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Abstract

We tackle the problem of authenticating high value Italian
wines through machine learning classification. The problem
is a seriuos one, since protection of high quality wines from
forgeries is worth several million of Euros each year. In a
previous work we have identified some base models (in par-
ticular classifiers based on Bayesian network (BNC), multi-
layer perceptron (MLP) and sequential minimal optimization
(SMO)) that well behave using unexpensive chemical anal-
yses of the interested wines. In the present paper, we in-
vestigate the role of esemble learning in the construction of
more robust classifiers; results suggest that, while bagging
and boosting may significantly improve both BNC and MLP,
the SMO model is already very robust and efficient as a base
learner. We report on results concerning both cross validation
on two different datasets, as well as experiments with models
trained with the above datasets and tested with a dataset of po-
tentially fake wines; this has been synthesized from a genera-
tive probabilistic model learned from real samples and expert
knowledge. Results open new opportunities in the wine fraud
detection activity, which is of primary importance in the figth
against the destabilization of the wine market worldwide.

Introduction

The quality and safety profiles of fine wines represent a
specific case of the notion of food integrity, because of the
very high value of a single bottle, and because of the com-
plex chemical profile, requiring specific and robust meth-
ods for their univocal authentication. Although specific reg-
ulations exist in this matter, quality wines are highly sub-
jected to adulteration. This triggers destabilization of the
wine market, with an estimated impact of about 7% of the
whole market value, and causing an economical impact es-
timated to be several million of Euros (Holmberg 2010;
Wajsman, Burgos, and Davies 2016). The detection of adul-
terations is an official task of wine quality control and
consumer protection. Specialized analytical methods, based
on nuclear magnetic resonance or isotope ratio mass spec-
trometry exist. However, they are both time consuming
and very expensive to undertake; moreover, these meth-
ods require high level of specialization and very large data
sets. Non analytical approaches like olograms, trasponder
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systems or QR codes only partially address the problem
of wine authenticity. For these reasons, several attempts
have been performed, in order to exploit standard ana-
lytical chemistry procedures to describe a wine proof-of-
identity (Arvanitoyannis et al. 1999; Versari et al. 2014;
Marini et al. 2006). Recently, also machine learning tech-
niques have gained attention, due to the fact that classifi-
cation methodologies can be applied to learn models from
samples described through features derived and measured by
means of standard chemical analyses (Acevedo et al. 2013;
Gòmez-Meire et al. 2014).

In a previous work, we discussed how well-established
state-of-the-art supervised machine learning methods can
be suitably adopted to fullfill the task of controlling spe-
cific wine adulterations (Arlorio et al. 2015). In particu-
lar, we referred to the framework of the TRAQUASWINE
(TRAceability, QUAlity and Safety of wine) project1, hav-
ing as a major goal the authenticity assessment and the pro-
tection against fake versions of some of the highest qual-
ity (and often top priced) nebbiolo-based Italian wines like
Barolo, Barbaresco and Gattinara. We evaluated the appli-
cation of several classifiers to this task, by considering dif-
ferent datasets. The interpretation of the results suggests an
effective role of classification techniques, based on standard
chemical profiling, with the emergence of three main mod-
els: a Bayesian Network Classifier (BNC), a Multi-layer Per-
ceptron (MLP) and a kernel-based classifier, based on the
Sequential Minimal Optimization algorithm (SMO). Given
the results obtained using the above “base” learners, a nat-
ural question arising is whether the introduction of an en-
semble learning approach could increase the performance
of such base learners, and to provide better results for the
target application. In the present paper, we will discuss the
results of such an introduction. All the reported experiments
have been performed by using the WEKA tool (Hall et al.
2009).

Datasets Production

We collected wine samples (commercial wines) from nine
different wineries in Piedmont, Italy with certified wine’s

1Funded by the European Union, Italian Economy and Fi-
nance Ministry, and Regione Piemonte (POR685 FESR 2007/2013
grants).

The Thirtieth AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-18)

7799



origin and identity. Eight different types of wines at different
aging degrees were considered: Barolo (BRL), Barbaresco
(BRB), Gattinara (GAT), Langhe (LAN), Sizzano (SIZ),
Roero (ROE), Nebbiolo d’Alba (NEB) and Ghemme (GHE).
Moreover, a set of experimental wines (model wines) has
been specifically prepared. Among them, 12 samples were
prepared without nebbiolo grape; we labeled them as NON
(NO Nebbiolo) and they were used to model possible fakes
and forgeries, in particular with respect to BRL and BRB.
In addition 10 samples of model wines were produced to
model incorrect (i.e., not allowed by the disciplinary of pro-
duction) blends for GAT wine, and we labeled them as BLE
(Blend). The class distribution is reported in Figure 1. The

Figure 1: Class (Wine) distribution in the real dataset

study has been organized as follows: we selected some of
the most valued nebbiolo-based wines as the high-quality
classes to be protected from fakes, and in particular BRL,
BRB and GAT; we also selected LAN and BLE as control
wines, the former to simulate not allowed blend for BRL
and BRB, and the latter for GAT. We finally reserved the
12 samples of NON wines as additional control wines, to
test the response of the learned models with respect to simu-
lated fake wines with the absence of nebbiolo grape. We ob-
tained a total of 158 samples with 10 possible classes. Con-
cerning the dataset attributes, wine samples were character-
ized for their phenolic composition, through a spectropho-
tometric and chromatographic characterization (Portinale et
al. 2017); the performed measurements finally resulted in a
set of 13 continuous features reported in Table 1. Missing
values were present in about 20% of cResv measurements
(and in a few other spots).

Classification Results

We considered two different datasets: T1 composed by 158
instances of the 10 classes of wines previously described,
and T2 which is obtained from T1 by removing the instances
of class NON (resulting in 146 instances). The aim was to
verify differences in the performance of the classifiers when
possible fake wines without nebbiolo grape are considered
in the training or not2.

Base Learner Classification

We first evaluated the classification performance of the three
models previously mentioned: BNC, a Bayesian network
classifier learned through the K2 algorithm (Cooper and
Herskovits 1992); MLP, a multi-layer perceptron with one

2We remark that it is can be hard in general, to have a precise
idea of the chemistry of fakes in advance.

hidden layer of n = f+c
2 hidden units (being f the number

of features and c the number of classes); SMO, a kernel-
based classifier based on Sequential Minimal Optimization
(Platt 1999) with a Pearson Universal Kernel (PUK) having
Lorentzian peak shape (Üstün, Melssen, and Buydens 2006)
and with Platt scaling, in order to get a probability distribu-
tion over the classes (Platt 2000)3. These models have been
chosen as the most promising ones after a preliminary exper-
imental phase involving other potential classifiers (Arlorio et
al. 2015).

Results for base learner classification are reported in Ta-
ble 2 and Table 3 for dataset T1 and T2 respectively. They
show results about 10-fold cross validation on the datasets,
by reporting general accuracy (Acc), KAPPA statistics (k)
and weighted (with respect to the number of instances) aver-
age area under ROC (AUC); moreover for each high-quality
and control class, the number of predictions is also shown
(e.g., in Table 2/BNC, LAN was predicted 16 times as LAN,
and 6 times as NEB). We can notice that general classifi-
cation performance of the tested classifiers is rather good,
with some problems evidenced with BNC. However, we are
particularly interested in evaluating the classification behav-
ior with respect to high quality and control wines. To this
end, no control wine is predicted as high quality and vice
versa, in all the tested classifiers. In particular, for dataset
T1, there is always a perfect recognition on NON wines (ab-
sent from T2). Moreover, given the grape/terroir features of
the wines, mispredictions can be quite often justified by sim-
ilar wines in grape composition and from close geographi-
cal areas (e.g., BRL, BRB and NEB from south Piedmont
or BLE and GHE from north Piedmont). Remarkable is the
performance of SMO on both T1 and T2, with a perfect clas-
sification of GAT and LAN, and almost perfect for the other
classes (perfect on BRL on T2).

Ensemble Classification: bagging and boosting

Given the results obtained from base learner classification,
we have then investigated the potential benefit of an en-
semble learning approach (especially for BNC and MLP).
Two general kinds of ensembles were taken into account:
the bagging/boosting of each base classifier, and the stack-
ing/voting of the whole set of base classifiers. This section
reports the results for the first kind of ensemble, while next
section shows the results concerning stacking/voting.

Bagging implementation was set with 10 iterations using
all the instances in the dataset; the chosen boosting approach
has been AdaBoost with 10 iterations and explicit instance
reweighting. Results related to 10-fold cross validation on
datasets T1 and T2 are shown from Table 4 to Table 9.
Concerning BNC, we notice an improvement in the general
accuracy both on T1 and T2; with respect to predictions, Ad-
aBoost provides a significant improvement on T2. Similar
considerations hold for MLP, where AdaBoost provides bet-
ter and significant improvements on predictions, especially
on T1. A peculiar case is SMO, where both bagging and
boosting do not result in any significant deviation from the

3Hyper-parameters for such models have been chosen through
cross-validation.
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Feature Acronym Feature Acronym

Total Polyphenols TP Total Tannins TT
Peonidin-3-O-glucoside Pn-3-glc Malvidin-3-O-glucoside Mv-3-glc
Delphinidin-3-O-glucoside (perc) PDn-3-glc Peonidin-3-O-glucoside (perc) PPn-3-glc
Malvidin-3-O-glucoside (perc) PMv-3-glc Caffeic Acid Caff
Ferulic Acid Fer Kaempferol-3-O-glucoside Kae-3-glu
Myricetin Mir Coutaric Acid (perc) PCout
cis-Resveratrol cResv

Table 1: Features names and acronyms

(a) BNC Acc: 73% k: 0.69 AUC: 0.96

GAT GAT (4); GHE (1); NEB (1)
BRL BRL (13); GHE (2); BRB (3)
BRB BRB (13); NEB (2); BRL (2); ROE (1)
LAN LAN (16); NEB (6)
BLE BLE (7); GHE (1); NEB (1); ROE (1)
NON NON (12)

(b) MLP Acc: 89% k: 0.86 AUC: 0.97

GAT GAT (6)
BRL BRL (14); GHE (1); BRB (2); ROE (1)
BRB BRB (14); NEB (2); BRL (2)
LAN LAN (22)
BLE BLE (8); NEB (1); LAN (1)
NON NON (12)

(c) SMO Acc: 93% k: 0.92 AUC: 0.997

GAT GAT (6)
BRL BRL (18)
BRB BRB (16); BRL (2)
LAN LAN (22)
BLE BLE (7); GHE (3)
NON NON (12)

Table 2: Base learner classification: dataset T1

base learner case (with AdaBoost providing exactly the same
cross validation results)

Ensemble Classification: stacking and voting

We also evaluated the ensemble of different types of base
classifiers, by investigating approaches based on both stack-
ing and voting. In the case of stacking, the main design de-
cision regards the choice of the meta-learner, while in the
case of voting, the main choice concerns the aggregation
function. In our case, the most relevant results have been
obtained by using a 1-NN (nearest neighbor) and a Logistic
Regression meta-learner in the case of stacking, and the av-
erage aggregation function in the case of voting. Table 10
and Table 11 show the results obtained with a 10-fold cross
validation on datasets T1 and T2 respectively (Stack1NN
refers to the 1-NN meta-learner and StackLog to the logis-
tic regression one). We notice that StackLog is the ensemble
with the worst performance both in terms of general accu-
racy and predictions, while Stack1NN and Voting provides
comparable results that are very close to those of SMO on
both datasets.

(a) BNC Acc: 79% k: 0.75 AUC: 0.97

GAT GAT (5); BRL (1)
BRL BRL (13); GAT/NEB/ROE (1); BRB (2)
BRB BRB (14); NEB (1); BRL (2); ROE (1)
LAN LAN (20); NEB (2)
BLE BLE (8); GHE (1); NEB (1)

(b) MLP Acc: 81% k: 0.79 AUC: 0.92

GAT GAT (6)
BRL BRL (14); GHE (1); BRB (1); ROE (2)
BRB BRB (12); NEB (2); BRL (3); ROE (1)
LAN LAN (22)
BLE BLE (9); GHE (1)

(c) SMO Acc: 89% k: 0.87 AUC: 0.98

GAT GAT (6)
BRL BRL (16); BRB (2)
BRB BRB (16); BRL (2)
LAN LAN (22)
BLE BLE (8); GHE (2)

Table 3: Base learner classification: dataset T2

Testing Fakes

To complete our evaluation, we verified the different behav-
ior of the considered classifiers when presented with a po-
tential fake wine without nebbiolo grape (the most proba-
ble fake). In order to perform this test, we started with the
12 samples of NON model wines previously described, and
performed an artificial generation of a synthetic dataset of
1200 instances of potential fakes. Data generation has been
implemented by first learning a Linear Gaussian Bayesian
Network (LGBN) from the available samples and some ex-
pert background knowledge (figure 2)4. This allowed us to
have a generative model for continuous features, from which
to produce the synthetic dataset.

We perfomed two different types of test. In the first one,
we considered T1 as the tranining set and we used the syn-
thetic dataset as the test set. This allowed to test the dif-
ferent classifiers once trained with some potentially fakes
without nebbiolo grape. Results are summarized in Table 12.
In the second test, we considered the dataset T2 as training
set for learning, and the synthetic dataset, augmented with

4The networks was learned using the PC algorithm
(Spirtes, Glymour, and Scheines 1993) implemented in SMILE
(www.bayesfusion.com).
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Bagging Acc: 85% k: 0.82 AUC: 0.99

GAT GAT (4); GHE (1); BRL (1)
BRL BRL (14); BRB (2); GHE (2)
BRB BRB (17); BRL (1)
LAN LAN (19); NEB (3)
BLE BLE (7); GHE (2); NEB (1)
NON NON (11); LAN (1)

AdaBoost Acc: 86% k: 0.84 AUC: 0.98

GAT GAT (5); NEB (1)
BRL BRL (13); GHE (1); BRB (2); NEB (2)
BRB BRB (15); NEB (1); BRL (1); ROE (1)
LAN LAN (20); NEB (2)
BLE BLE (8); GHE (1); LAN (1)
NON NON (12)

Table 4: BNC: ensemble classification on dataset T1

Bagging Acc: 84% k: 0.81 AUC: 0.91

GAT GAT (5); BRL (1)
BRL BRL (15); BRB (1); NEB (1); GAT (1)
BRB BRB (16); BRL (1); ROE (1)
LAN LAN (19); NEB (3)
BLE BLE (8); GHE (1); NEB (1)

AdaBoost Acc: 87% k: 0.85 AUC: 0.98

GAT GAT (6)
BRL BRL (17); NEB (1)
BRB BRB (15); NEB (2); ROE (1)
LAN LAN (20); NEB (2)
BLE BLE (9); GHE (1)

Table 5: BNC: ensemble classification on dataset T2

the original 12 NON samples, as the test set. In this case,
the classifiers have been learned without training on poten-
tial fakes without nebbiolo grape. Corresponding results are
shown in Table 13. In these tables we report the predictions
of each classifier, accounting for more than 95% of the total.
We also consider the so called fake probability, that is the
probability of predicting a high-quality wine from a fake.
They are reported (as percentage values) by considering a
98% confidence interval of the average probability of pre-
dicting either BRL or BRB or GAT wines (symbols / means
a negligible value, i.e., if the average probability is less than
1%). Unsurprisingly, test with training set T1 provides bet-
ter results than test with training set T2; experiments confirm
several findings from cross validation, and in particular, the
very good performances of the base learner SMO and of en-
sembles based on Stack1NN and Voting, as well as the big
role of bagging for BNC and of boosting for both BNC and
MLP. With training set T1, SMO based methods provide al-
most perfect prediction; this occurs for Stack1NN and Vot-
ing as well. However, Voting has a non negligible average
probability of predicting a high quality wine (BRB), even if
this value is only between 1.8% and 2.4% at the 98% con-
fidence level. In addition to the results shown in Table 12,
experiments showed some additional merits of kernel-based
methods, since they predict NON with an average 98% prob-
ability in case of SMO and AdaBoostSMO, and with 81%

Bagging Acc: 89% k: 0.87 AUC: 0.99

GAT GAT (6)
BRL BRL (13); BRB (2); NEB (2); GAT (6)
BRB BRB (16); BRL (2)
LAN LAN (22)
BLE BLE (8); GHE (1); LAN (1)
NON NON (12)

AdaBoost Acc: 94% k: 0.93 AUC: 0.98

GAT GAT (6)
BRL BRL (17); GHE (1)
BRB BRB (16); BRL (2)
LAN LAN (22)
BLE BLE (10)
NON NON (12)

Table 6: MLP: ensemble classification on dataset T1

Bagging Acc: 82% k: 0.79 AUC: 0.96

GAT GAT (6)
BRL BRL (14); GHE (2); SIZ (1); NEB (1)
BRB BRB (13); NEB (2); BRL (3)
LAN LAN (22)
BLE BLE (8); GHE (1); LAN (1)

AdaBoost Acc: 90% k: 0.89 AUC: 0.97

GAT GAT (6)
BRL BRL (16); SIZ (2)
BRB BRB (15); NEB (1); BRL (2)
LAN LAN (22)
BLE BLE (10)

Table 7: MLP: ensemble classification on dataset T2

probability in case of BagSMO. In general, NON has al-
ways a non-negligible probability of prediction even when
it is not the predicted class (and often is the second pre-
dicted class). From the negative side, BagBN has some pre-
dictions of BRB (9) with an average probability of predic-
tion of about 35%.

By considering training set T2, NON wines cannot be rec-
ognized, since there is no explicit class in the learned models
for them. The most similar class that can be used as a target
is LAN, with BLE as a second choice. Of course, we would
like to avoid predictions of high quality wines, but also of
NEB which is a wine with 100% of nebbiolo grape. By look-
ing at the results in Table 13, very often the tested wine is

Bagging Acc: 92% k: 0.91 AUC: 0.99

GAT GAT (6)
BRL BRL (18)
BRB BRB (17); BRL (1)
LAN LAN (22)
BLE BLE (8); GHE (2)
NON NON (12)

Table 8: SMO: ensemble classification on dataset T1 (Ad-
aBoost on SMO provides the same results as those of Ta-
ble 2 (c))
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Bagging Acc: 88% k: 0.86 AUC: 0.93

GAT GAT (6)
BRL BRL (17); NEB (1)
BRB BRB (16); BRL (2)
LAN LAN (22)
BLE BLE (7); GHE (2); LAN (1)

Table 9: SMO: ensemble classification on dataset T2 (Ad-
aBoost on SMO provides the same results as those of Ta-
ble 3 (c))

Stack1NN Acc: 90% k: 0.88 AUC: 0.97

GAT GAT (6)
BRL BRL (18)
BRB BRB (15); NEB (1); BRL (2)
LAN LAN (21); NEB (1)
BLE BLE (5); GHE (4); SIZ (1)
NON NON (12)

StackLog Acc: 82% k: 0.80 AUC: 0.80

GAT GAT (6)
BRL BRL (16); NEB (1); BRB (1)
BRB BRB (13); NEB (4); BRL (1)
LAN LAN (20); NEB (2)
BLE BLE (9); NEB (1)
NON NON (11); NEB (1)

Voting Acc: 93% k: 0.92 AUC: 0.99

GAT GAT (6)
BRL BRL (17); BRB (1)
BRB BRB (16); BRL (2)
LAN LAN (22)
BLE BLE (8); GHE (1); NEB (1)
NON NON (12)

Table 10: Stacking/Voting classification: dataset T1

confused with a NEB, even if in such situations we have
noticed that LAN is often the second prediction in order of
probability (and with a very close prediction probability wrt
NEB). This is the case for SMO based methods, with bag-
ging increasing the predictions of LAN, but by introducing
more probable predictions of BRL and BRB as well.

Conclusions

We have reported the results of a study exploiting clas-
sification for the assessment of the authenticity of some
high-value Italian wines. Forgeries about this kind of wines
are economically very relevant, but standard fake discover-
ing techniques usually employ very expensive instrumental
analyses; we have proposed to exploit simple chemical anal-
yses, coupled with off-the-shelf machine learning method-
ologies. We have investigated the role of ensemble learn-
ing in the considered application context. Experiments have
recognized an active role of classifiers like BNC, MLP and
SMO. The introduction of ensemble techniques results to be
beneficial for BNC and MLP, with boosting being in gen-
eral better than bagging. However, kernel-based classifica-
tion based on SMO seems to be quite insensitive to either

Stack1NN Acc: 88% k: 0.86 AUC: 0.97

GAT GAT (6)
BRL BRL (14);BRB (4)
BRB BRB (16); BRL (2)
LAN LAN (21); NEB (1)
BLE BLE (10)

StackLog Acc: 81% k: 0.78 AUC: 0.90

GAT GAT (5); GHE (1)
BRL BRL (14); NEB (1); BRB (2); GHE (1)
BRB BRB (15); NEB (1); BRL (2)
LAN LAN (21); NEB (1)
BLE BLE (7); NEB (1); BRL (1); ROE (1)

Voting Acc: 90% k: 0.88 AUC: 0.99

GAT GAT (6)
BRL BRL (18)
BRB BRB (15); BRL (2); ROE (1)
LAN LAN (22)
BLE BLE (9); GHE (1)

Table 11: Stacking/Voting classification: dataset T2

Figure 2: LGBN structure for generating the test set

bagging or boosting in this application, and even combina-
tion of the different base learners through stacking or vot-
ing does not seem to significantly improve SMO. The posi-
tive evaluation of the described classification methods for an
application requiring only standard lab analyses, definitely
opens new opportunities in the wine fraud detection activ-
ity, which is considered of primary importance in the figth
against the destabilization of the wine market worldwide.
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