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Abstract

We present a novel approach to modeling stories using recur-
rent neural networks. Different story features are extracted
using natural language processing techniques and used to en-
code the stories as sequences. These sequences can be learned
by deep neural networks, in order to predict the next story
events. The predictions can be used as an inspiration for writ-
ers who experience a writer’s block. We further assist writers
in their creative process by generating visualizations of the
character interactions in the story. We show that suggestions
from our model are rated as highly as the real scenes from
a set of films and that our visualizations can help people in
gaining deeper story understanding.

Introduction
Many avenues in natural language processing (NLP)
have recently benefitted from the application of deep
neural networks (Goldberg 2016). Recurrent neural net-
works (RNNs), such as long short-term memory networks
(LSTMs) (Hochreiter and Schmidhuber 1997) have been
especially successful when used to learn language models
(Graves 2013) and have yielded impressive results on gen-
erating different styles of text (Karpathy 2015). However,
RNNs have not yet been applied to the specific field of
story generation and narrative artificial intelligence, where
the main task is not to predict single words or characters but
rather consistent sequences of story scenes or events.

In the field of automatic story generation, early ap-
proaches have been based on predefined formal rules and
grammars (Klein, Aeschlimann, and Balsiger 1973). Re-
cently there have also been approaches to learning certain
story rules from data in an unsupervised fashion (Cham-
bers and Jurafsky 2009) and learning to generate rule-based
story graphs in certain domains (Li et al. 2013). However,
these systems were always designed to generate stories from
scratch, without regarding potential preexisting story parts.
Moreover, they sample from a highly constrained space of
potential storylines, thereby ensuring consistency in story
logic but arguably restricting creativity.

A common problem in the creative-writing-community is
the so-called writer’s block (Clark 2011). This is a psycho-
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logical condition in which the writer experiences an inhi-
bition in creativity and lack of new ideas while writing a
story. Although some computational methods have been de-
veloped to assist writers in this condition by suggesting what
to write next (Roemmele and Gordon 2015), the use of deep
learning for this purpose has only been proposed but never
successfully tested (Roemmele 2016).

Previous work that constitutes the current state of the art
only regards the very last written sentence as a context for
its suggestion and only suggests whole sentences that al-
ready exist in its database of stories (Roemmele and Gordon
2015). Our work improves on this method by conditioning
on the whole written story and sampling the proposed con-
tinuations from a learned generative model. It is therefore
able in principle to extract more relevant information from
the input and capable of producing more creative and inter-
esting novel outputs.

The lack of inspiration in writer’s block can often be
caused by a perceived mental restriction to certain ideas and
storylines, which is why common techniques to overcome
the condition include free association methods and brain-
storming (Clark 2011). In order to support this process with
a software tool, it is therefore critical to generate suggestions
that are open and vague enough to not increase the feeling of
restriction. We allow for this by not generating whole story-
lines, but rather only suggesting loose connections between
characters, places and actions. Furthermore, we generate sta-
tistical summaries of the existing story in a visual form in
order to facilitate contemplation on the current state of the
work.

Our main contributions are the following:

• We develop a novel representation for stories, especially
movies, as sequences of encoded events and scenes using
natural language processing techniques.

• We train a neural sequence model on these representations
and generate suggestions for the next scenes, conditioned
on a whole or partially written story, with the results rated
by users as highly as real scenes from actual films.

• We visualize character interactions in a novel way in order
to help people gain a deeper story understanding.

The Thirtieth AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-18)

7747



Model
We developed a novel way to represent stories as sequences
of encoded scenes or events and trained a neural sequence
model on the following representations.

Story representation
Stories are represented as sequences on different time scales.
The event sequence representation focuses on a more fine-
grained encoding of the story, where the relationship be-
tween subsequent character actions is to be modeled. The
scene sequence representation focuses on more coarse-
grained transitions between story scenes and their respective
locations and sets of acting characters. Both representations
are complementary descriptions of the story and are used to
train separate models.

Event sequence In order to understand event-sequence
encoding, the notion of a story event has to be properly de-
fined. We define an event as an action that is performed by
some character in the story, potentially with respect to some
object. The event is then encoded as the vector e = [c, a, o]T ,
where c ∈ R

n is a one-hot vector encoding which of the
characters in the story is acting and n is the number of char-
acters considered in the encoding. The vectors a and o are
word embeddings for the performed action and object, re-
spectively.

We trained the word embeddings on our corpus us-
ing skip-gram word2vec (Mikolov et al. 2013) as imple-
mented in the Python package gensim (Řehůřek and So-
jka 2010). Our trained embeddings are 300-dimensional.
If an event does not contain any explicit object, we set
o = [0, . . . , 0]T ∈ R

300.
Our event vectors are therefore e ∈ R

600+n. In our ex-
periments, we set n = 10; that is, we only consider actions
performed by the ten most prominent characters in the story.
For parsing the characters, actions, and objects from the sto-
ries, we used the spaCy package in Python (Honnibal and
Johnson 2015).

Scene sequence For the scene-sequence encoding, we first
segmented the story into scenes, which we define as a story
part with a constant set of characters at a constant location.
A scene is encoded as the vector s = [l, c, k]T , where l is
a one-hot vector over all the possible locations in the cor-
pus, c ∈ {0, 1}n a binary vector of the characters present in
the scene and k a word embedding of a keyword describing
the scene. The location and characters are identified using
the spaCy package (Honnibal and Johnson 2015), while the
keywords for the scenes are extracted with the TextRank al-
gorithm (Mihalcea and Tarau 2004) as implemented in the
Python package textrank. The character vector is again
c ∈ {0, 1}n, where n is the number of main characters con-
sidered.

Sequence model
To model our sequence encodings and predict the next el-
ement in the sequence, we use a recurrent neural network,
particularly a long short-term memory (LSTM) network

(Hochreiter and Schmidhuber 1997). We use batch normal-
ization (Ioffe and Szegedy 2015) and dropout (Srivastava et
al. 2014) on the LSTM output features and train the network
with the Adam optimizer (Kingma and Ba 2015). Moreover,
we use gradient norm clipping (Pascanu, Mikolov, and Ben-
gio 2012) and a cyclic learning rate scheme (Smith 2017).
The parameters are initialized using the Glorot method (Glo-
rot and Bengio 2010). During training we also use teacher
forcing (Williams and Zipser 1989).

The hyperparameters of the network were optimized man-
ually. We used one LSTM layer with 1,024 units, followed
by a batch normalization layer and a dropout layer with a
keep probability of 0.7. We did not observe any benefit of
using more than one LSTM layer.

Story visualization
We visualize character appearances and interactions in the
existing story input in the form of a graph in order to pro-
vide a rich but still tangible representation of different story
statistics.

Different characters appear in the story and interact with
each other in varying amounts. Moreover, they can convey
different sentiments in their appearances and interactions.
We visualize statistics regarding these features in a summary
graph.

First, we calculate a sentiment value for every scene us-
ing the AFINN lexicon (Nielsen 2011) as implemented in the
Python package afinn. We then use the sentiment informa-
tion for the different scenes to compute average sentiments
for each character. These average sentiments are defined as
the average over the sentiments of each scene featuring a
particular character, i.e.

Sc(ci) =

∑N
j=1 Ss(sj)1Cj (ci)
∑N

j=1 1Cj (ci)
,

where Sc(·) is the character sentiment function, ci is the ith
character, sj is the jth scene, N is the number of scenes,
Ss(·) is the scene sentiment funtion, Cj is the set of charac-
ters present in scene sj and 1A(·) is the indicator function
for membership in set A.

Analogously, the interaction sentiment is defined as the
average sentiment over all scenes in which two characters
both appear, i.e.

Si(ci, cj) =

∑N
k=1 Ss(sk)1Ck

(ci)1Ck
(cj)

∑N
k=1 1Ck

(ci)1Ck
(cj)

.

The graph is then constructed by depicting the charac-
ters as nodes and their interactions as edges. The nodes
are colored according to their respective character sentiment
and the edges according to their interaction sentiment. Both
nodes and edges are scaled in size according to the number
of scenes in which they are present.

The graph is constructed using the Python package
networkx and plotted using matplotlib (Hunter 2007)
(see Fig. 1).
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Table 1: Generated sentences for the predictions from the scene-sequence model for the film Frozen. The sentences were
generated using rule-based logic dependent on the keywords’ part-of-speech tags and the number of characters in the scene. τ is
a temperature parameter regulating the entropy of the output distribution and therefore the “adventurousness” of the predictions.

τ Generated sentence
0.3 Anna and Elsa are at the hallway discussing about the night.

Anna and Olaf are at the street whispering about the night.
Anna is at the kitchen monologuizing about the night.

0.6 Anna and Olaf are at the kitchen debating about the night.
Anna and Kristoff and Olaf and Elsa are at the bedroom arguing about the night.
Anna and Olaf and Elsa are yellow at the car.

1.0 Anna and Hans are at the laundromat talking about the night.
Anna and Kristoff are at the street chatting about the woman.
Olaf is beautiful at the dock/waterfront.

1.5 Olaf is at the armadillo monologuizing about the bounce.
Anna and Sven are happy at the tank turret.
Kai and Sven are at the bank conversing about the apache helicopter.

2.0 Anna and Kristoff are at the makeshift lab conversing about the pledge.
Anna is at the labyrinth singing about the afterthought.
Anna and Kristoff are at the castle debating about the floorboard.

3.0 Anna is about to talk at the downtown theater.
Anna and Kristoff are at the lola’s house arguing about the shoulder.
Anna and Sven are holstered pistol at the hood house.

Experiments
We downloaded 1,054 movie scripts from the Internet Movie
Script Database (www.imsdb.com) and 8,459 novels from
the Project Gutenberg (www.gutenberg.org). All of these
stories were written in English. We randomly withheld 64
stories as a validation set and 80 stories as a test set and
trained our models on the rest.

The number of possible characters to sample was fixed to
10 main characters by design. We noticed that the 10 main
characters contribute more than 90 percent of the actions in
our stories, such that the behavior of any other characters
would likely be hard to learn due to a lack of observations.
There were 2,928 actions, 7,997 objects, 47,577 locations
and 49,247 keywords to sample from, which were extracted
from all the stories in our training set.

Our sequence models have separate softmax output layers
for the prediction of every scene or event feature (character,
location, action, object, keyword). The softmax distribution
we used is defined as

P (y = i|x; τ) = exp(x
Twi

τ )
∑C

k=1 exp(
xTwk

τ )

where x is the output of the penultimate layer, wi is the
weight vector of the last layer associated with class i, C is
the number of classes and τ is a temperature parameter we
introduce to regulate the entropy of the distribution.

With a value of τ = 1, one retrieves the standard soft-
max. Higher values lead to more diversity in the samples
and a more uniformly distributed prediction, while lower
values lead to the opposite. With τ → 0, the distribution
approaches the argmax(xTw) function and with τ → ∞,
the uniform distribution.

We trained the model until our validation set error no
longer decreased and evaluated it on the test set using differ-
ent values for the temperature parameter. It became apparent
that the “adventurousness” of the predictions increases with
temperature. This parameter can be adjusted at prediction
time and can therefore be left for the user to choose.

In order to make the scene predictions more human-
readable, we generated sentences from them using a rule-
based logic. The sentences describe the acting characters be-
ing at some location performing some action. What they do
is dependent on the part-of-speech tag of the keyword.

If the keyword is an adjective, the characters simply gain
that attribute. If it is a verb, the characters are about to per-
form that action. If it is a noun, the characters are convers-
ing about it, where we sample the conversational verb from
a precompiled list at random. Examples of generated sen-
tences from the scene-sequence prediction model are pre-
sented in Table 1.

The predictions exhibit features of real stories to some de-
gree, e.g. the appearance of the same characters throughout
multiple subsequent scenes as well as the fact that characters
usually do not move unreasonably far between their appear-
ances in different scenes.

User study
We recruited 22 people (11 with story writing experience
and 11 naı̈ve users) to test our tool. They were asked to read
the plot summaries of three films that were not included in
our training set, in which we changed the characters’ names
to make recognizing the stories more difficult. Using the par-
tial summaries as a writing prompt, the users were asked to
write the next scene, with the option of using our software
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Figure 1: Character interaction graph for the film Frozen.
The nodes represent the main characters and the edges their
interactions. The nodes and edges are scaled according to the
number of appearances in the film. The character nodes are
colored according to their average sentiment over the whole
story, the edges with respect to the sentiment of the repre-
sented interaction. The most positive sentiments are depicted
in a light blue color, the most negative ones are a bright red.
Neutral sentiments are black. It is apparent that some char-
acters are biased in their sentiment, while others are more
nuanced. It can moreover be seen that the entity parser has
not recognized Elsa and Queen Elsa as the same character
and that there is a large difference in sentiment between the
two personalities. (Best viewed in color.)

for inspiration.
Apart from predictions from our neural network at differ-

ent softmax temperatures, we also included the actual next
scenes from the story prompts as well as predictions that
were generated by sampling randomly from the characters,
locations and keywords. In this user study, we only worked
with the scene predictions from the network and not the
event predictions.

After the writing tasks, the users were asked for their
opinion about the tool along with a few questions about
some additional example stories using our character inter-
action graph visualizations.

For every suggestion that the users got in the writ-
ing task—whether model-generated, random, or “ground
truth”—they could indicate whether they liked it. It can be
seen that the predictions generated at higher temperatures
(τ = 1.0 and τ = 1.5) were not significantly preferred
to random suggestions. This result is consistent with the
fact that the random model is identical to the softmax with
τ → ∞.

Interestingly, the suggestions generated at τ = 0.5 were
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Figure 2: Average rating of suggestions generated by differ-
ent models in the writing task of the user study. The rating
is computed as the percentage of suggestions from a given
model that were liked by the users. The suggestions were
sampled from our model at different softmax temperatures,
from a random model and from the real next scenes in the
film. Error bars indicate standard errors.

slightly (although not significantly) preferred to the real next
scenes in the films (Fig. 2). This suggests that our sequence
model is producing next-scene predictions at least as plau-
sible and coherent as those produced by the professional
screenwriters who wrote the actual films. However, it should
be noted that both the model-produced suggestions and the
real next scenes were liked by the users less than half of
the time, indicating that providing satisfactory inspiration
for writers is a hard task, even when those “suggestions”
come from professionally produced stories.

The users were asked to rate their experience along dif-
ferent dimensions on a five-point Likert scale (Likert 1932).
As mentioned above, on average users were not particularly
fond of any suggestions they got, even if those suggestions
came directly from the professionally produced stories they
were tasked with continuing. This could be due to the fact
that many users did not seem to find the general concept of
getting suggestions helpful (Likert score 2.36 ± 0.29). This
is consistent with the observation that many users reported
their inspirational flow to be interrupted by consulting the
suggestions (Likert score 2.73± 0.26) as well as being con-
fused by them (Likert score 3.91 ± 0.23), which possibly
could have been a side-effect of the timed writing compo-
nent of the study. Nevertheless, the suggestions did spark
mental images (35.5 ± 6.5 percent of the suggestions). The
tool reached a score of 65.5 ± 4.3 on the System Usabil-
ity Scale, which is considered to be near average to slightly
below average (Brooke 1996).
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In the character interaction task, 94.3 percent of the users
managed to successfully identify more- and less-prominent
characters as well as “nice” and “less nice” characters, and
95.5 percent could correctly spot pairs of characters that
had or had not interacted in positive or negative ways. The
users found the visualization to be helpful in answering these
questions (Likert score 4.55± 0.22).

Discussion
Our results suggest that given the right representation of
stories, certain features and correlations over time can be
learned by deep sequence models. Most of these features
are rather generic and apply to most stories, such as the con-
servation of characters over scenes and the geographical an-
chorage of certain characters. It is likely that our data set is
too small to learn more nuanced story features, since roughly
75 percent of the combinations of actions and locations only
appear once in our whole story corpus.

One could possibly say that most stories share a set of a
few simple rules and otherwise contain a multitude of very
complex and specific rules that are common only to a hand-
ful of stories. A larger amount of data would also allow for
the use of a more powerful model, such as a sequence-to-
sequence variational autoencoder (Bowman et al. 2015) or
a sequence generative adversarial network (Yu et al. 2016).
Such models may be better able to abstract rules in the story
world and generate plausible samples.

Our main contribution is the development of different se-
quence encodings of stories. The quality of these encodings
depends largely on the performance of current NLP tech-
niques, which are in turn vital for the quality of the learned
models. Since the field of NLP is arguably still far from
achieving the goal of automated natural language under-
standing (NLU), advances in these areas have the potential
to facilitate better story encodings and hence better models.
It will be exciting to see where research will lead the fields
of NLP and narrative artificial intelligence in the years to
come.

The character interaction graph discards temporal infor-
mation in favor of information about single characters aggre-
gated over the whole story. Different methods have been pro-
posed to generate and analyze character interaction graphs
(Kaminski et al. 2012; Bonato et al. 2016), but they do not
contain sentiment information. Our method, on the other
hand, explicitly incorporates sentiment analysis on the level
of the single characters as well as their interactions.

We believe that this additional information can facilitate
identifying characters that are so biased in their overall sen-
timent as to become “one-dimensional” and uninteresting.
It can also help in spawning ideas for new interactions be-
tween characters, which may not have interacted in the story
yet.

Regarding the sentiment analysis used in this work, it
should be noted that it relied on the use of lexicons, making
it impossible to distinguish between homonyms or the use
of a word in different contexts. There are more accurate and
involved ways to analyze sentiment using contextual infor-
mation (Wilson, Wiebe, and Hoffmann 2005), deep learning
(Glorot, Bordes, and Bengio 2011), and parse trees (Socher

et al. 2013), but these are computationally more expensive
and were not used in our case.

We saw in our user study that it is quite hard to satisfy
people with generated suggestions in a creative writing task.
However, as our model’s predictions fared no worse than the
real next scenes taken from the respective films, we con-
sider our results to be a successful proof of concept. A wider
range of use cases—including open-ended, untimed writing
sessions—will be considered in future work.

We also noted that the standard errors for the ratings in our
user study were quite high, indicating a large variance in the
acceptance of suggestions between different users. Indeed,
some users will be more receptive to inspirational sugges-
tions in their creative process than others. We hypothesize
that those more receptive users could benefit from using our
tool, at least as much as they would from getting suggestions
produced by screenwriters.

Our users seemed to find our visualizations helpful in
gaining a deeper understanding of the stories and found that
they facilitated their answering questions about them. This
suggests that the visualizations could also be helpful in the
creative process, when it comes to analyzing the story in or-
der to spot flaws or weaknesses.

Conclusions
We developed a novel way to encode stories from natu-
ral language into sequences of different features. We have
shown that it is possible to use sequence models, especially
recurrent neural networks, to learn from these story-feature
sequences and predict new story events.

We moreover visualize the stories in novel ways, depict-
ing interactions between characters and their respective sen-
timents. These visualizations can give writers valuable in-
sights into their stories and may help in optimizing the dra-
matic development.

We performed a user study in which participants had to
continue fragments of film stories in a creative writing task.
We showed that samples from our model at low softmax
temperatures are as appealing to those people as the real
next scenes from the respective films. This suggests that
we succeeded at modeling some aspects of story sequences
that maintained a certain “story logic”. Furthermore, we
have shown that our visualizations helped users in gaining
a deeper understanding of different story features.

Our tool provides many features that are currently not
available in any digital story writing assistant and shows
considerable advances over the previous state of the art in
computer-aided creative writing. Our method therefore has
the potential to constitute a valuable addition to the story
writer’s toolbox, especially in cases in which the writer’s
well of ideas has temporarily run dry.
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