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Abstract

Human communication is multimodal and includes elements
such as gesture and facial expression along with spoken lan-
guage. Modern technology makes it feasible to capture all
such aspects of communication in natural settings. As a re-
sult, similar to fields such as genetics, astronomy and neu-
roscience, scholars in areas such as linguistics and commu-
nication studies are on the verge of a data-driven revolution
in their fields. These new approaches require analytical sup-
port from machine learning and artificial intelligence to de-
velop tools to help process the vast data repositories. The Dis-
tributed Little Red Hen Lab project is an international team of
interdisciplinary researchers building a large-scale infrastruc-
ture for data-driven multimodal communications research. In
this paper, we describe a machine learning system developed
to automatically annotate a large database of television pro-
gram videos as part of this project. The annotations mark re-
gions where people or speakers are on screen along with body
part motions including head, hand and shoulder motion. We
also annotate a specific class of gestures known as timeline
gestures. An existing gesture annotation tool, ELAN, can be
used with these annotations to quickly locate gestures of in-
terest. Finally, we provide an update mechanism for the sys-
tem based on human feedback. We empirically evaluate the
accuracy of the system as well as present data from pilot hu-
man studies to show its effectiveness at aiding gesture schol-
ars in their work.

1 Introduction

Human communication has many different facets. People
communicate not just through spoken language, but through
gesture, facial expression, posture, tone of voice, pacing,
gaze direction and touch. We learn to communicate using
precisely timed movements, delicately modulated sounds,
interpreting the mental states of others from moment to
moment, dynamically coordinating with others, and main-
taining a high level of contextual awareness (Clark 1996;
Duranti and Goodwin 1992). Still, the majority of research
into communication until now has focused on written lan-
guage and speech. This is at least partly because data is easy
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to obtain and share in this case. Conversely, the full range
of communicative behavior must be recorded with resource-
intensive audiovisual technologies. Naturalistic data can be
difficult to obtain; artificial collections from lab recordings
take their place. Large-scale datasets are required for sys-
tematic study, yet no single researcher has the required time
or resources to create them. Further, even if such data are
collected, researchers in the humanities who study linguis-
tics or communication may lack supporting computational
tools to help analyze the data.

An international academic collaboration, the Distributed
Little Red Hen Lab (http://www.redhenlab.org) project, is
working to enable the transition of the study of multi-
modal human communication to large scale data-driven ap-
proaches. We are inspired by fields such as astronomy, ge-
netics and neuroscience that have undergone a similar trans-
formation. As part of this project, we collect data on nat-
uralistic multimodal communication on a large scale, pro-
vide computational and storage tools to manage data and aid
in knowledge discovery, and provide means of iterative im-
provement through integrating the results and feedback of
researchers into the project.

Red Hen’s primary data sources for multimodal and mul-
tilingual communication are television recordings. Fortu-
nately, section 108 of the U.S. Copyright Act authorizes li-
braries and archives to record and store any broadcast of
any audiovisual news program and to loan those data, within
some limits of due diligence, to researchers for the purpose
of research. The NewsScape Archive of International Televi-
sion News (http://newsscape.library.ucla.edu) is Red Hen’s
largest; as of August 2017, it included broadcasts from 51
networks, totaling 340,000 hours and occupying 120 ter-
abytes. The collection dates back to 2005 and is growing
at around 5,000 shows a month. It is an official archive of
the UCLA Library. Under Red Hen, it has been expanded
to record television news in multiple countries around the
world, curated by local linguists participating in the Red Hen
project. The NewsScape archive now includes, in rough or-
der of representation, broadcasts in English, Spanish, Ger-
man, French, Norwegian, Swedish, Danish, Continental Por-
tuguese, Brazilian Portuguese, Russian, Polish, Czech, Ital-
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ian, Arabic, and Chinese. The system is fully automated and
scales easily, using Raspberry Pi capture stations running
custom open-source software.

Most of the programs above are associated with closed
caption transcripts, and Red Hen has an array of tools
to identify linguistic elements in these transcripts. These
tools include Stanford CoreNLP (http:// stanfordnlp.github.
io/CoreNLP), a set of natural language processing utili-
ties providing parts of speech, lemmas, and named enti-
ties in half a dozen languages; the FrameNet project (http:
// framenet.icsi.berkeley.edu) to annotate frames; the SE-
MAFOR project (http://www.ark.cs.cmu.edu/SEMAFOR)
to perform an automatic analysis of the frame-semantic
structure of English text and provide frame names, frame el-
ements, and semantic role labeling results. These results can
be accessed using search tools developed for the project.

To aid researchers in gesture or communication studies
analyze this data, however, as well as linguistic elements,
visual elements of the scenes need to be annotated. For ex-
ample, for researchers interested in “co-speech” gestures, it
is useful to indicate those parts of a video where the speaker
is visible on the screen. For researchers interested in gestures
of specific types, such as “timeline gestures,” annotations in-
dicating the presence of such gestures or fragments of such
gestures would be valuable. In this paper, we describe an
initial approach to such a visual search engine for Red Hen.
The goal is to enable a researcher to quickly build a dataset
that contains gestures of interest by searching through the
annotations of scenes provided by our system.

2 Background and Related Work
A gesture is a group of body movements used as part of com-
munication (Cooperrider and Goldin-Meadow 2017). Move-
ments unrelated to communication, such as eating, are not
considered to be gestures. Gestures are very closely con-
nected to language. Gesture timing often matches speech
timing. Gestures often precede the corresponding speech, or
happen at the same time, but very rarely happen after it. Ges-
tures often convey similar meaning as the speech. For ex-
ample, when talking about shooting, a person might use his
hand as an imaginary gun to convey the same meaning. Ges-
ture and language are so connected, that a stuttering person
also pauses their gestures to maintain the timing.

Even though gesture meaning is related to speech mean-
ing, they are not the same. Gestures can convey additional
information. For example, when talking about the layout of
a building, gestures can indicate the relative location of each
room that is not mentioned in speech.

Within artificial intelligence, gestures have been studied
in computer vision, human-computer or human-robot inter-
action and social robotics. A variety of approaches are used
(Mitra and Acharya 2007). Hand gestures are a common tar-
get. Generally, hand positions are detected and used as an
input to a hidden Markov model or a neural network. For
example, one study (Molchanov et al. 2016) uses depth,
color, and stereo IR cameras to detect hands for human-
computer interaction. This study uses a convolutional neu-
ral network to detect spatio-temporal features in the short
clips coming from each camera and classifies them as a

gesture or not. Another similar field is hand stroke ges-
ture detection (Ye and Nurmi 2015), which tries to recog-
nize gesture-based input to a computer through (typically)
a touchscreen, Kinect or similar device. Work in human-
robot interaction (Fong, Nourbakhsh, and Dautenhahn 2003;
Jaimes and Sebe 2007) has considered building gesture-
based interfaces (Gleeson et al. 2013) or understanding
gestures using reinforcement learning (Yanik et al. 2014).
Other related work focuses on recognizing mental states
from facial expressions or speech (Chen and Huang 2000;
Busso et al. 2004).

There have been various gesture recognition challenges
such as the 2013 Multi-modal Gesture Recognition Chal-
lenge (Escalera et al. 2013). The provided dataset includes
gestures recorded in an artificial settings. People in front of a
white wall or a whiteboard perform various gestures. There
is always one person in the frame. The camera position is
fixed. The gesturing person is facing the camera. The goal of
the challenge was to recognize gestures using audio, skele-
tal model, user mask, depth, and RGB data. The top algo-
rithms in the challenge used hidden Markov models, neural
networks, and random forests.

Overall, gesture recognition has been studied in differ-
ent subfields of AI. However, several aspects of the task we
study make it different and in some ways more challeng-
ing. Rather than HCI/HRI, we are focusing on communica-
tion between humans, which tends to be far more fluid and
subtle. A significant part of HCI/HRI work uses artificially
recorded videos (people were asked to perform a gesture
on purpose) or tasks where gestures are artificial, specific
and predetermined. Instead, we focus on television programs
such as news and talk shows, where people interact in a far
more natural manner. Much work also assumes the availabil-
ity of complex features or sensors such as skeleton models,
depth cameras or Kinect videos. Often there is often only
one person on screen, and often facing the camera. These
assumptions do not hold in our setting. Instead, the task in-
volves analyzing videos with split screens, post-processing
effects and arbitrary camera motion. Finally, and most im-
portantly, we currently have little labeled data in this setting.
Our approach is designed to bootstrap itself by enabling an-
notation by gesture researchers which can then be fed back
to improve the system over time.

ELAN

To make our system’s annotations available to gesture re-
searchers, we use a tool called ELAN. The European Dis-
tributed Corpora Project (EUDICO) Linguistic Annotator
(ELAN) (Lausberg and Sloetjes 2009) is a state-of-the-art
tool for gesture annotation. It allows a user to examine a
video and create annotations as desired (Figure 1). Annota-
tions are grouped in tiers that can have hierarchical relation-
ships. ELAN provides controls to jump from annotation to
annotation in a particular tier, as well as search for a phrase
across all the annotations.

ELAN annotation files have extension “.eaf” that stands
for ELAN Annotation Format. EAF files are written in Ex-
tensible Markup Language (XML). They contain the infor-
mation a user creates using the ELAN interface: tiers, tier
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Figure 1: Output of our system shown in ELAN.

types, and annotations, indexed by frame. In our approach,
we provide pre-annotated EAFs to users which can be used
to quickly search through a video using ELAN’s interface.

3 Our Annotation System

To design the annotation system, we first consider how ges-
ture scholars annotate videos. Suppose the annotator wants
to find gestures of interest in a long video. First, she would
need to find segments where a person was on screen. Large
video segments can be eliminated in this step. In some cases,
she may be interested in whether someone who is speaking
is on screen. Second, she would check whether the person
or speaker was doing the gesture of interest. If there is such
a gesture, the researcher annotates specific attributes such as
axis and direction of the gesture movement.

A perfect system would detect entire gestures. However,
gestures are often very subtle and complex and the area of
gesture research is new enough that the space of possible
gestures is not yet fully explored. Further, we do not have
large labeled datasets to train classifiers on individual ges-
tures. As a result, in our work, we focus on annotating ges-
ture fragments. These are head, hand, and shoulder motions
that typically accompany gestures of interest. We also anno-
tate the presence of people and speakers on screen (the latter
requiring the detection of lip motion). We use a combina-
tion of supervised algorithms and unsupervised heuristics to
detect these fragments. Furthermore, we use a small dataset
of videos to train a classifier for a specific gesture type, a
timeline gesture, and provide annotations for this.

An example of our system’s output is shown in Figure 1,
which shows the ELAN interface. The tiers of annotations,
such as “PersonOnScreen”, etc. were output by our system.
The bars next to these tiers indicate frames which contain the
event annotated. Using ELAN’s interface one can quickly
jump between or search for specific events.

We now describe the individual detectors in our system.

Person and Speaker Detection

We detect people based on faces. We define a person on
screen as a person whose face is present in the frame. The
OpenCV library (Bradski 2000) implements face detection
based on a pretrained Haar cascade classifier (Viola and
Jones 2001), a series of classifiers of varying complexity that
are applied from the least to the most complex.

We detect whether the speaker is on screen by looking at
motion in the lip region of a person (Figure 2 left). Lip de-
tection also uses a trained Haar cascade classifier from prior
work (Castrillón Santana et al. 2007). If the cascade classi-
fier does not find them in the bottom part of the face, our
approach guesses the approximate lip region. This allows
us to get lip motion even if the lips were not detected. We
also have an additional alignment procedure as suggested
by prior work (Bendris, Charlet, and Chollet 2010). Given
lip locations in two consecutive frames, we can adjust the lip
location in the second frame to better match the first frame
based on average Manhattan distance between the pixels.

Lip motion detection is based on the optical flow as sug-
gested by prior work (Bendris, Charlet, and Chollet 2010).
Optical flow indicates how much individual pixels move be-
tween two frames. After we detected the lips, we calcu-
late Farneback optical flow (Farnebäck 2003) between the
grayscale lip regions and threshold based on the mean and
the standard deviation. A higher optical flow means more
activity inside the lip region and likely lip motion.

Head Motion Detection

We detect head motion based on head positions. To separate
vertical and horizontal motion we look at the motion angle.
For each consecutive pair of frames, we get the largest verti-
cal and horizontal motions for all people on screen. We use a
chunking approach to determine which motion we consider
significant. For each chunk (of length around 3-5 seconds)
we calculate the average motion based on the magnitudes
from the step described above. If the magnitude is bigger
than the mean by a chosen threshold, we annotate the frame
with head motion.

Hand Motion Detection

To detect hands, we start by getting the skin color for each
person found (a person found is equivalent to a frontal face
found). In the HSV color space we zoom into the face
and take the median and standard deviation of each color
channel after removing outliers in the H dimension. We
use fixed skin color ranges to threshold the image and get
skin patches. We use a background subtraction technique
(Zivkovic 2004; Zivkovic and der Heijden 2006) to ignore
the static background. After getting the skin pixels, we look
for contours using OpenCV’s built-in contour detector al-
gorithm (Suzuki and Abe 1985). Using positions and mean
colors of skin patches, we assign them to different people
in the frame with k-means clustering. For each person, we
pick the hands in the frame by looking at their hands in the
previous frame, or looking at distance to an expected hand
location in case the previous frame has no hand information.

The hand positions are used to detect hand motion. For
each person in a frame we find them in the previous frame
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Figure 2: Examples of individual detectors. a) Head and lip detection. b) Hand detection. c) Shoulder detection. The thin light
grey lines are candidate shoulders. The thicker white lines are the chosen shoulder lines based on symmetry and color difference.

by looking for similar face positions. Then, if found, we get
motion in pixels for both hands. We take the maximum mo-
tion for all people on screen and compare it to two thresh-
olds. The lower threshold removes insignificant motion. The
upper threshold removes noise (when detections are noisy,
they jump around the frame from one place to another). Fig-
ure 2 (center) shows an example of hand detection.

Shoulder Motion Detection

Shoulder detection makes use of the shoulder shape often
being similar to a straight line. We use the Canny edge detec-
tor (Canny 1986) and the Hough transform (Matas, Galam-
bos, and Kittler 2000) to find candidate lines for shoulders
and filter them to remove unlikely ones based on positions
and angles. Since shoulder lines separate clothes from back-
ground, we pick the lines most likely corresponding to the
shoulders by looking at color difference on both sides, as
well as symmetry. Figure 2 (right) shows an example of
shoulder detection.

To get motion, we first get the exact motion by comparing
neighboring frames, and later post-process it to find signifi-
cant shoulder motion. We look at the motion for each shoul-
der separately. Since each shoulder line has two points, we
use the minimum y-axis motion of both line ends as the mo-
tion of a single shoulder. To decide what motion is signif-
icant, we compare each frame to its neighbors. We use the
same chunking approach as in head motion. This discovers
shoulder motion larger than normal, because the chunk aver-
age approximates the normal shoulder motion of the person.

Timeline Gestures

We have a small dataset of timeline gestures with 63 positive
and 77 negative examples. A timeline gesture in our case is
a lateral hand gesture that indicates a time interval. These
gestures often accompany statements such as “from begin-
ning to end,” “from start to finish” etc. The positive exam-
ples came from gesture researchers who had previous used
the Red Hen data. The negative examples were acquired by
us by isolating frames where no gestures occurred.

The features come from face and hand motion. For a set
number of frames before and after frame i, we compute
mean and standard deviation of distances, as well as mean
angle of face and hand motion. Mean angles are calculated
using the equation atan2(

∑n
i=1 sin(ai),

∑n
i=1 cos(ai)).

Timeline gestures are recognized using an SVM classi-
fier with the RBF kernel (Bishop 2006) implemented by the
Scikit-learn Python library (Pedregosa et al. 2011). The clas-
sifier is applied to a single frame at a time, although frames
around it are used for the features. We only try to detect
timeline gestures on the intervals where there is a person on
screen and the hands are moving. The classifier makes an
assumption that there is one person on screen, so only the
first person is used in the multiple people case.

Postprocessing and Feedback

The detector outputs are further refined by smoothing. First,
a sliding window is used to only mark frames as positive
when a certain percentage of each sliding window is posi-
tive. Second, we merge annotations close to each other. Last,
we remove very short annotations. This improves annotation
quality and removes noise.

One of the main goals of the system is improvement based
on annotation feedback. Each detector has a set of param-
eters and their values have a significant influence on the
results. When someone uses our annotations, they can la-
bel frames where the annotation was incorrect in some way.
These annotations are used by the detectors as data and a
hill climbing search is carried out in the space of detector
parameters to maximize balanced accuracy (the average of
the true positive and true negative rates).

4 Empirical Evaluation

Here we present experiments to evaluate the performance
of individual detectors, as well as the entire system in that
researchers using it should be able to annotate gestures with
less effort than if they did not use it.

Accuracy of Individual Detectors

We evaluate individual detectors on two one-hour long
videos. The two videos are “Late Night Show with James
Corden” (LNS) and “CNN New Day” (CNN ND). The sys-
tem took 3.7 and 4.9 hours to annotate these two videos on
a MacBook Pro. We picked a talk show and a news video
because these two videos have significant differences. For
example, talk shows more frequently have people talking to
each other while not facing the camera, but the number of
artifacts due to post-processing effects is much smaller. The
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Task Person on Screen Speaker on Screen Vertical Head Motion Hand Motion Shoulder Motion
Video LNS CNN ND LNS CNN ND LNS CNN ND LNS CNN ND LNS CNN ND
Balanced Accuracy 0.760 0.846 0.714 0.790 0.593 0.663 0.610 0.536 0.537 0.512
Precision 0.937 0.970 0.799 0.882 0.487 0.465 0.807 0.292 0.659 0.127
Recall 0.722 0.792 0.599 0.714 0.218 0.391 0.303 0.173 0.078 0.027
Random Class. Precision 0.806 0.804 0.531 0.588 0.120 0.124 0.529 0.194 0.069 0.019

Table 1: Performance of the system on two videos.

opposite happens in news videos. Evaluating both kinds of
videos shows how the detectors perform in both settings. For
these videos, we manually annotated their frames for each
detector. Table 1 shows the results for our detectors. We use
balanced accuracy because the class labels are not balanced
(most frames do not have the associated fragments), and also
report precision and recall. We also report the precision of
the random classifier as a baseline (its recall is 50%).

From the table, the “Person on Screen” detector is quite
accurate. The detector performs better on news videos. This
is because in the news setting the reporters almost always
face the camera. In the talk show setting people are often
further away from the camera and are facing different di-
rections. However, the performance, especially precision, is
still high. The “Speaker on Screen” detector also shows good
results on news videos and is worse on talk shows, where
speakers often do not face the camera, making lip detection
hard. In general, these detectors miss people at different an-
gles than frontal or profile, and sometimes fire for other ar-
tifacts (including Halloween Jack-o’-lanterns).

Head motion detection has a precision of about 50% and
similar recall. The false positives are often small head mo-
tions that are not significant enough for a human eye. The
false negatives mostly come from the head motion from the
side or another unusual angle that still have a vertical com-
ponent and so are identified as vertical motion.

The talk show setting has significantly more hand motion
and is also easier to detect. The reason for this is that in the
news setting, post-processing effects often hide part of the
hands and make it impossible to see their motion. People in
the talk show move their hands almost constantly (especially
with multiple people on screen), so the precision is much
higher. Even if the hand detector misdetects the hands, hand
motion will likely coincide with some real hand motion.

There are two situations where our hand detector does not
perform well. First, when people wear short-sleeved clothes,
the entire arm can be seen and hands cannot be separated by
only looking at the skin color. Another problem is people
not facing the camera, so that if the face is misdetected, the
position of the hands is not correctly assessed.

The shoulder motion detection results are also very dif-
ferent between the two videos. The precision is significantly
higher in the talk show setting. A key reason is that news
videos often have “active” backgrounds such as other videos
being shown in the background, which makes it challenging
to detect which lines belong to the shoulder.

Overall, some of these results seem acceptable, and others
can be improved as more annotated data is collected. How-
ever, as we show in the next section, our approach can al-

ready reduce the effort involved in annotation.

Effort Reduction during Gesture Annotation

We carried out a pilot study to test whether the system helps
reduce effort when annotating gestures. Three subjects A,
B, and C performed two experiments (Olza, Valenzuela, and
Pagán 2017). We provided EAF files of video clips produced
by the system where the annotators looked for head move-
ments. Each clip was 4 minutes long.

First, all subjects annotated several clips for 75 minutes
to calibrate their individual performance without using our
system. Subjects B and C were selected for the second part
of the experiment because their performance was similar.

The second task for B and C was to annotate two 4 minute
clips. B started with empty EAF files. C started with our pre-
annotated EAF files. B completed the task in 1:07:55 while
C did it in 00:33:47. In other words, the annotator using our
system completed the task twice as fast as the one not using
it. The resulting annotations were checked for quality. We
found that the error rate was the same in each case. While B
did have slightly more detailed annotations, the time saved
by the system was still considered significant.

In the second experiment, subjects B and C switched
roles. C started with an empty EAF file. B started with a
pre-annotated EAF file. The task for B was to revise the sys-
tem’s annotations, as well as annotate the basic features of
each head movement. The task for C was to just annotate the
basic features of each (vertical and horizontal) head move-
ment. Both subjects worked with one 4 minute video.

B completed the task in 20:05 minutes. C completed the
task in 21:14 minutes. Their performance was also similar.
However, we found that B misunderstood the task and anno-
tated hand detection and hand movement in addition to head
movement. Thus, B did more work in the same time as C.

These two experiments indicate that, though in a prelimi-
nary state, when using the system the annotation task can be
completed with less effort. We expect that these results will
improve as the system becomes more accurate over time.

5 Conclusion and Future Work

Human communication is multimodal, and large datasets to
study it carefully are becoming available. As part of the Dis-
tributed Little Red Hen Lab, we have described an effort to
create a visual search engine to allow gesture scholars to
more easily analyze massive quantities of video. The work
is preliminary, and we feel that dealing with the challeng-
ing data characteristics will require novel ideas from ma-
chine learning and computer vision. However, even at this
point, we feel it shows promise in helping the disciplines of
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linguistics, communication and related areas transform into
data-driven sciences.

The authors wish to thank Peter Uhrig for discussions re-
lated to the article.
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