
Computer-Assisted Authoring for Natural Language Story Scripts

Rushit Sanghrajka
Disney Research

Wojciech Witoń
Disney Research

Sasha Schriber
Disney Research

Markus Gross
Disney Research

Mubbasir Kapadia
Disney Research

Rutgers University

Abstract

In order to assist scriptwriters during the process of story-
writing, we have developed a system that can extract informa-
tion from natural language stories, and allow for story-centric
as well as character-centric reasoning. These inferencing ca-
pabilities are exposed to the user through intuitive querying
systems, allowing the scriptwriter to ask the system questions
about story and character information. We introduce knowl-
edge bytes as atoms of information and demonstrate that the
system can parse text into a stream of knowledge bytes and
use these mentioned reasoning capabilities through logical
reasoning.

1 Introduction

Story-writing requires creative focus, as the writer needs to
focus on making sure that their story is logical, and does not
have any inconsistencies and plot-holes (Ryan 2009). More-
over, for stories that may take place in large pre-existing
fictional story worlds, such as the Harry Potter world or
Star Wars world, it becomes essential to maintain consis-
tency with the existing laws of the world. For franchises like
Star Wars, fact-checking is essential to ensure that there is
no redundancy while introducing new characters or species
of creatures which may have already had a minor appear-
ance or reference in the past. Moreover, fictional universes
like Harry Potter may have additional rules of their own, for
example, the lack of use of electricity and technology in the
Wizarding World (Rowling 2005).

Such book-keeping of story worlds often detracts story-
writers from the creative story-writing process itself. Most
computer-assisted writing software have features such as
automatic spelling and grammar checking features. Appli-
cations such as Final Draft (Final Draft 1990) are widely
used for screen-writing purposes for organization and effi-
ciency in script and screenplay writing. However, commer-
cially available options do not provide any reasoning or fact-
checking capabilities on the story and characters.

Our goal is to provide an interactive intelligent system that
can support screenwriters with feedback about the story by
understanding the events and interactions in the narrative.
The system should also allow them to interact with their

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

story by asking questions, set up rules for their desired story
world, and look at the belief-desire based conflicts being rec-
ognized by the system. Our current system supports scripts
or screenplays and is an emerging technology. Handling of
unstructured stories like novels is an exciting avenue of fu-
ture exploration.

There are various challenges that exist to this problem.
Natural language capabilities pose a challenge in informa-
tion retrieval from complex stories: natural language under-
standing has a long way to go before being able to match the
level of inferencing the human brain can make from read-
ing a story. Another challenge lies in the ability to analyze,
compare and sort information extracted from a screenplay or
a script. The field of computational narratives has advanced
greatly to represent narratives with the help of story graphs
(Riedl and Young 2006), but these current data structures
cannot be formed directly from a text-based story.

The central aspect of our proposed solution is the ability
to extract meaningful information directly from the story it-
self, without any additional author supervision. We are able
to understand characters, their beliefs and desires, interac-
tions, and their relations with other characters, along with
information about the narrative arc of the story. We intro-
duce knowledge bytes to represent the information encap-
sulated in the script. Knowledge bytes can be defined as
atomic structures which can represent a granular segment of
information about the narrative. We also introduce a cross-
knowledge base reasoning approach that is capable of rea-
soning across various character knowledge bases, the story
knowledge, as well as knowledge about the story world.
By building these different knowledge bases and sharing
streams of knowledge bytes across them, the reasoning sys-
tem can make inferences and respond to the user’s queries
in real-time during the process of story writing.

2 Related Work

There are detailed studies that focus on extracting a knowl-
edge base from stories, such as Scheherazade (Elson 2012)
and ASM (Finlayson 2012), and even create fictional story
worlds (Poulakos et al. 2015).

Boyang Li’s work in generating narrative intelligence and
determining causal links from a crowd-sourced narrative
is an interesting approach to creating a script of a narra-
tive (2012). Shoulson et al. (2013) discuss an event-centric

The Thirtieth AAAI Conference on Innovative Applications of Artificial Intelligence (IAAI-18)

7811

Figure 1: An overview of our framework.

planning approach to story creation for animation stories.
There are also various planning based algorithms for story
planning, which rely on a structure of story elements (Ware
and Young 2011). Kapadia et al. focus on the authoring
of narratives with the help of Interactive Behavior Trees
(2015).

Previous works have also focused on extracting informa-
tion from scripts, focusing on various different approaches
(Schank and Abelson 2013) and stories (Chaturvedi, Iyyer,
and Daumé III 2017; Mateas and Stern 2003; Lehnert 1981;
Goyal, Riloff, and Daumé III 2010; Valls-Vargas, Zhu, and
Ontanon 2016). Sanghrajka et al. introduce LISA, a Lexi-
cally Intelligent Story Assistant, which uses logical infer-
encing for simple information extraction (2017).

Our work intends to expand upon the existing work
by proposing a framework to extract event-centric and
character-centric information and perform reasoning with it
in real-time. It serves to bridge the gap between these elo-
quent planning algorithms used for story planning, and other
data structures focused on representing different aspects of
narratives.

3 Framework Overview

A framework overview of the proposed system is shown in
Figure 1.
Knowledge Extraction Our system takes input from the
scriptwriting interface and performs natural language under-
standing to create a stream of knowledge bytes – the atoms
of information – that serves as input to story world knowl-
edge, story knowledge, and character knowledge bases.
Knowledge Bases The story knowledge base stores all the
knowledge bytes that are present in the script. Character
knowledge bases – one for each character in the story – store
snapshots of the story in a form of knowledge bytes as a
representation of what each character perceives of the world
around them and allow for reasoning about the story from
character’s perspective. Story world knowledge stores rules
and error definitions specified by the user.
Cross-Knowledge Base Reasoning The knowledge reason-
ing system is the core of the framework as it gathers infor-
mation from story world knowledge, story knowledge, and
character knowledge bases in form of a stream of knowledge

bytes. It performs logical inference based on a specific query
from the user and creates a response/feedback to send back
to the user.

4 Knowledge Extraction
The scriptwriting interface accepts a script in natural lan-
guage, which consists of a main story plot, i.e., actions and
dialogs (described in Section 4.2). It also accepts metadata,
i.e., rules and error definitions (described in Section 5.4),
and background information about characters, i.e., stories
occurring before the actual story, to be used for characters’
reasoning capabilities.

In order to demonstrate the features and capabilities of
our system, we decided to use it on a short snippet of a story
based on the Disney movie Tangled (Greno and Howard
2010). An excerpt of the script is presented in the left-most
column of Figure 2. Part of our example script involves two
characters, Flynn and Patchy, escaping from authority for
stealing a crown. Flynn ends up stealing the crown and es-
caping, and in a second scene, another character named Ra-
punzel encounters Flynn and takes the crown away from
him. In the second scene, Rapunzel and her mother converse
regarding Rapunzel’s wishes to watch the lights in the sky.
We use these examples throughout this paper to demonstrate
our framework.

4.1 Knowledge Bytes

We introduce the concept of a Knowledge Byte in order to be
able to store information from the script. A Knowledge Byte
can be defined as the smallest unit of information about a
narrative. It can represent any kind of information present
in a script, such as action, dialog, or questions. Moreover,
the knowledge byte also has support to store the location,
time point, and the coordinates where it takes place, in order
to process knowledge for spatial reasoning, which could be
used to support newer forms of storytelling.

The knowledge byte β can be defined as a tuple in the
following form: β :=<t, l,Π>. t stands for the time point
in the narrative at which this knowledge byte was first pro-
duced. l denotes the coordinates and location information
of the knowledge byte to allow for spatial reasoning and
location-based reasoning of knowledge bytes. Π is the tuple
of parser labels, which have been defined in Section 4.2.

The importance of breaking information down into
knowledge bytes is that these knowledge bytes represent
information in the forms of beliefs or desires, and can
be stored across multiple characters’ knowledge bases.
This linking of knowledge bytes across various characters’
knowledge bases allows for interesting inferences, which is
discussed in Section 6. Moreover, the introduction of knowl-
edge bytes as a data structure for handling information about
stories allows for many useful operations. These knowledge
bytes can be sorted and oriented based on different parame-
ters. They can be aligned spatially with respect to locations
as well as temporally, depending on the amount of informa-
tion the user chooses to provide to the system through the in-
put. Alternatively, the knowledge bytes can also be clustered
based on the characters’ knowledge, with some knowledge
bytes being shared across multiple knowledge bases.

7812

Figure 2: An excerpt of our script along with the Knowledge Bases is shown here. In the left-most column, the Story World
Knowledge, along with character background and the script text is input. Story knowledge and the character knowledge bases
are also shown, with the parser result tuples shown in the story knowledge. The sentences in the character knowledge systems
are flagged to show which facts get processed as beliefs or desires. Various example queries are also shown in the end.

4.2 Parsing System

Knowledge bytes are extracted with the help of Natural
Language Understanding on the script, consisting of ac-
tions and dialogs, using a Stanford CoreNLP framework
(Manning et al. 2014). We introduce a parser result tuple
Π :=< s, r, o, n, rm, ro, rq, sp >, where the fields are de-
fined as:

s : Subject (a noun)
r : Relation (a verb)
o : Object (often a noun)
n : Negation Flag (boolean)
rm : Relational Modifier (e.g. “from”, “to”)
ro : Relational Object (often a noun)
rq : Relational Question (e.g. “who”, “where”)
sp : Character speaking in a dialog

We mark empty fields as ∅and can support a shorter rep-
resentation where the rm, ro, rq and sp fields are assumed
to be empty. Additionally, in a tuple, empty fields towards
the end of the tuple can be discarded. Knowledge bytes are
shown in Fig 2.

Co-reference resolution We assume that users input script
text in segments consisting of one “thought”, i.e., a set of
logically connected sentences. A first step of parsing any
segment involves applying co-reference resolution – it is fo-
cused on assigning the real names of actors/objects/places
to personal pronouns (“he”, “they”, “it”, etc.) based on pre-
viously analyzed sentences. An example input “Rapunzel
wants to watch the lights in the sky. She wants to visit the
lanterns, and see them in person.” would be then translated
into “Rapunzel wants to watch the lights in the sky. Rapunzel
wants to visit the lanterns, and see the lanterns in person.”.
We use a neural-network approach for co-reference resolu-

7813

tion.
Actions After applying the co-reference resolution, the text
is then split into individual sentences, which are later tok-
enized – single words (tokens) are extracted. Each token is
usually related to the others what is resembled in tree-like
constituency and dependency graphs (Chen and Manning
2014). We used the latter ones in a form of Enhanced++ De-
pendencies using Enhanced English Universal Dependen-
cies (Schuster and Manning 2016).

We extract subjects, relations and objects – relation
triples. We created our own pipeline, extracting fields in
parse result tuple Π as follows: s – forms subj dependency
with r; r – usually a root of dependency tree; o – forms obj
dependency with r; n – “true” iff r, o or ro has any neg
dependency; rm – usually precedes ro and forms case de-
pendency with it (e.g. “go to someone”); ro – usually forms
nmod dependency with r (e.g. “go to someone”); rq – de-
scribed in Section 6.1.

There are some exceptions to these rules. The most com-
mon case is while using a verb “to be”, as it can have dif-
ferent meanings depending on the context – an auxiliary
verb (aux), e.g., in continuous tenses, a passive auxiliary
verb (auxpass), e.g., in passive voice, or a copula (cop), used
mainly for describing s.

It is worth mentioning that o either may not be set or can
be a verb, e.g., when r and o are connected by open clausal
complement (xcomp). For sentences with more than one sub-
ject, relation or object several triples can be created, each
consisting of one s, one r and one/no o. Some examples are
presented in Table 1.

Each paragraph and each sentence in the paragraph is
indexed, which is used to assign a proper time point t to
knowledge byte β. All actions generated from one sentence
have the same t and are believed to occur simultaneously.
Dialogs While analyzing dialogs we also fill the sp field.
During co-reference resolution any usage of a personal pro-
noun with lemma “I” is matched to the name of the charac-
ter.
Confidence resolution While analyzing actions and dialogs
we infer how confident a character is about some facts by
checking for usage of one of the confidence words presented
in Table 2, where each confidence word is assigned a value
in a range from 0, i.e., improbable action, to 1, i.e., surety
that an action happened (values are arbitrarily set and future
work would focus on studying discourse to test accuracy).
For example, the sentence “Patchy thinks that Flynn owns
the crown” would result in creating a knowledge byte con-
taining a belief “Flynn owns the crown” with a confidence
of 0.6.
Desire resolution We distinguish between beliefs and de-
sires. The latter are recognized by looking for words such
as “want”, “wish”, “need” in a provided sentence, either in
a script or a dialog. As a result, sentences “Rapunzel vis-
its lanterns.” and “Rapunzel wants to visit lanterns” would
create similar knowledge bytes with the former resolved as
Rapunzel’s belief and the latter as Rapunzel’s desire to visit
lanterns. For desires, the confidence is assumed to be 1 be-
cause characters always are sure about their desires for sim-
plicity.

5 Knowledge Bases

5.1 Knowledge Facts

The knowledge bases store information from the knowledge
bytes β in the form of logical reasoning facts, known as
Knowledge Facts, which are described below.
Belief facts ψ: These facts store the most important infor-
mation from the knowledge byte and store it as a belief.
They take two forms: belief(Id, s, r, o, n), or
belief(Id, s, r, o, n, rm, ro, rq).
Desire facts δ: These facts store the same information as the
belief facts, but they store the information as a desire. They
also have two forms: desire(Id, s, r, o, n), or
desire(Id, s, r, o, n, rm, ro, rq).
Location facts λ: These facts store locations or scene infor-
mation, and reference to the knowledge byte ID. They are of
the form location(Id, Location).
Coordinates facts ω: The coordinates facts can store in-
formation about the spatial coordinates of the knowledge
byte taking place in the system. They are of the form
coordinates(Id, X, Y, Z).
Confidence facts χ: The confidence facts store the confi-
dence level as a floating value from 0 to 1. They have the
form confidence(Id, Confidence).
Time facts τ : Time facts allow us to build reasoning sys-
tems with temporal reasoning capabilities. Time facts take
the form timeof(Id, Time).

5.2 Story Knowledge

The Story Knowledge Σ stores all the knowledge bytes that
are present in the script, along with references to the various
characters as well. Every knowledge byte from the script is
fed to the knowledge base for the story knowledge, and this
allows for reasoning on the information stored in this knowl-
edge base as well.

5.3 Character Knowledge

We implement Character Knowledge bases Υ as a means
for the application to form a knowledge base for the infor-
mation possessed by each character. This allows the reason-
ing system to let each character work on their own set of
beliefs and desires in the story world. The benefit of hav-
ing separate character knowledge bases for each character is
that it allows scriptwriters to ask questions to each charac-
ter and gauge the difference in their responses based on the
information that the character system possess. These knowl-
edge bases are created transparently while the user is writing
the story. This facilitates an interactive script writing process
and does not disrupt a creative flow of the writer.

Moreover, each character knowledge base stores knowl-
edge bytes with some wrapper information which describes
a relation between the character knowledge base and the
knowledge byte. The relation-specific wrapper contains in-
formation about the character’s confidence about the knowl-
edge, the time point that the character learns about the infor-
mation, and flags that denote whether the knowledge byte is
a belief or a desire. Feedback from the character’s reasoning
system is also stored to provide back to the user interface.

7814

Table 1: Examples of Parsed Knowledge Bytes
Type Sentence Knowledge Byte

Continuous tense/no object Rapunzel is hiding behind a curtain. <rapunzel,hide,∅,false,behind,curtain>

Passive voice The lanterns are meant for Rapunzel. <lanterns,be,meant,false,for,rapunzel>

Description/two subjects Flynn and Patchy are panicked. <flynn,be,panicked,false>,

<patchy,be,panicked,false>

Object as verb Rapunzel enjoys watching the lights. <rapunzel,enjoy,watch,false,∅,lights>

Negation in dialog Mother: “Rapunzel, you will not see the lanterns.” <rapunzel, see, lanterns, true, ∅, ∅, ∅,

mother>

Table 2: Confidence Words
Verb sure confident know state say think feel suppose believe assume presume expect

Confidence 1.0 1.0 0.8 0.6 0.6 0.6 0.4 0.2 0.2 0.2 0.2 0.1

5.4 Story World Knowledge

Story World Knowledge Ω stores rules and error definitions
provided by scriptwriters in natural language. The former
ones enable automatic inferencing of information about the
story and characters, and the latter ones can be used to
ensure consistency of the story. Rules and errors also use
the concept of types, where the type fact type(flynn,
goon) assigns a type "goon" to Flynn, so rules for the goon
type can apply to Flynn as well (Sanghrajka et al. 2017).

Rules and errors, which the user types in the natural lan-
guage, are translated into the structure required by knowl-
edge reasoning system described in Section 6. During pars-
ing we make use of TokensRegex framework (Chang and
Manning 2014) to create regular expressions over (a se-
quence of) tokens. We can check for properties of single to-
kens extracted by TokenizerAnnotator – lemma, named en-
tity and a part of speech. The main patterns used for regu-
lar expressions are Type pattern, Inference pattern and Error
pattern, shown in Table 3. Sentences with subject and/or ob-
ject in all UPPERCASE make general rules for every subject
and/or object, otherwise we create rules for specific subject
and/or object. We can combine patterns, use co-references,
resolve desires and negations, include information about a
location and time of an action. Example sentences with cre-
ated rules are shown in Table 4.

5.5 Knowledge Base Construction

For every knowledge byte, we extract ψ, λ, ω, χ and τ , and
send it to the system’s story knowledge Σ. Then we look
at the s, o, ro variables to check if any of them refer to a
character name. For all the characters referenced, we ex-
tract either the ψ or the δ depending on the parsing system’s
information, and then add it to each referenced character’s
knowledge base ΥC (where C is the character) along with
the λ, ω, χ and τ .

6 Cross-Knowledge Base Reasoning

6.1 Knowledge Query Extraction

As soon as a story is written and knowledge bases are cre-
ated, a scriptwriter can type questions in natural language
to get information stored in either story or character knowl-
edge bases. We analyze questions in similar way as actions,

filling rq field of parser result tuple Π with relational ques-
tion words, such as interrogative pronouns “who”, “what”,
and pro-adverbs “when”, “where” etc. A question κ can
be defined as a set of incomplete knowledge bytes, where
the rq field contains a question word, and there are one or
more fields that contain question marks. An example ques-
tion “Patchy, who owns the crown?” queries Patchy’s knowl-
edge base with a knowledge byte. Equations 1 through 3
show the query and knowledge byte. Another example ques-
tion “Who all have contradictory desires regarding owning
the crown?” creates a query with multiple knowledge bytes,
shown in equations 4 through 8.

κ1 = {β1} (1)
β1 =< t1, l1,Π1 > (2)

Π1 =<?, own, crown, false,∅,∅, who,∅> (3)
κ2 = {β2, β3} (4)

β2 =< t2, l2,Π2 > (5)
β3 =< t3, l3,Π3 > (6)

Π2 =<?, own, crown,?,∅,∅, who,∅> (7)
Π3 =<?, own, crown,?,∅,∅, who,∅> (8)

6.2 Reasoning Approach

When a query is received in the knowledge reasoning sys-
tem, the reasoning system performs two actions. The reason-
ing system first uses logical reasoning in order to generate
a set of knowledge bytes which are responses to the query
provided. For implementation, we use the GNU Prolog for
Java as our logical knowledge reasoning system (Diaz and
Codognet 2000). After the resultant knowledge bytes are
constructed from the logical reasoning system, we then per-
form cross-knowledge base reasoning to understand possi-
ble relations for each pair of resultant knowledge bytes. We
then generate the result. The resultant function α(κ) takes in
a query κ and produces a resultant set of completed knowl-
edge bytes {β∗

1 , ...β
∗
N}. R(i,j) gives the relationship between

a pair of knowledge bytes β∗
i and β∗

j in the resultant set.
Logical Reasoning All the character knowledge bases and
the story knowledge base have their own logical reasoning
environment. The facts which contain the missing values in
the βs from the κ are queried to the logical environment,
and the resultant β∗ is constructed. In our example, Patchy’s

7815

Table 3: Regular Expressions for Story World Knowledge Patterns
Pattern Regular Expression

Type (?$subj [tag:/NN.*/]+) [lemma:/be/] [tag:/DT.*/]+ [!tag:/NN.*/]* (?$type [tag:/NN.*/]+)

Inference /if/ (?$cond [!lemma:/then|,/]+) /then|,/+ (?$res []+)

Error /show/ [tag:/DT.*/]* /error/ (?$err []+) /if/ (?$cond []+)

Table 4: Examples for Story World Knowledge Patterns
Sentence Rule

Flynn is a happy-go-lucky goon. type(flynn, goon).

If PERSON enters scene at time T1 and PERSON exits
scene at time T2, then PERSON is onstage from T1 to
T2.

type(X, onstage, T1, T2) :- belief(Id1,

PERSON, enters, scene, false), timeof(Id1,

T1), belief(Id2, PERSON, exits, scene, false),

timeof(Id2, T2).

If PERSON steals OBJECT, then PERSON owns OB-
JECT.

belief(Id1, PERSON, own, OBJECT, false) :-

↪→ belief(Id2, PERSON, steal, OBJECT, false).

Show error “Cannot steal something they already own”
if PERSON has OBJECT and PERSON steals it.

error(Id1, Id2, ’Stealing something owned’) :-

↪→ belief(Id1, PERSON, have, OBJECT, false),

↪→ belief(Id2, PERSON, steal, OBJECT, false).

knowledge base believes that Flynn owns the crown. The
resultant β∗ contains the completed information, as shown
in equations 9 and 10.

β∗
1 =< t1, l1,Π

∗
1 > (9)

Π∗
1 =< flynn, own, crown, false,∅,∅,∅,∅> (10)

Determination of Relationships Reasoning across knowl-
edge bases involves comparison of knowledge bytes in the
various knowledge bases in order to discern whether they
have a similarity or a contradiction. Looking for a possi-
ble connection between knowledge bytes is the core for
the system’s ability to infer across knowledge bases. Using
WordNet (Miller 1995), we extract synonyms and antonyms
for the relations used in knowledge bytes and compare the
knowledge bytes to form relations between them.

Time points and confidence measures are also taken into
account to analyze relationships between knowledge bytes.
By default, we decided to assign a 0.8 weight to confidence
and 0.2 weight to time, in order to make the impact of confi-
dence stronger than time. In some cases, for some pairings of
knowledge bytes, there is the ability to specify custom val-
ues for the weights for confidence and time, in cases where
one may require different level of impact of the difference in
time or confidence of the two knowledge bytes on the pos-
sibility that the two knowledge bytes are indeed related. Let
the time and confidence values for a knowledge byte be de-
noted by Tx and Cx respectively. We assume that N is the
final time point of the script.

A relational factor θ′ is calculated based on the lexical
comparison of two knowledge bytes, which is a measure of
how related they are. θ′ varies from −1 to +1, with −1 de-
noting contradictory relation, a +1 denoting similarity be-
tween the knowledge bytes, and a θ′ closer to 0 representing
that the knowledge bytes may be unrelated. The algorithm
to calculate the relational factor is shown in Algorithm 1.
Once we find that the two knowledge bytes are related, then
we compare their links, to obtain the following types of re-
lationships:

Input : A pair of Knowledge Bytes β∗
1 and β∗

2 ;
Output: Relational Factor θ′;
if Π1 = Π2 or (r1 � r2, s1 = s2, o1 = o2) then

θ ← 1;
else if r1 and r2 are antonyms, s1 = s2, o1 = o2 then

θ ← −1;
else if r1 � r2, o1 = o2, s1 �= s2 then

θ ← −0.5;
else if r1 � r2, s1 = s2, o1 �= o2 then

θ ← 0.5;
else

θ ← 0, which implies they are likely to be unrelated

θ′ =
|C2−C1|CW+

|T2−T1|
TN

TW

θ

return θ′
Algorithm 1: Relational factor calculation

• If β∗
1 and β∗

2 are both desires and 0 < θ′ < 1, we consider
this to be a similarity in desires between two character
knowledge bases Υ1 and Υ2.

• If β∗
1 and β∗

2 are both desires and −1 < θ′ < 0, we
consider this a contradiction or competition in desires be-
tween two character knowledge bases Υ1 and Υ2.

• If β∗
1 and β∗

2 are both beliefs and 0 < θ′ < 1, we consider
this to be a similarity in beliefs between two character
knowledge bases Υ1 and Υ2.

• If β∗
1 and β∗

2 are both beliefs and −1 < θ′ < 0, we
consider this to be a contradiction in beliefs between two
character knowledge bases Υ1 and Υ2.

• If β∗
1 and β∗

2 are a belief and a desire and θ′ �= 0, we
consider this to be a misconception between two character
knowledge bases Υ1 and Υ2.

In our example, for the query κ2 in Section 6.1, a resul-
tant response would seeing contradictions in desires regard-
ing the ownership of the crown among Flynn and Patchy.
Equations 11 through 14 show the resultant knowledge bytes
β∗
2 and β∗

3 , and Equation 15 shows the relationship R(2,3)

7816

flagged as “contradictory desires”.

β∗
2 =< t2, l2,Π

∗
2> from Flynn’s Υ as desire (11)

β∗
3 =< t3, l3,Π

∗
3> from Patchy’s Υ as desire (12)

Π∗
2 =< flynn, own, crown, false,∅,∅,∅,∅> (13)

Π∗
3 =< patchy, own, crown, false,∅,∅,∅,∅> (14)

R(2,3)= “contradictory desires” (15)

7 Application

Figure 3: A developed prototype. Left Window: Script. The
user asks “Who owns the crown?”, and the response is
“Flynn with a confidence of 1.0”. Top Right: User enters
information about the mother to her character base. Bottom
Right: The parsed information.

Our proposed framework contributes to emerging tech-
nology for assisting story-writers real-time. A scriptwriter
would start by adding the story world knowledge to the
system, which defines the rules for the story world. The
scriptwriter would then proceed to write his story, using the
system as a guide for reference. Additionally, the system en-
sures that the narrative is within the bounds defined by the
story world. The automatic extraction and construction of
the knowledge bases enable the possibility to interact with
the story and characters during story creation.

We performed internal experiments with our system with
scripts of moderate complexity. An excerpt of an example
script has been shown in Figure 2, and various examples of
different features have been discussed throughout this paper.
Additionally, an image of our prototype system developed
is shown in Figure 3. Our system is able to autonomously
construct the various knowledge bases from the script and
allows authors to specify the rules for the world in which
the story occurs. The character knowledge bases have in-
formation specific to the character, and this encapsulation
of information can be clearly observed in the different re-
sponses. Referring to the queries in Figure 2, the question
“Who owns the crown?” is directed to the story in question
1 but to the character of Patchy in question 2. A difference
in the responses can be observed, due to Patchy’s character
knowledge base having information known to his character.
We were also able to perform cross-knowledge base reason-
ing, where we asked the systems various questions and re-
ceived expected responses. For example, in the script shown,

questions 3, 8, and 9 are questions which involve looking
for relations across multiple knowledge bytes, which can be
seen in the results obtained.

8 Conclusion

In proposing a new structure for representation and reason-
ing in narratives with the help of knowledge bytes, knowl-
edge bases, rules and errors definition, we set up ground for
various directions in natural language understanding and lin-
guistic reasoning, assisted story writing, and computational
narratives.

Our application demonstrated that the introduced con-
cepts work well for an example story, but we are aware that
the implementation still needs some improvements before
becoming a solution ready for deployment. The reasoning
capabilities of our system are highly dependent on the capa-
bilities of the mechanism analyzing rules to be able to com-
pletely reason about the story world knowledge. While this
can be quite specific for story worlds like Star Wars or Toy
Story, there is still a need for adding world knowledge rules.
Automatic rule generation is an avenue that needs to be ex-
plored and a challenge that needs to be solved to make the
creation of story world knowledge less cumbersome.

The future goals include analyzing more complicated
(real) movie scripts and creating advanced rules and error
definitions. We have implemented the theoretical concepts
proposed in this work and are building towards a large-scale
deployment of the tool and intend to perform detailed user
studies in the future.

9 Acknowledgements

This work has been funded in part by NSF IIS-1703883,
NSF S&AS-1723869, and DARPA SocialSim-W911NF-17-
C-0098.

References

Chang, A. X., and Manning, C. D. 2014. TokensRegex: Defining
cascaded regular expressions over tokens. Technical Report CSTR
2014-02, Department of Computer Science, Stanford University.
Chaturvedi, S.; Iyyer, M.; and Daumé III, H. 2017. Unsupervised
learning of evolving relationships between literary characters. In
AAAI, 3159–3165.
Chen, D., and Manning, C. 2014. A fast and accurate dependency
parser using neural networks. 740–750.
Diaz, D., and Codognet, P. 2000. The gnu prolog system and its
implementation. In Proceedings of the 2000 ACM Symposium on
Applied Computing - Volume 2, SAC ’00, 728–732. New York, NY,
USA: ACM.
Elson, D. 2012. Modelling Narrative Discourse. Ph.D. Disserta-
tion, Columbia University.
1990. Final draft. http://www.http://finaldraft.com.
Finlayson, M. M. A. 2012. Learning narrative structure from an-
notated folktales. Ph.D. Dissertation, Massachusetts Institute of
Technology.
Goyal, A.; Riloff, E.; and Daumé III, H. 2010. Automatically pro-
ducing plot unit representations for narrative text. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language
Processing, 77–86. Association for Computational Linguistics.

7817

Greno, N., and Howard, B. 2010. Tangled. Moore, M. and Levi,
Z.: Walt Disney Animation Studios.
Kapadia, M.; Falk, J.; Zünd, F.; Marti, M.; Sumner, R. W.; and
Gross, M. 2015. Computer-assisted authoring of interactive nar-
ratives. In Proceedings of the 19th Symposium on Interactive 3D
Graphics and Games, i3D ’15, 85–92. New York, NY, USA: ACM.
Lehnert, W. G. 1981. Plot units and narrative summarization. Cog-
nitive Science 5(4):293–331.
Li, B.; Lee-Urban, S.; Appling, D. S.; and Riedl, M. O. 2012.
Crowdsourcing narrative intelligence. Advances in Cognitive Sys-
tems 2(1).
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S. J.;
and McClosky, D. 2014. The Stanford CoreNLP natural language
processing toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, 55–60.
Mateas, M., and Stern, A. 2003. Façade: An experiment in building
a fully-realized interactive drama. In Game developers conference,
volume 2.
Miller, G. A. 1995. Wordnet: A lexical database for english. COM-
MUNICATIONS OF THE ACM 38:39–41.
Poulakos, S.; Kapadia, M.; Schüpfer, A.; Zünd, F.; Sumner, R. W.;
and Gross, M. 2015. Towards an accessible interface for story
world building. In Eleventh Artificial Intelligence and Interactive
Digital Entertainment Conference.
Riedl, M. O., and Young, R. M. 2006. From linear story generation
to branching story graphs. IEEE Computer Graphics and Applica-
tions 26(3):23–31.
Rowling, J. K. 2005. Harry Potter and the Goblet of Fire.
Ryan, M.-L. 2009. Cheap plot tricks, plot holes, and narrative
design. Narrative (1):56.
Sanghrajka, R.; Hidalgo, D.; Chen, P. P.; and Kapadia, M. 2017.
Lisa: Lexically intelligent story assistant. Proceedings of the 13th
Artificial Intelligence and Interactive Digital Entertainment Con-
ference.
Schank, R. C., and Abelson, R. P. 2013. Scripts, plans, goals,
and understanding: An inquiry into human knowledge structures.
Psychology Press.
Schuster, S., and Manning, C. D. 2016. Enhanced english univer-
sal dependencies: An improved representation for natural language
understanding tasks. In LREC.
Shoulson, A.; Gilbert, M. L.; Kapadia, M.; and Badler, N. I. 2013.
An event-centric planning approach for dynamic real-time narra-
tive. In Proceedings of Motion on Games, 121–130. ACM.
Valls-Vargas, J.; Zhu, J.; and Ontanon, S. 2016. Error analysis
in an automated narrative information extraction pipeline. IEEE
Transactions on Computational Intelligence and AI in Games.
Ware, S. G., and Young, R. M. 2011. Cpocl: A narrative planner
supporting conflict. In AIIDE.

7818

