
Adapting to Concept Drift in Credit Card Transaction
Data Streams Using Contextual Bandits and Decision Trees

Dennis J. N. J. Soemers,1 Tim Brys,1 Kurt Driessens,2 Mark H. M. Winands,2 Ann Nowé1

1Vrije Universiteit Brussel, 2Maastricht University
1{dsoemers, timbrys, anowe}@vub.ac.be, 2{kurt.driessens, m.winands}@maastrichtuniversity.nl

Abstract

Credit card transactions predicted to be fraudulent by auto-
mated detection systems are typically handed over to human
experts for verification. To limit costs, it is standard practice
to select only the most suspicious transactions for investiga-
tion. We claim that a trade-off between exploration and ex-
ploitation is imperative to enable adaptation to changes in be-
havior (concept drift). Exploration consists of the selection
and investigation of transactions with the purpose of improv-
ing predictive models, and exploitation consists of investigat-
ing transactions detected to be suspicious. Modeling the de-
tection of fraudulent transactions as rewarding, we use an in-
cremental Regression Tree learner to create clusters of trans-
actions with similar expected rewards. This enables the use
of a Contextual Multi-Armed Bandit (CMAB) algorithm to
provide the exploration/exploitation trade-off. We introduce
a novel variant of a CMAB algorithm that makes use of the
structure of this tree, and use Semi-Supervised Learning to
grow the tree using unlabeled data. The approach is evaluated
on a real dataset and data generated by a simulator that adds
concept drift by adapting the behavior of fraudsters to avoid
detection. It outperforms frequently used offline models in
terms of cumulative rewards, in particular in the presence of
concept drift.

1 Introduction

Fraudulent credit card transactions result in significant costs
for companies if they are not detected early (Delamaire,
Abdou, and Pointon 2009). Credit card transactions can be
viewed as a data stream, where large quantities of data arrive
over time. It is typically assumed that human experts can
investigate and provide accurate labels (indicating whether
transactions are fraudulent or genuine) for a small num-
ber of transactions (e.g., 100) every day. Additionally, it is
assumed that labels automatically become available for all
other transactions after a longer delay (Dal Pozzolo et al.
2015a). For example, it can be considered safe to assume
that a transaction is valid if the card holder did not report it
as fraudulent after seven days. Fraudsters can change their
behavior over time in an attempt to avoid detection by a sys-
tem trained to detect older fraudulent behaviors (Dal Poz-
zolo et al. 2014a). This problem, where the distribution of a
data stream is not stationary, is known as concept drift.

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing Fraud Detection Systems (Dal Pozzolo et al.
2014a; 2015a; Lebichot et al. 2016) typically use an ensem-
ble of Machine Learning models trained offline. Every day at
midnight, new models are trained on new sets of labeled data
that have become available since the previous night. Large
quantities of data become “labeled” with a long delay, and
labels of smaller amounts of data from the previous day are
provided by human experts. The transactions labeled by hu-
man experts in these systems are simply the K instances
with the highest predicted reward, where K is the number
of transactions that can be investigated per day. The reward
of a transaction is often chosen to be equal to the monetary
transaction amount if it is indeed fraudulent, or 0 otherwise.
This is the primary evaluation criterion used in this paper.
The reward is sometimes also chosen to be independent of
the monetary transaction amount (Dal Pozzolo et al. 2014a).

In this paper, we aim to address two issues with the sys-
tems as described above. The first issue is that experts only
provide short-term feedback by investigating transactions
that are already predicted to be highly rewarding. Suppose
that fraudsters can create concept drift by changing their be-
havior such that models predict low rewards for their trans-
actions. Those transactions are not selected for investigation,
which means that there is no short-term feedback with la-
bels for those instances. Models trained during the follow-
ing night are unlikely to make better predictions for similar
instances, and it may take up to a week before the card hold-
ers are expected to have noticed and reported the fraudulent
transactions. The second issue is that, even if concept drift is
detected early, it still takes until the following night before a
new model is trained that uses this new knowledge.

We propose to use an incremental Regression Tree learner
(Ikonomovska 2012) to train a model to predict the rewards
of transactions. It is computationally cheap to update this
model directly when new labels are provided by experts,
making it unnecessary to wait until the next night. Addition-
ally, we propose that the problem of selecting which transac-
tion to send to an expert for investigation can be modeled as
a Contextual Multi-Armed Bandit (CMAB) problem (Zhou
2015). This model is not feasible when every instance is
considered as a separate arm, but becomes feasible by view-
ing every leaf node of the Regression Tree as a single arm
containing multiple instances. The CMAB formalization en-
ables the use of a variety of algorithms that provide a balance

The Thirtieth AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-18)

7831



between exploration and exploitation. In the context of this
paper, exploration can be viewed as selecting instances that
are expected to be informative when updating the model,
and exploitation can be viewed as selecting instances that
are expected to have a high reward (i.e. to be fraudulent).

The main contribution of this paper is the idea that a Re-
gression Tree (RT) can be used to create arms in settings
where there are too many if every individual instance is
viewed as an arm. This enables the use of CMAB algorithms
to provide a trade-off between exploration and exploitation
in such settings. Additionally, a new variant of a CMAB al-
gorithm is proposed, which takes the structure of the RT into
account when predicting rewards. Finally, the RT learner is
enhanced with an idea based on Semi-Supervised Learning
(Zhu 2005), which enables it to also learn from unlabeled
data. The proposed approach is evaluated using a publicly
available dataset of real credit card transactions. The ability
to adapt to changes in fraudster behavior is furthermore eval-
uated using a simulator, which was built to generate realistic
data, but also enables fraudsters to adapt their behavior.

2 Preliminaries

This section formalizes the problem setting discussed in this
paper, and the (Contextual) Multi-Armed Bandit setting.

Let (xi, yi) denote a credit card transaction with a unique
index i, where xi ∈ Rd is a d-dimensional real-valued fea-
ture vector, and yi ∈ {0, 1} is a binary class label. yi = 0
denotes that transaction i is genuine, and yi = 1 denotes that
it is fraudulent. Because the class labels for uninvestigated
transactions are not known, we sometimes use only xi to re-
fer to a transaction. At discrete time steps t = 1, 2, . . ., a
human expert becomes available and can investigate a new
transaction. At these time steps, the system should select one
transaction out of all uninvestigated transactions observed so
far, and assign it to the expert. The index of the transaction
selected at time t is denoted by it. The reward obtained per
time step t is defined as r(t) = amount(xit) × yit , where
amount(xit) is a feature in xit that denotes the monetary
amount of the transaction. The primary goal is to maximize
the cumulative reward R(τ) =

∑τ
t=1 r(t) collected over a

large number of time steps τ .
In a Multi-Armed Bandit (MAB) problem, there is a set

of K arms, where each arm is associated with an unknown
reward distribution. At discrete time steps t, a system selects
one of the K arms to pull, which provides a reward sampled
from the reward distribution associated with that arm. The
goal is to maximize the cumulative reward over a long pe-
riod of time. In the Contextual MAB (CMAB) setting, there
are context vectors available at every time step t which are
assumed to be related in some unknown way to the rewards
provided by arms in that time step. The problem setting in
this paper can be viewed as a CMAB problem where every
transaction corresponds to a separate arm. The main problem
with this view is that the number of arms grows too rapidly.

3 Related Work

Existing fraud detection systems for credit card transac-
tions are described in (Delamaire, Abdou, and Pointon 2009;

Dal Pozzolo et al. 2014a; 2015a; Lebichot et al. 2016). One
of the main differences is that those approaches only adapt
to concept drift by training new models offline at midnight,
whereas the approach described in this paper updates in real-
time. Another important difference is that this paper pro-
poses not only to use human experts for exploitation, but also
for exploration. An approach with an incremental model that
can be updated in real-time was evaluated in (Dal Pozzolo
et al. 2014b), but they assumed that the data stream to learn
from is completely labeled. Finally, the majority of the exist-
ing approaches do not use Semi-Supervised Learning (SSL)
techniques to enable learning from the large amounts of un-
labeled data. The main exception is (Lebichot et al. 2016),
in which unlabeled data is used in a learning step for feature
engineering, but not for the training of a predictive model.

Two related problem settings are Active Learning (AL)
(Dasgupta 2011) and Active Search (AS) (Garnett et al.
2011). The goal in AL is to select instances to use for train-
ing an accurate model in such a way that the number of se-
lected instances is minimized. This task is similar to explo-
ration in the problem setting of this paper, but ignores ex-
ploitation. The goal in AS is to select as many instances as
possible that, after selection, turn out to belong to one par-
ticular class of interest (typically the y = 1 class). This is
equivalent to the cumulative reward function in the problem
setting of this paper if it is assumed that every transaction
has exactly the same monetary amount. However, the exist-
ing literature for AS focuses on offline datasets or algorithms
which are not feasible to run in real-time.

A combination of Decision Trees and CMABs was also
recently proposed in (Elmachtoub et al. 2017). They assume
that there already is a CMAB problem with well-defined
arms, and use Decision Trees to model the relationship be-
tween context vectors and sampled rewards. In this paper, a
Decision Tree is used to create arms and enable the use of
any CMAB algorithm in a setting where there were previ-
ously no well-defined arms.

4 Creating CMAB Arms Using Decision Tree
If the problem of selecting which transaction to investigate
can be modeled as a CMAB problem, we can use any ex-
isting CMAB algorithm to address the trade-off between
exploration and exploitation. The main difficulty in apply-
ing CMAB algorithms is that there is no natural concept of
“arms” in this setting. It is not computationally feasible to
treat every transaction as a separate arm in real-time.

The number of arms can be reduced by creating clus-
ters of transactions. Suppose that all transactions are divided
among K clusters. The problem can now be viewed as a
CMAB problem with K arms, by sampling transactions xk

from every cluster k ∈ [1,K] in every time step t, and using
the feature vector xk as context vector for arm k at time t.

CMAB problems are typically easy if the distributions of
rewards per arm are easily separable, and difficult if dif-
ferent arms have overlapping distributions of rewards. Let
r(xi) = amount(xi) × yi denote the reward that would be
obtained if xi were investigated. Suppose that a Regression
Tree T is trained to predict the reward values r(xi) for trans-
actions xi. A learning algorithm for T typically attempts to

7832



create splits in the tree such that every leaf node is assigned
transactions xi that have similar reward values r(xi). This is
done, for example, by creating splits that maximally reduce
the standard deviation among rewards. This means that, if
an accurate tree T can be trained in this way, the resulting
CMAB problem with the leaf nodes of T as arms becomes
an “easy” CMAB problem. This insight is the main reason
for using a Decision Tree to create clusters of transactions,
instead of unsupervised clustering algorithms. In particular,
the Regression Tree learner implemented for this paper is
based on FIMT-DD (Ikonomovska 2012). This is a Regres-
sion Tree learner that can efficiently be updated incremen-
tally in real-time using feedback from human experts.

5 Tree-Boosted Bootstrap

Thompson Sampling
A number of different CMAB algorithms (Li et al. 2010;
Agrawal and Goyal 2013; Eckles and Kaptein 2014) were
evaluated on CMAB problems with leaf nodes as arms in
preliminary experiments. In these experiments, Bootstrap
Thompson Sampling (BTS) (Eckles and Kaptein 2014) has
been found to perform best. This algorithm is used in the
remainder of the paper. An extensive evaluation of other
CMAB algorithms is outside the scope of this paper.

Bootstrap Thompson Sampling

Pseudocode for a variant of BTS is described in Algorithm 1.
It is initialized with a set of J models (for example, J = 100
linear regression models), and a cumulative reward R(τ) =
0. At every time step t, context vectors xa are observed for
every arm a. BTS randomly selects one model jt out of the
J models, and uses it to predict rewards for all xa at time t.
It greedily plays the arm with the highest predicted reward,
resulting in a reward signal r(t). The context vector xat

of
the played arm, and the reward r(t), can be used to update
models. In BTS, they are not used to update each of the J
models in every step, but only some of the J models. This
can, for example, be done by giving every model a probabil-
ity of 0.5 to be updated in every time step. By training each
of the J models on only a bootstrap of the data, it is expected
that different models will start disagreeing with each other
over time. This results in exploration, in the sense that some
models will greedily play arms that other models may not
have selected to play.

Algorithm 1 Pseudocode for BTS.
1: Initialize J models, R(τ) ← 0
2: for t = 1, 2, . . . , τ do
3: xa ← feature vector for every arm a
4: Randomly select one model jt out of J
5: Play arm with highest reward predicted by jt
6: Observe reward r(t)
7: for j = 1, 2, . . . , J do
8: Update jth model using xat

and r(t) w.p. 0.5
9: end for

10: R(τ) ← R(τ) + r(t)
11: end for

ŷA=σ(xTθA)

A

ŷB=σ(xT(θA+θB))

B

ŷD=σ(xT(θA+θB+θD))

D

ŷE=σ(xT(θA+θB+θE))

E
ŷC=σ(xT(θA+θC))

C

Figure 1: Example Decision Tree with logistic regression
models in all nodes. The equations in the nodes denote how
a label can be predicted for any instance inside that node.
BTS with tree-boosting uses the equations in leaf nodes for
predictions.

Tree-Boosting

In Algorithm 1, the J models are shared among all arms;
when one model is randomly selected, it is used to make pre-
dictions for all arms. It is also possible to have a separate set
of J models per arm. The main advantage of this approach is
that models may perform better if they can be trained specif-
ically to model the relationship between context vectors and
rewards for a single arm, instead of having to generalize to
all arms. The main disadvantage of this approach is that a
model only gets feedback if its arm was actually played in a
given time step, and therefore learns less quickly.

In the setting where arms are leaf nodes of a Decision
Tree, the first approach can be viewed as placing a single
(shared) model in the root node, and the second approach
can be viewed as placing one model in every leaf node. In
the literature on offline Decision Tree learning, it is com-
mon to place models in every node of a tree, and combine
all the models on the path from the root node to a leaf for
predictions in that leaf (Quinlan 1992; Malerba et al. 2002;
Gama 2004). We propose a novel variant of this idea, suit-
able for an incrementally updated tree in a real-time set-
ting. The goal is to rapidly learn general models close to the
root node which receive updates in a large number of time
steps (because they cover a large number of leaf nodes), and
slowly learn more specific models close to leaf nodes which
can correct errors made by the more general models. This
idea is referred to as tree-boosting, because the structure of
the tree is exploited for an idea similar to boosting.

For simplicity, suppose that a variant of BTS is used with
J = 1, and an update probability of 1 per time step. We no
longer uses the same model to make predictions for every
arm, but make predictions by combining a series of models
in nodes on the path from root to leaf. Logistic regression
models parameterized by vectors θ are used as base mod-
els. They predict class labels from context vectors x using
ŷ = σ(xTθ), where σ(z) = 1

1+exp(−z) is the standard logis-
tic function. The rewards observed are not binary, but real-
valued. However, because the amount(x) value is known,
it is always possible to multiply or divide by the amount to
convert between binary class predictions and reward values.
Therefore, it is sufficient to train binary class predictors.

An example Decision Tree with tree-boosted logistic re-
gression models is depicted in Figure 1. Every node N has
a parameter vector θN for the logistic regression model in

7833



that node. Suppose that, at time t, a leaf node L is played.
Starting from the root, the context vector xt and observed
reward r(t) are used to update all models on the path to L.
These updates are performed using Stochastic Gradient De-
scent. Consider, for example, that leaf node D in the figure
is played. The feedback is used to update θA, θB and θD, in
that order. Because θA and θB are re-used for predictions in
node D, this means that the feedback was actually used for
three consecutive updates in node D.

6 Semi-Supervised Decision Tree Splits
The FIMT-DD Regression Tree learning algorithm only cre-
ates splits in the tree if it considers the number of labeled ob-
servations to be sufficiently large such that it can create “op-
timal” splits with a desired confidence level. If a leaf node
L does not observe enough labeled instances (for example,
because instances from other leaves keep getting pulled in-
stead), the number of instances in L can grow large. This
can result in a wide variety of rewards within the same leaf
node, which makes the resulting CMAB problem more dif-
ficult. To prevent a single leaf node from representing too
many different transactions at the same time, it is proposed
to use unlabeled data with an idea based on Semi-Supervised
Learning (Zhu 2005) to create extra splits in such nodes.

At certain points in time, the logistic regression models
trained as described in Section 5 are used to predict the re-
wards for all transactions in a given leaf node L. This can,
for example, be done whenever a new transaction is added
to L such that it contains exactly a multiple of 50 instances.
These predictions are presented to the FIMT-DD Regression
Tree learner, as if they were true labels. This enables FIMT-
DD to create new splits in the tree more frequently than if it
only based its splits on labels provided by human experts.

7 Experiments
The proposed approach (Tree-Boosted Bootstrap Thompson
Sampling on an incrementally generated Regression Tree)
is evaluated using a publicly available dataset of real credit
card transactions, and data generated by a simulator. The
task of the system is to select transactions to investigate from
this data at regular points in time. For example, a system can
be allowed to select one transaction after every N seconds if
the data contains timestamps, or one transaction after every
N incoming transactions. The approach is compared to of-
fline models, which are trained to predict the probability of
transactions being fraudulent. They multiply this by trans-
action amounts to compute the predicted rewards, and sort
transactions into a priority queue using these predicted re-
wards. The labeled data used to train these offline models
is also used to build a small initial Regression Tree in our
approach. The following approaches are evaluated:
• XGBoost: An offline model (Chen and Guestrin 2016).
• Random Forest (RF): An offline model (Breiman 2001).

RFs were found to outperform other offline models, such
SVMs and Neural Networks, in other fraud detection sys-
tems (Dal Pozzolo et al. 2014a; Lebichot et al. 2016).

• Random: An approach that uses FIMT-DD to construct
CMAB arms, but randomly selects arms to play.

• TBBTS: Tree-Boosted Bootstrap Thompson Sampling as
proposed in this paper, without extra SSL-based splits.

• TBBTS (SSL) TBBTS with extra SSL-based splits as de-
scribed in Section 6.

The main performance criterion is the cumulative re-
ward collected by a system over the duration during which
data was collected. An alternative performance criterion is
Precision@K, which is the ratio of the total number of in-
vestigations performed (K) that turned out to be fraudulent.

Real Credit Card Transaction Dataset

The real credit card transaction dataset1 (Dal Pozzolo et al.
2015b) contains 284,807 transactions, of which 492 were
fraudulent. These records were gathered over a period of
48 hours. Every transaction has a timestamp, a monetary
amount, and 28 other real-valued, anonymized features.

Figure 2: Cumulative Rewards with 800 seconds per inves-
tigation, 20K training instances (real data).

Figure 2 depicts 95% confidence intervals for the mean
cumulative rewards over time for 25 full runs through this
dataset, with an investigation time of 800 seconds per trans-
action. These 800 seconds result in a realistic total number
of investigations according to field experts (Lebichot et al.
2016). The Upper Bound is the performance of a “cheating”
system which knows the true class labels of instances, but
can still only select one transaction every 800 seconds. At
early timestamps the compared approaches all have a sim-
ilar performance level (except for the Random approach),
but TBBTS and TBBTS (SSL) outperform the offline ap-
proaches by a statistically significant amount at the later
timestamps. This suggests that these approaches are able to
improve (relative to the offline models) over time.

MultiMAuS Simulator Data

MultiMAuS (Zintgraf et al. 2017) is a simulator that was
built to generate synthetic transaction datasets which are
similar to a (not publicly available) real dataset. A major ad-
vantage of generating data through such a simulator is that

1www.kaggle.com/dalpozz/creditcardfraud

7834



Figure 3: Cumulative Rewards with one investigation every 360 transactions, with approximately 30K training instances. Top-
left: all 125 scenarios generated by MultiMAuS. Other plots: 25 scenarios generated against one specific approach.

the data generation process can be modified interactively in
response to the behavior of fraud detection models during
an experiment. This means that it is possible to simulate con-
cept drift caused by fraudsters changing their behavior when
they notice that certain types of transactions get caught.

This type of concept drift was simulated using the follow-
ing procedure. The natural migration of genuine and fraud-
ulent customers into and out of the system was significantly
reduced. Whenever a model catches a fraudulent transaction
in an experiment (meaning that a fraudulent transaction was
selected for investigation), the associated Card ID is banned
in the simulator and a new fraudster is generated. This cre-
ates a “survival of the fittest” effect for fraudsters, where new
fraudsters are generated whenever old fraudsters get caught,
but fraudsters are allowed to remain in the system for a long
time if they do not get caught.

This experimental setup makes it unfair to directly com-
pare the performance of different approaches in terms of cu-
mulative rewards to each other, because different approaches
can be confronted with significantly different scenarios. For
example, the distribution of fraudulent transactions may drift
towards primarily low amounts against one approach, and
primarily high amounts against another approach. The sec-
ond approach would then have a significantly larger upper
bound on the cumulative rewards it could potentially gather
within the same amount of time. Therefore, we stored the
datasets generated in 25 trials against every approach as sce-
narios, and then evaluated the five approaches on all 125 sce-
narios, treating them as non-interactive datasets.

The top-left plot in Figure 3 depicts 95% confidence in-
tervals for the mean cumulative rewards gathered over all
125 scenarios. Each of the other plots depicts the results
obtained by evaluating all approaches on only 25 scenar-
ios generated interactively against one particular approach.
For example, the plot titled “Random Scenarios” depicts the

results on the 25 scenarios generated against Random. In
all plots, the TBBTS and TBBTS (SSL) approaches outper-
form the offline approaches. The performace of offline mod-
els appears to degrade more over time in scenarios gener-
ated against stronger approaches than in scenarios generated
against weaker approaches, such as Random. The scenar-
ios generated against XGBoost are the only ones where RFs
appear to perform slightly better than XGBoost, which in-
dicates that there was indeed pressure on fraudsters in these
scenarios to specifically avoid detection by XGBoost.

The Precision@K metrics recorded at the final time
steps of all experiments are shown in Table 1. In most cases
this metric results in the same ordering of approaches as cu-
mulative rewards, but there are some cases with differences.

8 Conclusions

This paper addresses the problem of deciding which in-
stance to send to a human expert for investigation in a data
stream of credit card transactions. Investigating a transac-
tion reveals whether or not it is fraudulent, and results in
a reward if it is fraudulent. It can be beneficial to inves-
tigate transactions for which a model’s predictions are un-
certain (exploration), and it can be beneficial to investigate
transactions which are predicted with high certainty to be
fraudulent (exploitation). We propose to use incremental Re-
gression Trees to cluster transactions according to their pre-
dicted rewards. This enables the use of Contextual Multi-
Armed Bandit (CMAB) algorithms, with leaf nodes as arms,
to address the trade-off between exploration and exploita-
tion. This would be computationally infeasible if every in-
stance were treated as a separate arm. Furthermore, we pro-
pose a novel variant of a CMAB algorithm which exploits
the structure of the Regression Tree that defines the arms,
and use Semi-Supervised Learning to make use of unlabeled

7835



Table 1: 95% conf. intervals for Precision@K at final time step
Experiment Random XGBoost Random Forest TBBTS TBBTS (SSL)

Real Data (Figure 2) 0.005± 0.002 0.376 0.455 0.669± 0.026 0.724± 0.017
All Scen. (Figure 3) 0.002± 0.001 0.083± 0.015 0.054± 0.015 0.391± 0.040 0.381± 0.030
Random Scen. (Figure 3) 0.003± 0.001 0.184± 0.045 0.120± 0.063 0.548± 0.075 0.524± 0.059
XGBoost Scen. (Figure 3) 0.003± 0.001 0.028± 0.009 0.025± 0.014 0.238± 0.065 0.270± 0.055
RF Scen. (Figure 3) 0.004± 0.001 0.114± 0.032 0.049± 0.017 0.481± 0.103 0.447± 0.073
TBBTS Scen. (Figure 3) 0.003± 0.001 0.049± 0.019 0.037± 0.025 0.351± 0.093 0.330± 0.062
TBBTS (SSL) Scen. (Figure 3) 0.002± 0.001 0.042± 0.013 0.039± 0.024 0.339± 0.084 0.333± 0.055

data when building the tree. The entire approach can be in-
crementally updated in real-time, which enables it to adapt
more quickly to concept drift, using expert feedback, than
models trained offline can.

The approach has been shown to perform competitively
in terms of cumulative rewards with commonly used of-
fline approaches, such as Random Forests, on a dataset of
48 hours of real credit card transactions. Additionally, it has
been shown to outperform such offline models more con-
vincingly on data generated by a simulator which adds extra
concept drift by pressuring fraudsters to adapt their behavior
in an attempt to avoid detection by models.

In future work, cost-sensitive variants of the approach
could be evaluated in settings where instances have variable
investigation costs. It would also be interesting to evaluate
different mechanisms for exploration in CMAB algorithms.
Combining the approach in an ensemble with offline models
may result in a stronger overall system. Finally, the approach
could be evaluated in entirely different domains, such as se-
lecting which image to examine next for a medical expert.

Acknowledgements. This work was funded by the IN-
NOVIRIS project C-Cure. Thanks to Luisa Zintgraf for dis-
cussions about the MultiMAuS simulator. Thanks to the
company (identity undisclosed) that provided the data on
which the MultiMAuS simulator is based.

References
Agrawal, S., and Goyal, N. 2013. Thompson Sampling for Contex-
tual Bandits with Linear Payoffs. In Dasgupta, S., and McAllester,
D., eds., Proc. of the 30th Int. Conf. on Mach. Learning, volume 28
of Proceedings of Machine Learning Research, 127–135.
Breiman, L. 2001. Random Forests. Mach. Learning 45(1):5–32.
Chen, T., and Guestrin, C. 2016. XGBoost: A Scalable Tree Boost-
ing System. In Proc. of the 22nd ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, 785–794. ACM.
Dal Pozzolo, A.; Caelen, O.; Le Borgne, Y.; Waterschoot, S.; and
Bontempi, G. 2014a. Learned Lessons in Credit Card Fraud De-
tection from a Practitioner Perspective. Expert Systems with Appli-
cations 41(10):4915–4928.
Dal Pozzolo, A.; Johnson, R.; Caelen, O.; Waterschoot, S.; Chawla,
N. V.; and Bontempi, G. 2014b. Using HDDT to Avoid Instances
Propagation in Unbalanced and Evolving Data Streams. In IJCNN
2014, 588–594. IEEE.
Dal Pozzolo, A.; Boracchi, G.; Caelen, O.; Alippi, C.; and Bon-
tempi, G. 2015a. Credit Card Fraud Detection and Concept-Drift
Adaptation with Delayed Supervised Information. In IJCNN 2015,
1700–1707. IEEE.

Dal Pozzolo, A.; Caelen, O.; Johnson, R. A.; and Bontempi, G.
2015b. Calibrating Probability with Undersampling for Unbal-
anced Classification. In Symp. on Computational Intell. and Data
Mining (CIDM), 159–166. IEEE.
Dasgupta, S. 2011. Two Faces of Active Learning. Theoretical
Computer Science 412(19):1767–1781.
Delamaire, L.; Abdou, H.; and Pointon, J. 2009. Credit Card Fraud
and Detection Techniques: a Review. Banks and Bank Systems
4(2):57–68.
Eckles, D., and Kaptein, M. 2014. Thompson Sampling with the
Online Bootstrap. ArXiv e-prints.
Elmachtoub, A. N.; McNellis, R.; Oh, S.; and Petrik, M. 2017. A
Practical Method for Solving Contextual Bandit Problems Using
Decision Trees. ArXiv e-prints.
Gama, J. 2004. Functional Trees. Mach. Learning 55(3):219–250.
Garnett, R.; Krishnamurthy, Y.; Wang, D.; and Schneider, J. 2011.
Bayesian Optimal Active Search on Graphs. In Ninth Workshop on
Mining and Learning with Graphs.
Ikonomovska, E. 2012. Algorithms for Learning Regression Trees
and Ensembles on Evolving Data Streams. Ph.D. Dissertation,
Joz̃ef Stefan International Postgraduate School, Ljubljana, Slove-
nia.
Lebichot, B.; Braun, F.; Caelen, O.; and Saerens, M. 2016. A
Graph-Based, Semi-Supervised, Credit Card Fraud Detection Sys-
tem. In Cherifi, H.; Gaito, S.; Quattrociocchi, W.; and Sala, A.,
eds., Complex Networks & Their Applicat. V, volume 693 of Stud.
in Computational Intell., 721–733. Springer.
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
Contextual-Bandit Approach to Personalized News Article Recom-
mendation. In Proc. of the 19th Int. Conf. on World Wide Web,
661–670. ACM.
Malerba, D.; Appice, A.; Ceci, M.; and Monopoli, M. 2002.
Trading-Off Local versus Global Effects of Regression Nodes in
Model Trees. In Hacid, M. S.; Raś, Z. W.; Zighed, D. A.; and Ko-
dratoff, Y., eds., Int. Symp. on Methodologies for Intelligent Syst.,
volume 2366 of LNCS, 393–402. Springer, Berlin, Heidelberg.
Quinlan, J. R. 1992. Learning with Continuous Classes. In Proc.
of the 5th Australian Joint Conf. on Artificial Intell., 343–348.
Zhou, L. 2015. A Survey on Contextual Multi-armed Bandits.
ArXiv e-prints.
Zhu, X. 2005. Semi-Supervised Learning Literature Survey. Tech-
nical Report 1530, Computer Sciences, University of Wisconsin-
Madison, Madison, Wisconsin, United States.
Zintgraf, L. M.; Lopez-Rojas, E. A.; Roijers, D. M.; and Nowé,
A. 2017. MultiMAuS: A Multi-Modal Authentication Simulator
for Fraud Detection Research. In 29th European Modeling and
Simulation Symp. (EMSS 2017), 360–370. Curran Associates, Inc.

7836


