness and, tri-
angular inequality. On their basis we present a novel hybrid
distance with the objective of producing clusters whose ele-
ments show high internal cohesion under both perspectives:
structural and semantic. This combination can mitigate some
unwanted effects that may occur if we use only one distance.
For instance, two units sharing many words, but not con-
nected in the call graph (or very far from each other), would

1Quoted sequence of characters representing a string value i.e.
x="foo"
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be evaluated with high similarity if only dD be used, while,
without any kind of structural relationship, they cannot be-
long to the same feature. Similarly, two close units in the
call graph, but without any word in common, should not be
clustered together because we assume that elements of a ca-
pability should share a common vocabulary.

The hybrid distance is defined as a linear combination of
dD and dCG using a real number α ranging in [0, 1]:

dFEAT(ua, ub) = αdD(ua, ub) + (1− α)dCG(ua, ub) (3)

The external parameter α is used to tune the impact of one
distance value over the other. The choice of a value for α
depends on some characteristics of the code under analysis
like the quality of comments, naming conventions etc. More
details about this will be provided in the experimental sec-
tion.

Distance over Clusters

In order to merge clusters, HAC requires to compute the dis-
tance between sets of units. In FEAT we represent a set of
units as its centroid hence, the distance between two clusters
corresponds to the distance of their centroids. Following the
concept of a hybrid representation of structural and seman-
tic elements we define a hybrid centroid distance. Unit doc-
uments lie in a Euclidean space then the centroid of a cluster
C is μD(C) = d1+d2+···+dn

|C| . Instead, the structural part of
C is represented as a graph medoid. Medoids are represen-
tatives of a discrete set of elements and in FEAT they are
defined as:

Definition 2. (Graph Medoid) Let CG = (U , E) be a call
graph, C = {u1, u2, . . . , um} a cluster, |π(ua, ub)| a shortest
path between ua and ub, σC(u) =

∑
∀ui∈C

|π(ui, u)|,

M = {u | arg min
u∈U

{σC(u)}} and, s = 1
|C| min

u∈U
{σC(u)}

then the graph medoid of C is:

μCG(C) = arg min
u∈M

( ∑
∀ui∈C

(|π(ui, u)| − s)
2

)

In other words, the graph medoid of C is the unit u ∈ U
lying at the most central position w.r.t. all units in C.
Finally, the hybrid distance between two clusters Ci and Cj
is:

dFEAT(Ci, Cj) = αdD (μD(Ci), μD(Cj))
+(1− α)dCG(μCG(Ci), μCG(Cj))

(4)

Eq.3 can now be seen as a special case of Eq.4 occurring
when |Ci| = |Cj | = 1.

Cutting Criterion

HAC does not require a prespecified number of clusters, it
creates a hierarchy of them through an iterative process pro-
ducing a new partition of clusters at every merging step.
How to choose a partition P = {C1, C2, . . . , Cm} among the
n − 1 possible ones (where n is the number of data points)
depends on the objectives of the domain at hand (Manning,

Raghavan, and Schütze 2008). Following the idea of a com-
bination of structural and semantic aspects of source code,
we introduce our hybrid cutting criterion.

Given a partition of vertices of a graph, modularity
(Aaron, Newman, and Moore 2004) reflects the concentra-
tion of edges within clusters compared with a random dis-
tribution of links between all nodes regardless of clusters.
We use modularity to measure the division of a call graph
in clusters having high inter-cluster sparsity and high intra-
cluster density. Modularity is defined as:

Q(P) =
1

2m

∑
i,j

(
Ai,j −

kikj
2m

)
δ(ci, cj) (5)

where A is the adjacency matrix2, ki (resp. kj) is the de-
gree of node i (resp. j), ci (resp. cj) is the cluster of i (resp.
j), and m is the total number of edges. Function δ is the
Kronecker delta: δ(ci, cj) = 1 iff ci = cj (nodes i,j are
in the same cluster), 0 otherwise. High values of modularity
(knowing that Q ∈ [− 1

2 , 1]) correspond to interesting parti-
tions of a call graph.

A measure adopted in natural language processing (NLP),
used for assessing how similar are the segments of a text, is
coherence (Foltz, Kintsch, and Landauer 1998). Coherence
is based on the measure of words overlapping. We consider
all unit-documents belonging to a cluster as sections of a
whole text. Developers, within the context of the units par-
ticipating in the implementation of a system capability, use
a consistent language revealed through the choice of names
for variables, the text in comments, etc. So, while looking at
clusters as they were textual documents, we want to find the
partition showing the highest coherence defined as:

H(P) =
∑
∀C∈P

⎛
⎝1− 2

|C|(|C| − 1)

|C|∑
k=1

|C|∑
j=k+1

dD(uk, uj)

⎞
⎠
(6)

Finally, we can define a new hybrid measure as the com-
bination of normalized coherence and modularity:

TFEAT(P) = α
H(P)

|P| + (1− α)
2Q(P) + 1

3
(7)

The cutting criterion is then determined as the HAC’s itera-
tion where the maximum value of TFEAT is reached.

Algorithm 1 presents our clustering step with a hybrid
representation of units. We use the priority queue version
of HAC having a time complexity of Θ(n2 log(n)). Alg.1
starts by considering each unit as a cluster at lines 4-6. It
computes the pairwise distances between clusters at lines 7-
8. Then, it iteratively merges pair of clusters according to
a minimal dFEAT distance value (lines 11-12) until either a
partition is reduced to one cluster or the cutting criterion is
reached (i.e., TFEAT value cannot be improved) (line 9). At
each iteration, the algorithm updates the pairwise distances
Δ of the new partition (lines 14-15). At the end, the algo-
rithm returns a partition P of m clusters.

2Aij = 1 if there exists an edge between vertices i and i and
Aij = 0 otherwise

7774



Algorithm 1: Priority Queue HAC with hybrid cut-
ting criterion

1 In U = {u1, . . . , un}: n units; α ∈ [0, 1], τ < 0;
2 Out P = {C1, . . . , Cm}: partition of m clusters;

3 P ← ∅; Δ ← ∅; 〈yp, yc〉 ← 〈1, 0〉;
4 foreach ui ∈ U do
5 Ci ← {ui};
6 P ← P ∪ Ci;
7 foreach Ci, Cj ∈ P : i < j do
8 Δ ← Δ ∪ dFEAT(Ci, Cj , α);
9 while (|P| 
= 1) ∧ (yc − yp > τ) do

10 pick Ci, Cj ∈ P s.t., dij = min(Δ);
11 Ci ← Ci ∪ Cj ; P ← P \ Cj ;
12 Δ ← Δ \ di∗; Δ ← Δ \ d∗i;
13 yp ← yc; yc ← TFEAT(P);
14 foreach Cj ∈ P : j 
= i do
15 Δ ← Δ ∪ dFEAT(Ci, Cj , α);
16 return P

Entry Point Selection

HAC’s output is a partition of disjoint clusters where ev-
ery cluster is made of a set of units, with their names, unit-
documents, and the related, induced sub-graph of the call
graph (Fig.1 box 4).

The key to topoi’s discovery are entry points. An entry
point is a unit that gives access to the implementation of
an observable system functionality, such as menu click han-
dlers in GUI, public methods of an API, etc. having some
peculiar characteristics leading us to the following assump-
tions. Unlike ordinary units, entry points originate longer
and diverse calling chains. Calling chains ending in an en-
try point are shorter and fewer than those of ordinary units.
For a unit u these assumptions can be expressed as a vec-
tor vu = [deg−(u), deg+(u),RI(u),RO(u), SI(u), SO(u)]
whose 6 elements are:

1. Input Degree (deg−): number of incoming arcs of u;

2. Output degree (deg+): number of outgoing arcs of u;

3. Input Reachability (RI): number of paths ending in u;

4. Output Reachability (RO): number of paths starting from
u;

5. Input Path Length (SI): Sum of the lengths of all paths
having u as destination;

6. Output Path Length (SO): Sum of the lengths of all paths
having u as source;

Hence, every cluster C ∈ P is represented as a matrix
U

∀u∈C
= [vu] and transformed according to PCA. Finally,

entry points are ranked respect to their distance with an ar-
tificial unit, called query vector (qC). Following the entry
point assumptions mentioned above, within the context of
a cluster C, we set the components’ values of qC follow-
ing two rules: (1) Input-attributes get minima values and (2)
Output-attributes get maxima values. With these elements
the definition of ranking is the following:

Definition 3. (Entry Point Ranking) Let C be a cluster of n
units, the ranking over its units is defined as:

KC = {k1, k2, · · · , kn |
d(qC ,vk1) ≤ d(qC ,vk2) ≤ · · · ≤ d(qC ,vkn)}

Program Topoi

We can now provide a formal definition of a program topos.

Definition 4. (Program Topos) Let ΔC be the set of dis-
tances between C’s units and qC and, β a known parameter
ranging in (0, 1) then the program topos of a cluster C is the
sub-list ΘC ⊂ KC such that the distance between any unit of
ΘC and qC is not greater than a threshold value dβ which is
the β-order percentile 3.

The units in a program topos ΘC are the entry points of C
(Fig.1 box 6).

Experimental Evaluation

Evaluation of the Clustering Step

The main objective of the cutting criterion (Eq.7) is the au-
tomatic selection of a partition of clusters to be used in the
entry point analysis step. The question we want to address
here is:

• RQ1: How effective is the hybrid perspective of FEAT,
based on dFEAT and TFEAT, about driving HAC to find
optimal partitions in a controlled setting?

In this experiment we create instances of FEAT models (see
Def.1) characterized by the following input variables: num-
ber of units, density of the call graph and, a range of values
where the length of unit-documents can span. These param-
eters are used to randomly generate both the call graph and
the set of unit-documents. For every instance, the experi-
ment produces all partitions of the set of units, computes
modularity and coherence and, find the maximum TFEAT
value (let us call this part of the experiment brute force).
Then, we run FEAT and compare TFEAT value of the cho-
sen partition to those obtained through brute force.

From combinatorics we know that the number of parti-
tions of a set grows extremely fast. Hence, we let cardinal-
ity (n = |U|) of sets of units U varies in the range n ∈
{10, 11, 12}. Correspondingly, the number of partitions are
B10 = 115, 975, B11 = 678, 570 and, B12 = 4, 213, 597
(Bn is the Bell number of n). Call graph’s random creation
follows Gilbert’s approach (Gilbert 1959) and is ruled by a
density value (ρ) corresponding in our context to the proba-
bility of having an edge between any pair of vertices. Den-
sity’s range is ρ ∈ {0.1, 0.2, . . . , 0.9}.

Starting from a fixed alphabet (11 symbols) all words of
a given size (4) are generated to form a dictionary of 14,641
words. Unit-documents’ lengths span at random having be-
tween [5, 20] words. Documents’ content is randomly cre-
ated as well and words’ distribution follow Zipf’s law (Sid-
dharthan 2002).

3The τ -order percentile of a distribution X is the value (xτ )
below which the fraction τ of elements in the ranking fall. Defined
as: P (X ≤ xτ ) = τ .
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The generation of any instance of the model is replicated
10 times and the results, shown in Tab.1, are averaged out.
HAC merges units and clusters, driven by dFEAT, produc-
ing partitions and, selects the partition where the maximum
value for TFEAT occurs. To compare FEAT’s value to brute
force approach ones, we provide an indicator called Tscore.
Let us call T the set of TFEAT values of all partitions of U
generated through the brute force approach, then we define
the cutting criterion score as: Tscore = TFEAT−min(T )

max(T )−min(T ) ∈
[0, 1] representing how close is the partition found from
FEAT to the optimal ones.

Every line in Tab.1 contains the average values of 10 tests
with the same input values (n, ρ, α = 0.5).

n ρ Tscore n ρ Tscore n ρ Tscore

10

0.1 0.887

11

0.1 0.880

12

0.1 0.903
0.2 0.811 0.2 0.893 0.2 0.801
0.3 0.759 0.3 0.822 0.3 0.848
0.4 0.740 0.4 0.792 0.4 0.738
0.5 0.731 0.5 0.750 0.5 0.671
0.6 0.762 0.6 0.766 0.6 0.795
0.7 0.780 0.7 0.817 0.7 0.778
0.8 0.872 0.8 0.849 0.8 0.828
0.9 0.973 0.9 0.908 0.9 0.977

0.813 0.831 0.815

Table 1: Experimental results of the clustering step’s evalu-
ation

We observe that when HAC is driven by dFEAT and TFEAT
it shows an interesting performance in finding partitions with
both high modularity and coherence. With a very low num-
ber of iterations, which in the worst case can be equal to
n − 1, FEAT shows an average Tscore > 0.8 in all combi-
nations that we experimented.

Discovering Topoi through FEAT
This section presents an experiment for the evaluation of
FEAT as a technique for recovering the main capabilities of
a software system. We selected two open-source softwares
(more details about them can be found in Tab.4 lines 2 and
7):
• Hexdump. It is an hexadecimal viewer, i.e. an application

that displays binary data contained in files as readable se-
quences of characters.

• gEdit. The default text editor of the GNOME desktop en-
vironment.

To test the approach we created one oracle for each project
by looking at the user’s manual and inspecting the source
code. gEdit’s oracle contains 39 unit names selected as entry
points while Hexdump’s one contains 12 entry points. The
value for β is 0.25 (see Def.4). The research questions we
address here are:
• RQ2: What is the impact of α on FEAT’s performance?
• RQ3: How does the selection of textual elements (identi-

fier, comments, etc.) affect FEAT’s performance?
• RQ4: How useful are topoi to identify system’s capabili-

ties?
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Figure 2: FEAT’s performance relative to the analysis of
Hexdump and gEdit while α and, extracted textual elements
vary

The evaluation proceeds by comparing the entry points auto-
matically extracted from FEAT with those in the oracle and
computing accuracy, precision and, recall. The input vari-
ables for the experiment are: α and some predefined set of
textual elements. The ranges for these variables are:

• α ∈ [0, 1] with increments of 0.1

• Textual sets of elements: Code, Comments and, All. Code
includes: identifiers and literals. Comments: just com-
ments are extracted. All: union of code and comments.

This experiment generated 60 tests whose results are sum-
marized in Fig.2. The first observation we can make is that
the cutting criterion drastically affects FEAT’s behaviour.
As soon as α goes above a given value (α ≥ 0.8 for Hex-
dump and α ≥ 0.6 for gEdit), the quality of classifications
drastically drops. The reason for this is that the clustering
process, which for α ≥ 0.6 is mainly driven by semantic el-
ements, is stopped too early creating clusters which are too
small and, from the structural standpoint, too fragmented.
When clusters are internally too sparse the entry point rank-
ing cannot be executed. Instead, balanced values of α ≈ 0.5
show the best performance for accuracy (≥ 80%) and recall
(≈ 70%).

Let us summarize the results in the light of the research
questions. (RQ2) A balanced combination of α ≈ 0.5 leads
to higher recall values for every set of extracted textual ele-
ments. Accuracy and precision do not seem to be much af-
fected by α. (RQ3) More textual elements, as in the All com-
bination, does not imply better performance. The blue line
in Fig.2 is related to Comments which obtains higher values
in almost all cases. The last research question (RQ4) deals
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Unit Name Index

gedit cmd file open
chooser, cmd, [...], dialog, document, file,
folder, [...], open

findit cb
[...], findit, found, [...], hit, [...], mask, pattern,
search

Table 2: Part of two program topoi obtained from the analy-
sis of gEdit (first line) and Hexdump

Unit Name d(qC,vi)

1 gedit cmd search find {prev,next} 0.139

2
gedit cmd edit {delete,copy,
select all,cut,redo,undo}

0.158

3
findit cb 0.302
find next cb 0.311

Table 3: Extract of the rankings of two program topoi with
distances between entry points and query vector

with the usability of FEAT in a real setting. Tab.2 shows two
entry points of two program topoi: the first from gEdit and
the second from Hexdump. In the first line we have the open
file capability of the text editor while in the second one the
find a pattern capability of Hexdump. Some of the words
contained in the indices provide useful clues about the con-
text and purpose of the capability accessed through the entry
point to which they belong.

Another interesting point to highlight is shown in Tab.3
where we have three groups of units taken from two topoi
of the two projects. Every group lists units at the same (or
quite similar) distance to the query vector. The interesting
thing is that the units in every group belong to the same
functional area and their relatedness can be revealed by the
reciprocal proximity in the PCA space. In the first group we
have find related functionality (the suffixes to complete unit
names are between curly braces), in the second one some
clipboard management units and, in the last one again find
related functionality. We believe that these information can
be profitably used for the discovery of system’s capabilities.

Scalability Evaluation of FEAT
The adoption of a new methodology is determined also by
its scalability, then in this section we address the following
research question:

• RQ5 What is the correlation between FEAT’s running
time and memory usage w.r.t. software projects charac-
teristics such as: number of units, size of the dictionary,
LOC and, call graph density?

FEAT has been implemented on top of a software testing
platform based on OSGi (Open Services Gateway initia-
tive) and BPMN (Business Process Modeling Notation). The
hardware used for running the experiments is based on an
Intel dual core i7-4510U CPU with 8GB RAM.

The last experiment, whose results are reported in Fig.3,
involves the projects listed in Tab.4. On the left hand side
we have graphs reporting the running time (RT [s]) of the
experiment while α varies in {0, 0.5, 1}. For every value of
α we have two curves: the total time employed by FEAT

Project LOC #Unit #File Dict. ρ

1 Linux FS EXT2 8,445 180 14 748 0.0201
2 Hexadec. Viewer 12,053 254 13 764 0.0091

3
GNU bc
Calculator 1.06

12,851 215 20 723 0.0204

4
Intel Ethernet
Drivers and Util.

30,499 581 16 1,479 0.0062

5 Ultradefrag v7.0 34,637 1,112 74 1,874 0.0054

6
Zint Barcode
Generator v2.3.0

38,095 345 43 1,275 0.0134

7 GNU Editor v3.2 42,718 1,370 59 1,048 0.0021
8 bash v1.0 70,955 1,477 128 2,216 0.0027
9 Linux IPv4 84,606 2,216 127 3,211 0.0011

10
x3270 Terminal
Emulator v3.5

91,449 1,881 136 3,008 0.0025

Table 4: Open Source software projects used during the scal-
ability evaluation

(black) and the clustering time (blue). The difference be-
tween black and blue curves is equal to the time needed
by the preprocessing step. In all cases the time of the en-
try point selection step can be neglected. The right hand side
of Fig.3 contains the graphs about memory usage. In this
case we plot only one graph per characteristic because no
meaningful differences have been observed among the var-
ious values of α. Let us focus on the running time graphs.
The analysis of running time leads to two main observations.
First, performance is negatively affected by values of α > 0
which means that the computation of the textual distance
(Eq.2) and the coherence criterion (Eq.6) are demanding. In-
deed the graph KWords/Time shows a steep increase around
≈ 2KWords. Furthermore, looking at the KUnit/Running
Time graph for 2KUnit we have RTα=0 ≈ 1400 s and
RTα=0.5 ≈ 10 000 s. Second, the clustering step, whose
complexity is Θ(n2 log(n)), is the most costly one when
α > 0 while for α = 0 running time is dominated by
the preprocessing step. Density shows a negative correla-
tion w.r.t. both time and memory. Regarding the memory
usage no clear patterns emerged, nevertheless we observe
a fast growth in relationship with KLOC ≥ 70. In con-
clusion, FEAT shows acceptable performance with projects
counting up to 1.3KUnit and dictionaries with size up to
≈ 2KWords producing results in about 20min, for greater
values of these characteristics the full hybrid approach be-
comes rapidly too costly.

As further work, we believe that improving the efficiency
of distances’ computation over the semantic part of the
source code, would ease the adoption of the tool and maxi-
mize its impact.

Conclusion

FEAT is a novel approach for program understanding repre-
senting a software system under both structural and seman-
tic perspectives. Program topoi are concrete and useful sum-
maries of systems’ capabilities providing a valuable help in
several phases of the software life-cycle. FEAT is a fea-
sible, unsupervised approach for automatically discovering
program topoi directly from source code.
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Figure 3: Correlation between running time and memory us-
age w.r.t. LOC, number of units, size of the dictionary and,
density of CG

Our plans for the deployment of FEAT include Software
Heritage4(SH). SH is a public, large archive counting al-
most 65M open-source software projects, we plan to inte-
grate FEAT with SH’s platform in order to provide a more
abstract approach for searching software artefacts, based on
program topoi, allowing the usage of natural text in queries.

References

Aaron, C.; Newman, M.; and Moore, C. 2004. Finding community
structure in very large networks. Physical Reviews E. 70.
Abebe, S. L., and Tonella, P. 2015. Extraction of domain concepts
from the source code. Science of Computer Programming 98:680–
706.
Andritsos, P., and Tzerpos, V. 2005. Information-theoretic soft.
clustering. IEEE Trans. Software Eng. 31(2):150–165.
Chen, K., and Rajlich, V. 2000. Case study of feature location
using dependence graph. In Program Comprehension, 2000. Pro-
ceedings. 8th International Workshop, 241–247.

4www.softwareheritage.org
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