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Abstract

Solar panels sustainably harvest energy from the sun. To im-
prove performance, panels are often equipped with a track-
ing mechanism that computes the sun’s position in the sky
throughout the day. Based on the tracker’s estimate of the
sun’s location, a controller orients the panel to minimize the
angle of incidence between solar radiant energy and the pho-
tovoltaic cells on the surface of the panel, increasing total en-
ergy harvested. Prior work has developed efficient tracking
algorithms that accurately compute the sun’s location to fa-
cilitate solar tracking and control. However, always pointing
a panel directly at the sun does not account for diffuse irradi-
ance in the sky, reflected irradiance from the ground and sur-
rounding surfaces, power required to reorient the panel, shad-
ing effects from neighboring panels and foliage, or changing
weather conditions (such as clouds), all of which are con-
tributing factors to the total energy harvested by a fleet of
solar panels. In this work, we show that a bandit-based ap-
proach can increase the total energy harvested by solar pan-
els by learning to dynamically account for such other factors.
Our contribution is threefold: (1) the development of a test
bed based on typical solar and irradiance models for experi-
menting with solar panel control using a variety of learning
methods, (2) simulated validation that bandit algorithms can
effectively learn to control solar panels, and (3) the design
and construction of an intelligent solar panel prototype that
learns to angle itself using bandit algorithms.

Introduction

Solar energy offers a pollution free and sustainable means of
harvesting energy from the sun. Considerable effort has been
directed toward maximizing the efficiency of end-to-end so-
lar systems, including the design of photovoltaic cells (Li
2012), engineering new photovoltaic architectures and ma-
terials (Li et al. 2005), and solar tracking systems (Camacho
and Berenguel 2012). Solar tracking is especially important
for maximizing performance of solar panels (2008). Given
the proper hardware, a tracking algorithm can compute the
relative location of the sun in the sky throughout the day, and
a controller can orient the panel to point at the sun. Its goal
is to minimize the angle of incidence between incoming so-
lar radiant energy and the grid of photovoltaic cells (King,
Boyson, and Kratochvil 2001; Kalogirou 1996).
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Figure 1: Our intelligent solar panel prototype.

Prior work has consistently demonstrated that panels us-
ing a tracking system increase the total energy by a substan-
tial amount: Eke and Senturk (2012) report that a dual-axis
tracker yielded 71 kW/h, compared to a fixed panel’s yield of
52 kW/h on the same day. They also report energy harvest-
ing gains of dual-axis tracking systems over fixed systems
varying from 15% to 40%, depending on the time of year.
Mousazadeh et al. (2009) report that gains from tracking
can vary between 0% and 100%, while Clifford and East-
wood (2004) report a gain of 23% due to tracking in simula-
tion.

Recent work in solar tracking has focused on develop-
ing algorithms that are sufficiently accurate to inform con-
trol of panels, building on the early work of Spencer (1971)
and Michalsky (1988). The algorithm introduced by Reda
and Andreas (2004) computes the sun’s location in the sky
within ±0.0003◦ of accuracy, achieving the highest degree
of accuracy of any known algorithm, but is computationally
inefficient to the point of impracticality. Grena (2008) over-
comes these inefficiencies with a tracking algorithm that re-
quires an order of magnitude fewer calculations while still
achieving 0.0027◦ of accuracy.

However, prior literature suggests that a variety of factors
contribute to the performance of a panel (King, Boyson, and
Kratochvil 2001), and thus, pointing a panel directly at the
sun is not always optimal behavior. Specifically, the total so-
lar irradiance falling on a panel is a combination of direct,
reflective, and diffuse irradiance (Benghanem 2011). The
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diffuse irradiance typically varies between 15% and 55% of
direct irradiance depending on factors like cloud coverage
and the time of day (Peterson and Dirmhirn 1981), while
a case study by the Cold Climate Housing Research Cen-
ter in Fairbanks, Alaska reports reflective irradiance varying
from 5% to 25% of direct irradiance (Colgan et al. 2010).
The reflective irradiance varies heavily based on the percent-
age of irradiance reflected off the surrounding ground sur-
face: Typical values for this percentage given by McEvoy et
al. (2003) vary between 17% (soil), 25% (grass), 55% (con-
crete), and 90% (snow). Additionally, changing weather and
atmospheric conditions can affect the optimal panel orien-
tation (Kelly and Gibson 2009), as well as shading effects
from neighboring panels and foliage (Passias and Källbäck
1984). Thus, optimal performance may involve prioritizing
reflective or diffuse irradiance when direct sunlight is not
available. Other shortcomings of the classical tracking ap-
proach include the need for additional hardware, limited
time-periods of accuracy (some trackers are only accurate
until 2023, for instance), and ignoring the power cost of re-
orienting panels.

In this work, we advocate for the use of machine learning
to optimize solar panel performance. A learned solar panel
controller can account for weather change, cloud coverage,
power use, shading effects, and diverse reflective indices
of surroundings, offering an efficient yet adaptable solution
that can optimize for the given availability of each type of
solar irradiance regardless of the location or year. In partic-
ular, we take the non-sequential contextual bandit problem
to accurately model the problem of orienting solar panels to
maximize energy gathered. We also explore the use of a Re-
inforcement Learning (RL) approach to gain insight into the
advantage of modeling the sequential movements of the sun,
panel, and weather.

Our contribution is threefold:

1. The advancement of a relevant problem as an application
area for bandits and RL, including a simulation for evalu-
ating learning methods.

2. The validation of the utility of a contextual bandit ap-
proach for solar panel control in simulation.

3. The design and construction of an intelligent solar panel
prototype, which learns to orient itself over time to maxi-
mize energy.

Background

First, some background on solar tracking, bandits, and RL.

Solar Tracking

The amount of solar radiant energy contacting a surface on
the earth’s surface (per unit area, per unit time) is called irra-
diance (Goswami, Kreith, and Kreider 2000). We denote the
total irradiance hitting a panel as Rt, which, per the model
developed by Kamali, Moradi, and Khalili (2006), is approx-
imated by the sum of the direct irradiance, Rd, diffuse irra-
diance (light from the sky), Rf , and reflective irradiance, Rr

(reflected off the ground or other surfaces). Each of these

components is modified by a scalar, θd, θf , θr ∈ [0, 1], de-
noting the effect of the angle of incidence between oncom-
ing solar rays and the panel’s orientation, yielding the total:

Rt = Rdθd +Rfθf +Rrθr. (1)

Additionally, the components Rd and Rf are known to
be effected by cloud coverage (Li, Lau, and Lam 2004;
Pfister et al. 2003; Tzoumanikas et al. 2016). There is lit-
tle consensus regarding a precise model of how cloud cov-
erage effects these values, in part due to the high variance in
cloud composition and coverage. We anticipate that adverse
weather conditions can only help improve the learner’s per-
formance relative to existing baselines, since classical panel
controllers exhibit the same behavior regardless of weather.

A controller for a solar panel seeks to maximize total ir-
radiance Rt hitting the panel’s surface. Solar tracker con-
trollers orient the panel so that its normal vector is pointing
at the sun. For an in depth survey of solar tracking tech-
niques, see the work of Mousazadeh et al. (2009).

Bandits

We model the problem of maximizing a solar panel’s energy
intake as a non-sequential contextual bandit problem intro-
duced by Wang, Kulkarni, and Poor (2005). This setting ex-
tends the classic multi-armed bandit problem (Gittins 1979)
to include a context matrix X containing a feature vector
for each action. That is, each column of X corresponds to
each action’s context: the entry Xi,j denotes the i-th feature
of action aj . We let xa denote the context vector associated
with action a. At each time step, the agent chooses an ac-
tion a ∈ A, and receives payoff according to an unknown,
possibly stochastic function, R(x, a). The agent’s goal is to
maximize total payoff over the course of its action choices.
Here, in addition to the typical learning problem of induc-
tion, agents face the exploration–exploitation dilemma (but
do not need to learn their estimates from delayed reward as
is the case in RL). The context vector for each action is the
received percept from the environment. (There is no differ-
ence in contexts across actions for the solar problem.)

The contextual bandit is an appropriate model for the
problem of maximizing solar radiant energy since decisions
made at each time step are largely independent of one an-
other: energy received by the panel primarily depends on
the most immediate action taken by the agent, not by a long
history of actions.

Reinforcement Learning

To explore the effects of modeling the environment as se-
quential, we also experimented with RL, a computational
learning paradigm in which an agent learns to make deci-
sions that maximize an unknown reward function through
repeated interaction with the agent’s environment. RL usu-
ally models the environment as a Markov Decision Pro-
cess or MDP (Puterman 2014), which is a five tuple,
〈S,A,R, T , γ〉, where:

1. S is a set of states,
2. A is a set of actions,
3. R : S ×A �−→ R is a reward function,
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4. T (s′ | s, a) is a probability distribution on next states
given a state and action,

5. γ ∈ [0, 1) is a discount factor, indicating how much the
agent prefers immediate reward over future reward.
The solution to an MDP is called a policy, denoted π :

S �−→ A. Similarly to the bandits problem, the agent’s goal
is to solve for a policy that maximizes long term expected re-
ward, defined by the value function, V ∗ : S �−→

[
0, RMAX

1−γ

]
,

given by the classic Bellman Equation:

V ∗(s) = max
a

(
R(s, a) + γ

∑
s′

T (s′ | s, a)V ∗(s′)

)
.

Also of interest is the action-value function, Q∗ : S ×
A �−→ R, which specifies the long term expected reward of
executing an action in a state and behaving optimally there-
after:

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s′ | s, a)V ∗(s′). (2)

For further background on RL, see the work of Sutton and
Barto (1998) and Kaelbling, Littman, and Moore (1996).

Learning Algorithms

Due to its simplicity and efficiency, we experiment with the
LinUCB algorithm developed by Li et al. (2010). LinUCB
adapts the core ideas of the UCB (Upper Confidence Bound)
algorithm (Auer, Cesa-Bianchi, and Fischer 2002) to deal
with contexts. At a high level, LinUCB assumes the under-
lying reward is determined by a linear payoff matrix θ and
maintains a running estimate θ̂. The critical piece of the al-
gorithm is its exploration strategy, which calculates a con-
fidence interval on the difference between the agent’s esti-
mate of the expected reward and the actual return, which is
factored into an overall score for each action. At each round,
the agent selects the action with max score according to:

π(s) = argmax
a∈A

(∑
i

xa
i ŵ

a
i + σa

)
, (3)

where σa represents the confidence interval associated with
action a.

SARSA (Rummery and Niranjan 1994) maintains an esti-
mate of Q∗ via updates after each experience 〈s, a, r, s′, a′〉,
updating according to the rule:

Q̂(s, a) = (1− η)Q̂(s, a) + η(r + γQ̂(s′, a′)), (4)

where η ∈ [0, 1] is a learning rate. The linear approxima-
tor extends tabular SARSA to domains where states are de-
scribed by feature vectors, s = [s1 s2 . . . sk]. Here, Q̂
is parameterized by a set of k-vectors wa, where each vector
corresponds to action a’s parameters across the state vari-
ables. We pair SARSA with a typical ε-greedy policy.

We chose these two algorithms to illustrate that online,
efficient, and lightweight algorithms can be effective in the
solar domain. We chose not to experiment with any Deep
RL approaches like the DQN (Mnih et al. 2015), as Deep

RL typically requires more computational power (and often
GPUs, which expend more energy), which may be unavail-
able or limited in our setting. Evaluating the relative data and
energy efficiency is a topic for further exploration.

Simulated Experiments

We introduce a simulated environment to validate the use of
learning algorithms for solar panel control. There are four
stages to the simulation (1) Computing the sun’s location in
the sky, relative to the panel, (2) Computing Rd, Rf , and Rr,
(3) Computing θd, θf , and θr, (4) Generating percepts.

The solar panel control problem is modeled by an MDP
where the energy received at each timestep defines the re-
ward and the actions change the panel’s angle. We allow for
two types of state description:

1. simple Four variables describing the orientation of the
panel and the angles describing the relative location of
the sun in the sky.

2. image: 256 variables denoting greyscale pixel intensities
of a 16x16 synthesized image of the sky with cloud cover.
Example images appear in Figure 2.

Figure 2: Example images given to the learning agents.

The learning agents have two different action spaces de-
pending on the number of axes of freedom offered to the
panel and the type of agent. In the single axis case, SARSA
has three actions: tilt forward, tilt back, and do nothing. Lin-
UCB has one action for each possible discrete orientation of
the panel. In the dual axis case, the RL agent has two ex-
tra forward and back actions that allow the panel to rotate
along the other axis, and the bandit algorithm has an action
for each possible orientation along both axes.

We set each panel action to move the panel 5◦ in the spec-
ified direction, where the agents take an action every five
minutes of simulated wall clock time. We set the reflective
index to 0.55 (the index of concrete), the uncertainty param-
eter of LinUCB to 2.0, and ε and η to 0.1 and 0.05 respec-
tively for SARSA. We used an annealing schedule where:

ηt = max
{
(0.0001 ∗ t ∗ η0)2, 0

}
,

εt = max
{
(0.0001 ∗ t ∗ ε0)2, 0

}
,

with t denoting the current timestep of the agent’s learn-
ing process. For more details on the simulation, see ear-
lier versions of this work (Abel, Reif, and Littman 2017;
Abel et al. 2017).

We primarily experimented with a single-axis panel in
simulation to parallel our prototype. We compare the ef-
fectiveness of a traditional solar tracker—Algorithm 2 of
Grena (2012)—(grena-tracker), the contextual bandit
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(a) Alaska (b) New Orleans (c) Australia (d) Japan

(e) Alaska (f) New Orleans (g) Australia (h) Japan

Figure 3: Cumulative reward for simulated experiments for the simple percept (top) and image percept (bottom).

approach (lin-ucb), two RL approaches (sarsa-lin,
sarsa-lin-γ0), and a fixed tracker (fixed).

We ran each simulated experiment in four different loca-
tions on Earth in 2020: Juno AK, New Orleans LA, Syd-
ney Australia, and Tokyo Japan. We ran each agent in an
episodic fashion; each episode consisted of the same 24
hours of daylight (skipping nighttime). We repeated each ex-
periment 10 times and report 95% confidence intervals. All
of our code for reproducing results (and continued experi-
mentation with the simulation) is publicly available.1

Simulated Results

Results for the single axis experiments with simple percepts
are shown in the top row of Figure 3. Notably, lin-ucb
performs competitively with the baselines across the board.
In Australia, Alaska, and New Orleans, we see lin-ucb
improve over all other approaches. In Japan, after a num-
ber of episodes, the policy found by lin-ucb improves
substantially and separates itself from the fixed panel and
RL agents but still performs worse than grena. Further, we
note there is little distinction between myopic SARSA (with
γ = 0) and sequential SARSA, suggesting that, at least in
simulation, modeling the problem as sequential is not useful.

The results of the second experiment (with image per-
cepts) are shown in the bottom row of Figure 3. The algo-
rithms perform comparably to the prior experiment, suggest-
ing that the added complexity of the image percept doesn’t
change the difficulty of the learning problem. Further, we
note that, in Japan, LinUCB actually perform better with the
image percepts.

To better diagnose results, we illustrate the ratio of each
energy type acquired. The table in Figure 4 summarizes av-
erage energy accumulated of each type in New Orleans for

1https://github.com/david-abel/solar panels rl

the simple percept experiment, which is representative of
ratios in other experiments. The advantage of lin-ucb
comes from both direct and reflective energy—this is due
to the fact that the grena tracker optimizes for a proxy cri-
teria: minimizing the distance between the panel’s normal
vector and the angle of the sun. Conversely, the learner acts
so as to maximize the cumulative energy directly, better en-
abling it to take advantage of available energy.

We also conducted proof-of-concept experiments for
the dual axis system in Alaska and Japan. The results
are shown in Figure 5. We increased the panel angle
of movement from 5◦ to 20◦ to limit LinUCB’s ac-
tion space. The grena-tracker consistently outper-
formed the fixed-panel in all dual-axis experiments
by anywhere from 30% to 100% (including results not
shown). This reinforces the claim that tracking helps most
consistently when two axes of movement are available
(contrasted with the single-axis experiments where the
grena-tracker occasionally performs worse than the
fixed-panel). Despite the increase in learning difficulty,
lin-ucb learns a policy that is not too much worse than
the grena-tracker even with a small sample budget.

The simulation is useful for guiding algorithmic design
but does not faithfully model every detail of the real world
problem. Most notably, the effect of weather on cumulative
irradiance, which is significant, is absent from the simula-

Approach Direct Diffuse Reflective

lin-ucb 1382 102 175
sarsa 1182 115 73
grena 975 112 105

Figure 4: Energy breakdown in New Orleans.
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(a) Alaska (b) Japan

Figure 5: Cumulative reward for dual axis methods in se-
lected locations.

tion. Since learning methods can dynamically accommodate
a variety of circumstances presented by different weather
patterns, foliage, air pollution, and shading effects, we ex-
pect learning approaches to improve. Conversely, the clas-
sical tracking approaches will execute the same control re-
gardless of changing weather conditions. Thus, we expect
improvements on the prototype to be even larger (and more
consistent across locations) than those in simulation.

Prototype

We constructed a physical prototype of a learning solar
panel, shown in Figure 1. The prototype is a simple single-
axis solar tracker with a linear actuator rotating the vertically
mounted panel along the north-south axis. The 18-inch ac-
tuator orients the panel by extending up and down, enabling
nearly the full 180◦ degrees of motion. Learning algorithms
and baselines were executed on a Raspberry Pi single-board
computer, which relayed commands to and received energy
data from an Arduino microcontroller. The panel was con-
nected to a solar charge controller and a 12V battery, which
powered the control electronics. The panel was set to move
in intervals of 0.1 radians (5.8◦), as measured by an ac-
celerometer mounted on the panel itself. Each agent waited
for one minute to collect reward data before taking another
action, and agents were switched every thirty minutes. Vi-
sual percepts were acquired via a USB webcam whose out-
put was downsampled to 16x16 grayscale images.

We evaluated our learning approaches against baselines
on the roof of the Brown Center for Information Technology
in Providence, RI over the course of a week, wherein each
control approach got blocks of time to control the panel dur-
ing any given day. Naturally, real world data is more time
consuming to collect than in simulation. Additionally, iterat-
ing on and improving the reliability of our control electron-
ics required interruption of the learning process for repairs
and upgrades. As a result, we were only able to collect data
over the course of several hours of continuous learning per
agent, rather than the 24 hours in the simulated experiment.
This rendered agents vulnerable to behavior spikes due to
brief intervals of cloud cover or shading from tall buildings
near the panel.

Energy gathered by each agent over the course of a three-
hour period on September 9, 2017 is displayed in Figure 7.
The agent controlled by lin-ucb handily beats the other
agents, but plotting the results per timestep as in Figure 6

Figure 6: Energy collected per 1-minute timestep by each
approach over the course of a day controlling the panel.

Approach Total Energy Gathered (J)

lin-ucb 77103.19
sarsa 12219.55
grena-tracker 26600.33

Figure 7: Total energy collected.

shows the effects of limited observation time and environ-
mental change on results. The large variance in lin-ucb
performance during an observation period shows the agent
exploring different panel positions. However, the similar-
ity in performance between the grena tracker and sarsa
likely indicates that both agents were affected by cloud cover
or other shading.

The data collected is limited enough that no valid con-
clusions can be drawn—however, we note that lin-ucb
performs comparably to the fixed-policy grena tracker in
shade-free observation periods. A natural next step is to
continue data collection, extending learning intervals into
days for each agent. We also plan to modify our single-
axis tracker to allow rotational motion across a second axis,
giving it a greater ability to track the sun while simultane-
ously increasing the size (and difficulty) of the posed learn-
ing problem.

Conclusion

We demonstrated the benefits of using a learning approach to
improve the efficiency of solar panels over established base-
lines. We introduced a simulation to test learning approaches
for solar energy harvesting with solar panels. Lastly, we de-
scribed the design and implementation of a functioning RL
controlled solar panel, with preliminary findings about its
performance with learning algorithms.
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