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Abstract

Estimating economic and developmental parameters such as
poverty levels of a region from satellite imagery is a chal-
lenging problem that has many applications. We propose a
two step approach to predict poverty in a rural region from
satellite imagery. First, we engineer a multi-task fully convo-
lutional deep network for simultaneously predicting the ma-
terial of roof, source of lighting and source of drinking water
from satellite images. Second, we use the predicted develop-
mental statistics to estimate poverty. Using full-size satellite
imagery as input, and without pre-trained weights, our mod-
els are able to learn meaningful features including roads, wa-
ter bodies and farm lands, and achieve a performance that is
close to the optimum. In addition to speeding up the training
process, the multi-task fully convolutional model is able to
discern task specific and independent feature representations.

Introduction

Developing countries spend a significant amount of re-
sources in planning and implementing policies and schemes
for poverty alleviation. The primary sources of data, if and
when used, for devising these schemes are ground level sur-
veys, such as the decennial census, of socio-economic pa-
rameters. However, collecting extensive statistics is a sig-
nificant exercise in manual effort and monetary resources
resulting in infrequent sampling. Therefore, timely and ac-
curate data are often not available at the time of formulating
policies. This may lead to ineffective implementation and, at
times, even wasteful expenditure. A timely, inexpensive and
accurate source of data that is readily available should help
in addressing some of these issues.

Satellite imagery is one such cost effective data-source
that provides a wealth of information for learning develop-
mental conditions of a region. The ever-increasing resolu-
tion of satellite imagery and relatively easy access to it in the
public domain make it a potential resource. Figure 1 presents
the satellite imagery for rural areas from different parts of In-
dia. In the first column, the image on the top shows a region
having houses with concrete roofs (Figure 1 A1), whereas
the image on the bottom shows a region with thatch-roofed
houses (Figure 1 A2). The second column illustrates con-
trasting images of two regions classified as having 100%

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Regions with (A1) concrete roofs and (A2) thatch
roofs, (B1) 100% electricity and (B2) 0% electricity for
lighting, and (C1) 85.9% households with tap water and (C2)
99.1% with river/canal as drinking water source. Distinct vi-
sual features in satellite imagery can be associated with the
presence or lack of economic development.

electricity (Figure 1 B1) and 0% electricity (Figure 1 B2)
for lighting. The last column shows regions with tap water
(Figure 1 C1) and a river or a canal (Figure 1 C2) as a major
source of drinking water. There are distinct visual features
that can be associated with the presence or lack of economic
development. For instance, roads and streets are visible in
satellite imagery and correlate with the level of economic
development. Further, soil color, roof material, water bod-
ies, farmland etc. are also visible and may provide useful
information about the level of development in a region. The
primary objective of this study is to automatically learn vi-
sual features in satellite images indicative of development
and poverty and build models that can predict poverty in re-
gions of India reliably.

Our main contribution is a two step approach for poverty
prediction. First, we engineer a multi-task fully convolu-
tional model to predict the material of roof, source of light-
ing and source of drinking water from the satellite imagery
of a village. Unlike income or poverty data, the values for
these parameters are available at the village level in the In-
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dian census of 2011 and hence provide a larger dataset for
training. Moreover, these parameters correlate with visual
features in satellite imagery, making them a good choice
for our study. Second, we train a model to predict the in-
come levels (a direct indicator of poverty) using the pre-
dicted developmental parameter outputs of the first model.
The multi-task fully convolutional model enables us to study
the relationships between the features learned for the predic-
tion of different developmental parameters. The proposed
architecture is flexible so as to learn shared and indepen-
dent representations for the different tasks, and at the same
time reduces the total computation time of training and pre-
diction in comparison to single task models. The results
presented in this paper clearly support the effectiveness of
this approach. In addition, our experiments suggest that pre-
dicting poverty levels from multiple developmental param-
eters is more reliable than using a single parameter, an ap-
proach that is found in existing literature (Xie et al. 2015;
Abelson, Varshney, and Sun 2014).

The source code used for our study, supplementary mate-
rial and full-size versions of satellite images in this paper are
available at following GitHub repository
https://github.com/agarwalt/satimage.

Related Work
Aerial and satellite imagery has been extensively studied in
the context of image segmentation, labeling and object iden-
tification (Bruzzone and Demir 2014; Huang et al. 2015;
Iovan, Boldo, and Cord 2008). Deep learning, applied ef-
fectively in diverse computer vision problems, has been suc-
cessfully utilized for segmentation and classification tasks
on satellite imagery such as division of terrain into classes
like ground, water, vegetation and buildings (Längkvist et
al. 2016; Paisitkriangkrai et al. 2016) and feature selection
(Zou et al. 2015).

Recently, an interesting direction of investiga-
tion using satellite images has emerged, where
satellite images are used to predict statistics
such as poverty or income (Xie et al. 2015;
Abelson, Varshney, and Sun 2014). These studies sug-
gest the feasibility of predicting poverty related parameters
from satellite imagery using nighttime light intensity (Xie
et al. 2015) or roof type (Abelson, Varshney, and Sun
2014) as a “proxy”. Xie et al. build on a convolutional
neural network trained on the ImageNet dataset by adding
additional layers to the model, and training the augmented
model to predict the nighttime light intensity in a region
using its daytime satellite imagery. The features learned by
this model are then used in a new model to predict poverty
levels. This transfer of knowledge overcomes the shortage
of training data for directly predicting poverty levels from
satellite imagery. However, nighttime light intensity values
do not show significant variation over rural villages, and, as
observed by Xie et al., have magnitudes close to zero for
a large fraction of such villages. Developmental statistics
collected on the ground are more detailed, show greater
variation and more accurately represent the socio-economic
situation of a region. Using more than one developmental
statistic also makes our models more robust. Abelson et

al. use the fraction of thatched roofs in a satellite image
to estimate the poverty in a region. Template matching is
utilized to detect roofs in 400 × 400 images. The model
to predict the percentage of thatch-roofed households
in an image is trained on crowdsourced labeled images.
In contrast, our approach does not require any manual
annotation of images. Nischal et al. (Nischal et al. 2015)
correlate nighttime light intensity calculated from a single
image of India with census data at the state level only. On
the other hand, we estimate statistics at a significantly finer
level of villages and sub-districts1.

Dataset

The 2011 Census of India, data from which we utilize in this
study, includes statistics about number of households, type
of roof, source of lighting and drinking water, possession of
assets, and more for all rural regions in India. In this study,
we choose statistics related to the major source of drink-
ing water, major source of lighting and the type of roof of
households as indicators of economic progress of the most
populous state of India, Uttar Pradesh. This state comprises
109, 980 villages and wards. Income statistics for rural re-
gions at the sub-district level2 are drawn from the publicly
available Socio-Economic Caste Census of 2011.

We query the Google Geocoding API to obtain coordi-
nates of the center of a village as well as the box-bounding
latitudes and longitudes(geocodes) from its address in the
census data. We then utilize the Google Static Maps API
to extract images for the villages from the determined
geocodes. We select a sufficiently high zoom level, maxi-
mizing the coverage of villages and the level of detail given
the image-size constraints. The 1920×1920 sized images, at
zoom level 16, fully cover 67.46% (66, 135) villages. Each
image spans a ground surface area of approximately 19 km2.
To the best of our knowledge, this is the first study to re-
port deep learning experiments on images of size orders of
magnitude larger than that of images in previous work (e.g.
400 × 400 in the study by Xie et al.). In order to remove
images with imperceptible or without any visual features in-
dicative of human settlement, we filter this dataset to 47, 120
villages by including only villages with at least 100 house-
holds. We use this dataset to train, tune and test our models.

Predicting Developmental Statistics

We divide our prediction task into two parts and train sepa-
rate models for each part. Our first task consists of training
a multi-task model to predict the material of roof, source of
lighting and source of drinking water in a region. For our
second task, we create a model to predict the household in-
come level in a region using the material of roof, source of
lighting and source of drinking water in the region as inputs.

1A sub-district is a set of villages.
2Each sub-district in Uttar Pradesh comprises, on average, 212

villages.
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Multi-task Learning

Multi-task learning involves learning multiple tasks simul-
taneously while exploiting the similarities and differences
among the tasks. A multi-task model can enable the learn-
ing of a better input representation for a particular task than
a single task model since it can potentially take advantage
of information from other related tasks. Constraining the
input representation to be shared across tasks can also be
seen as a form of regularization and can lead to features
which produce lower generalization errors for the multiple
tasks (Caruana 1998). This technique enables the transfer
of knowledge among the tasks and in effect, increases the
training data for each task. In this study, we use a multi-task
model to predict (1) the roof type, (2) source of lighting and
(3) the source of drinking water for rural villages.

Formally, let (Xt, Y t)Tt=1 be a set of T tasks. Xt are the
training examples for task t and Y t are the targets that have
to be learned for the task. In the specific form of multi-task
learning we employ in this study, all tasks share the same
training examples, i.e., X1 = X2 . . . = XT = X . How-
ever, each task has a different target. We propose a multi-
task fully convolutional deep learning model with the initial
3 convolutional layers shared across the tasks followed by
T = 3 task-specific branches. Each task specific branch, in
turn, has 8 convolutional layers. The output layer of each
task specific branch produces a tuple of values, which can
be compared to the true target. The cross-entropy loss func-
tion is applied on the task specific outputs and the errors
propagated backwards into the task-specific branches. This
architecture is illustrated in Figure 2A. Instead of creating
task specific branches, one could potentially learn a model
with a single layer that outputs the targets of all the tasks
together. However, this will increase the number of param-
eters to be learned at the output layer and further assumes
that all the outputs are related to each other in some manner.
In addition, the multi-task model reduces the total compu-
tation time of training and prediction in comparison to three
separately trained equivalent single task models (Figure 2B).

The input to the multi-task network is a 1920× 1920 im-
age of a region. We do not perform any enhancement op-
eration (such as contrast-stretching) on the image before it
is fed to the network. The output of the network is a tuple
of tuples Oi = (o1i , o

2
i , o

3
i ), one each for the three tasks

– roof-type, water-source and lighting-source – for each
village i in the training dataset. Each sub-tuple oti com-
prises values summing to one, each value representing a
category and indicating the fraction of households in a vil-
lage belonging to that category. For instance, the sub-tuple
(0.75, 0, 0, 0, 0, 0, 0, 0.25, 0) for the task roof type repre-
sents a region with 75% households with roofs made of
grass/thatch/bamboo/wood/mud, and 25% households with
concrete roofs. The sub-tuples for source of lighting and
source of drinking water are similarly defined. The multi-
task model, in summary, outputs 24 values (9 for roof type,
6 for source of lighting and 9 for source of drinking water)
as three probability distributions, one distribution per task.
The details about the categories for each task can be found
on the project website.

We train the multi-task model for rural villages in Uttar

Figure 2: The architecture of (A) the multi-task model and
(B) the single task models.

Pradesh with at least 100 households. From the 47, 120 vil-
lages so obtained, we construct training, test and validation
datasets by taking approximately 80%, 10% and 10% of the
total number of villages. The division is approximate be-
cause instead of dividing villages randomly, we divide sub-
districts. Hence, each sub-district lies entirely in either the
training, test or validation set. We use the multi-task model’s
outputs for our poverty prediction task, and poverty/income
statistics are available at the subdistrict level. By choosing
a consistent division strategy for data for both our tasks, we
are able to avoid any bias in the evaluation of the poverty-
prediction model by using the data points in the test set for
the multi-task model for evaluating the poverty-prediction
model as well. Hence, no village from the training set for the
multi-task model occurs in the validation set for the poverty-
prediction model.

Model Architecture and Training

It is observed across a spectrum of computer vision tasks
that lower layers of deep convolutional networks learn
task-independent features such as edges, whereas features
learned in layers close to the output layer are task-specific.
The multi-task model enables the learning and use of com-
mon features together for reduction in training time by a fac-
tor of 3 over the total time for training three separate single-
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task models, while allowing to distinguish between features
learned in the task-specific branches of the model. Since
the model is fully-convolutional, it requires fewer parame-
ters than an equivalent fully-connected model and results in
faster training. The shared part of the model consists of 3
convolutional “blocks”. A convolutional block comprises a
convolutional layer, a batch normalization layer, a ReLU ac-
tivation layer, an optional pooling layer (window size 2 × 2
and stride of 2 × 2) and a dropout layer, in that order. For
each convolutional layer, we set an L2 weight decay of 0.001
and a maxnorm constraint of 4 (Srivastava et al. 2014). The
task specific branches include 8 convolutional layers which
successively reduce the output size to equal the number of
classes for a particular task (9 for roof type, 6 for source of
lighting and 9 for source of drinking water). The dropout is
set to 0.2 for the deepest shared block, 0.2 for the first five
task-specific convolutional layers and 0.3 for the last three
layers.

We use gradient descent with mini-batch and the Adadelta
optimizer (Zeiler 2012) for training. The model is trained for
125, 156 steps (192 hours on an NVIDIA TITAN X GPU).
The model is presented with 20 images at every step. The
minimum validation loss occurs at the 95, 268th step and
further training leads to overfitting. During forward propa-
gation, the outputs at the branching points are replicated and
passed on to each task specific branch. During backpropaga-
tion, errors from the task specific branches are averaged at
the last shared layer before further propagation backwards.
The average validation loss across the three tasks is used
for early stopping. Additionally, we indirectly evaluate the
quality of predictions of the multi-task model by utilizing
the second model to predict poverty.

Visualizing the Learned Representations

We analyze the filter responses of the multi-task fully con-
volutional model to understand the representations learned
by the model. In the multi-task model’s first block, filters
learn edges with different orientations. Figures 3 (1) and 3
(2) show differently oriented edges for different filters for
a particular region. This is consistent with observations re-
ported in the literature for computer vision tasks and thus
provides additional validation for our training procedure. In
the second and third blocks, more complex albeit generic
features including roads, settlements and farmland are high-
lighted in the filter activations (Figures 3 (3) and 3 (4)). In-
terestingly, the “Google” watermark is not highlighted in the
filter activations in the shared part of the multi-task model.
In summary, task-independent features are learned in the
shared part of the model.

On the other hand, we expect the filter activations for the
task-specific branches to highlight objects of relevance to the
respective tasks. Figure 4 illustrates the filter responses for
the second convolutional layer in the task specific branches
for each of the three tasks3. The filter responses for these
layers are smaller than the input image by a factor of 16.
For the branch corresponding to roof type (Figures 4 A1

3Additional illustrations of filter responses have been docu-
mented on the project GitHub repository.

Figure 3: Filter activations for the multi-task model’s shared
layers for a region. Filters for activations in (1) and (2) are
present in the first convolutional layer, and clearly show that
edges of two different orientations have been learned. Fil-
ters for activations in (3) and (4) are present in the second
and third convolutional layers respectively, and segment the
image into its constituents such as human settlements and
farmlands.

and B1), only human settlements are highlighted. For in-
stance, roads and canals are completely hidden in the fil-
ter responses. For the lighting source prediction task branch
(Figures 4 A2 and B2), in addition to settlements, roads are
highlighted prominently. This observation points to a corre-
lation between presence of roads in a village and the source
of lighting. It is important to note here that the color of an
object in the satellite image is not as important as the kind of
the object itself. Roads and settlements have different colors,
and roads are not highlighted in the filter activations for roof
type prediction. For the branch corresponding to the drink-
ing water source prediction task (Figures 4 A3 and B3), set-
tlements are still highlighted, although not as prominently
as in the other two branches. Farmland – perhaps related to
presence of tube-wells or hand-pumps – and roads – pos-
sibly related to presence of tap water – are visible. More
importantly, the canal in top right corner in Figure 4 B is not
visible in the activations for the first two branches but can be
seen to leave an impression in the third branch’s filter acti-
vation. In addition, for all three tasks, the clouds present in
Figure 4 A have been completely ignored.

The model learns the correlation between specific visual
features and developmental parameters without any external
guidance such as annotation of specific objects in the train-
ing images. Further, the sharp filter responses (once the fil-
ter activations are reduced to their true size) indicate that the
model has trained sufficiently well and is well regularized
(Srivastava et al. 2014).

Predicting Poverty

For our second task, we create a simple four-layer fully-
connected model which takes as inputs the outputs of the
multi-task fully convolutional model and generates as out-
put a distribution over three monthly household income lev-
els: (1) income below | 5,0004, (2) income between | 5,000

4| is the symbol of the Indian Rupee. US $1 ≈ | 64 (on 2017-
09-09).
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Figure 4: Filter activations for the multi-task model’s task-
specific layers. Images at the top show two different areas of
the same region. Bottom images show filter activations for
(1) roof type, (2) source of lighting and (3) source of drink-
ing water. The filter activations for the task-specific branches
highlight objects of relevance to the respective tasks.

- | 10,000 and (3) income above | 10,000. The output distri-
bution represents the fraction of households in a sub-district
with a particular level of income. Since income statistics are
available at a much higher level (sub-district) than devel-
opmental statistics such as the material of roof, source of
lighting and source of drinking water (available for each vil-
lage in a sub-district), we choose to indirectly predict in-
come and poverty through developmental statistics. Devel-
opmental statistics are also more directly visible in a satel-
lite image than income statistics. Moreover, it is not feasi-
ble to download a reasonably detailed image of an entire
sub-district (that could, on average, span 780km2 for Uttar
Pradesh) to train a model to directly predict income levels.

Since income statistics are available at the sub-district
level, we need to aggregate the predictions generated by the
multi-task fully convolutional model for all villages in each
sub-district. We do this by calculating the average distribu-
tion of roof type, source of lighting and source of drink-
ing water for all villages belonging to the same sub-district,
weighted by the number of households in each village. We
divide the total 312 sub-districts in the dataset into a train-
ing set (80%), validation set (10%) and test set (10%). These
sets are the same as those used for the multi-task model.

Model Architecture and Training

The income estimation model is a four-layer fully-connected
network that contains hidden layers with 8, 4 and 4 nodes
and ReLU activation. The output layer contains 3 nodes, one
for each of the three income levels defined in the income
dataset. Softmax activation is used at the final layer. Further,
each activation is preceded by a batch-normalization (Ioffe
and Szegedy 2015) layer. Additionally, the input is chan-
neled through another batch-normalization layer for stan-
dardization over batches before feeding into the model. The
RMSProp optimizer is used for gradient descent with a batch

size of 50. The model is trained for 1, 000 epochs with cross-
entropy loss over the validation dataset as the early-stopping
criterion. The model’s hyperparameters are tuned based on
performance on the validation set.

For comparison, we train a separate model on the Census
of 2011 data for our chosen developmental statistics. Since
this model is trained on statistics collected through a ground
survey, this model represents the optimum for the poverty-
prediction task. Hence, two poverty-prediction models are
trained: (1) A model trained on values of developmental
statistics from the official Census of 2011 data (model C.D.,
on census data) and (2) a model trained on the predictions of
the multi-task model for the developmental statistics (model
P.D., on predicted data) for the same regions as in model
C.D.

Results

To compare model P.D. and the optimum model, model
C.D., we calculate the correlation between the ground-truth
values and predicted values for the three income categories
(Figure 5). Predictions of model P.D. are observed to be pos-
itively correlated with the ground truth values. Also, model
P.D. consistently performs close to the optimum model,
model C.D., across all three income levels.

Figure 5: Correlation between the ground-truth values and
predicted values of fraction of households with income (A)
below | 5,000, (B) from | 5,000 to | 10,000 and (C) more
than | 10,000. Predictions of model P.D. are positively cor-
related with the ground truth values. Also, model P.D. con-
sistently performs close to the optimum model, model C.D.,
across all three income levels.

We also find the accuracy, precision and recall by set-
ting a threshold on the fraction of households in a sub-
district belonging to the lowest income category, income be-
low | 5,000 (Table 1). Let the threshold be 0 ≤ t ≤ 1. Let
0 ≤ p ≤ 1 be the fraction of households in a sub-district
having income less than | 5,000. If p ≥ t, we classify the
sub-district as “poor”, and “not poor” otherwise. From sur-
vey data and models C.D. and P.D., we have the fraction of
households in a sub-district with income below | 5,000. We
apply the threshold t to generate binary class labels (“poor”
and “not poor”) from survey data and outputs of models
C.D. and P.D.. Accuracy, precision and recall (Table 1) for
the models C.D. and P.D. are, therefore, calculated using
the ground truth labels generated from survey data. We ob-
serve that model P.D. performs close to the optimum model,
model C.D., and significantly better than the baseline (ma-
jority class prediction).
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Table 1: A comparison of the performance of the poverty-prediction model trained on values of developmental statistics from
the official Census of 2011 data (model C.D.), the poverty-prediction model trained on predictions of the multi-task model for
the developmental statistics (model P.D.) and the baseline model (predict majority class).

Threshold Model C.D.: on census data Model P.D.: on predicted data Baseline

Accuracy Precision Recall Accuracy Precision Recall Accuracy

0.1− 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.6 0.969 1.0 0.967 0.969 0.967 1.0 0.937
0.7 0.875 0.895 0.895 0.75 0.789 0.789 0.594
0.8 0.781 1.0 0.125 0.875 0.7 0.875 0.75

0.9, 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

Using only satellite imagery as input, we are able to es-
timate income and, in turn, poverty, close to the true val-
ues collected on the ground by significant manual effort and
monetary expense. In addition, model P.D.’s performance
helps indirectly evaluate the multi-task fully convolutional
model since better (worse) predictions of developmental
statistics will improve (degrade) the performance of model
P.D.. Additional experiments5 show that the models utiliz-
ing all three developmental statistics (roof type, source of
lighting and source of drinking water) perform better than
models utilizing only one of the statistics. Therefore, using
multiple developmental parameters improves the robustness
and generalization performance of our models.

Summary

We propose a two-step approach for predicting poverty in
rural regions of India from satellite imagery. First, we train
a multi-task fully convolutional model to predict three devel-
opmental parameters – the main material of the roof, source
of lighting and source of drinking water – from satellite im-
agery. We observe that meaningful features, such as roads,
settlements, farm lands and water bodies are automatically
learned by the multi-task fully convolutional model. Second,
we train a model to predict the income levels (a direct indica-
tor of poverty) using the predicted developmental parameter
outputs of the first model. Using only satellite imagery as
input, we are able to estimate income and poverty close to
the true values collected on the ground by significant manual
effort and monetary expense.
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