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Abstract

As the demand for mobile network services increases, im-
mediate detection and forecasting of network failure events
have become important problems for service providers. Sev-
eral event detection approaches have been proposed to tackle
these problems by utilizing social data. However, these ap-
proaches have not tried to solve event detection and fore-
casting problems from multiple data sets, such as web ac-
cess logs and search queries. In this paper, we propose a ma-
chine learning approach that incorporates multiple user activ-
ity data into detecting and forecasting failure events. Our ap-
proach is based on a two-level procedure. First, we introduce
a novel feature construction method that treats both the im-
balanced label problem and the data sparsity problem of user
activity data. Second, we propose a model ensemble method
that combines outputs of supervised and unsupervised learn-
ing models for each data set and gives accurate predictions
of network service outage. We demonstrate the effectiveness
of the proposed models by extensive experiments with real-
world failure events occurred at a network service provider in
Japan and three user activity data sets.

Introduction
Providing stable and high-quality service is a typical mission
of mobile network service providers. The amount of data
traffic from mobile network services is expected to grow to
49 exabytes per month by 2021, which is seven times the
volume of 2016 (Cisco Systems Inc. 2017). However, due
to an unexpectedly huge amount of data traffic exceeding
network capacity of a provider, a mobile network service
experiences severe failures such as network troubles, perfor-
mance deterioration, and very slow data traffic on rare occa-
sions.

To recover from failures as soon as possible, immedi-
ate detection and forecasting of a service outage are cru-
cial problems. Traditional methods for such problems are
monitoring network traffic and server logs (Gill, Jain, and
Nagappan 2011; Brutlag 2000). However, such methods are
not appropriate for our purpose because a modern service
with thousands of servers and network appliances around the
world and monitoring all of the system equipment is almost
impossible (Takeshita, Yokota, and Nishimatsu 2015).
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Figure 1: Overall view of a failure event detection and fore-
casting system with multiple user activity data sets. The data
surrounded by the red dotted lines are used in this study.

Mobile network users frequently communicate with a mo-
bile network service and often detect service outage be-
fore the service provider detects it (Qiu et al. 2010). They
can immediately publish their impressions on the services
through social media and search for failure information on
the web. There are a few pioneering studies that utilize so-
cial data for detecting network failure events (Takeshita,
Yokota, and Nishimatsu 2015; Maru et al. 2016). Although
they have shown better performances by using supervised
learning methods, they have only employed Twitter data and
did not consider utilizing other kinds of user activity data
such as search queries and web access logs. We illustrate a
framework for failure event detection and forecasting for a
network service in Fig. 1.

In a field of analyzing social events in the physical world
and the web, the event detection or forecast from multiple
user activity data sets have been a hot topic (Atefeh and
Khreich 2015) and have been applied to various kind of
events including planned server downs (Becker et al. 2012),
natural hazards (Abhik and Toshniwal 2013), influenza epi-
demics (Santillana et al. 2015), airport threats (Khandpur et
al. 2017), and civil unrest (Kallus 2014; Zhao et al. 2015;
2016). They have demonstrated considerable improvements
by simultaneously analyzing multiple user activity data sets
because each data represents different aspects of the user be-
havior. However, to the best of our knowledge, no such study
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has focused on network failure events.
Multiple user activity data sets would also be beneficial

for detecting and forecasting failure events. For example,
we show the number of tweets, web accesses, and search
queries including the name of the service for each hour dur-
ing the four days before and after the occurrence of a failure
event in Fig. 2. We also showed typical words, URLs, and
queries that frequently appeared in the event. The red re-
gion represents the occurrence of the failure event. We can
observe unusual but different user activity patterns for each
data compared with the same time on different days.

In this paper, we attempt to introduce a network fail-
ure event detection and forecasting method based on su-
pervised learning methods that provide a risk of a failure
every minute. There are several crucial problems for con-
structing such a system. 1. Utilizing both social and oper-
ational data. Existing studies on the failure event detection
only employed social data and not used operational data. To
incorporate these data into our system, we need to develop
a method that can successfully take advantage of both social
and operational data. 2. Imbalanced label and data spar-
sity problem. Failure events rarely occur in a mobile net-
work service. Therefore, almost all of the observed data is
labeled as normal, and only a few parts of it are labeled as
failure. In addition, observed data aggregated in a very short
span such as each minute tend to be sparse. The imbalanced
label and sparsity problems often cause the overfitting of su-
pervised learning method and lead poor performances.

To solve these problems, we propose a model ensemble
approach with multiple user activity data sets to real-time
detections and forecasting failure events in a very short span.
Our approach is based on a two-level procedure. First, we
propose a novel feature construction method that treats both
the imbalanced label problem and the data sparsity problem
of the user activity data. Second, to utilize multiple user ac-
tivity data sets for detecting and forecasting events, we in-
troduce a model ensemble approach that can combine the
outputs of supervised and unsupervised learning methods
for every data sets to provide accurate predictions. We then
propose a novel failure event forecasting method by slightly
changing a setting of inputs and outputs of the failure event
detection system. We experimentally show the improvement
of detection and prediction performance by our proposed ap-
proach through extensive experiments using real-world data
sets. We demonstrate that the proposed approach by using
multiple data outperforms existing methods.

Related work
A supervised failure detection system for an automatic net-
work controlling system has been developed by Maru et al.
(2016).One of the most related methods was proposed by
Takeshita et al. (2015).Their method combined a keyword
matching filter and the support vector machine to extract
failure related posts from tweets and gave a failure alert
when the number of posts is over a threshold. Those meth-
ods have been shown better performances on their problems,
but only employed single social data.

In the field of social event analysis, Zhao et al. (2016) pro-
posed a novel multi-source feature learning method based
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Tweet cannot, connect, fail, outage...

support.XXX.com, contact.XXX.com

inquiry, error, support, failure ...

Figure 2: Number of tweets, web accesses of the official
pages, and search queries related to the mobile network ser-
vice in the period before and after a failure event. The red
region corresponds to a failure event.

on the logistic regression. Their method consisted of three-
level model ensemble approach and showed better perfor-
mance on the spatio-temporal event forecasting. However,
they have only employed linear models for their frame-
works. The failure event labels used in these works were
provided by annotators who watches a social stream or news,
and it is reasonable that they can predict the labels from so-
cial data. In contrast, we used a set of labels provided by
a service provider and annotated independently from social
data. Thus, our problem formulation is different from these
of social event analysis.

Failure events and user activity data

A service provider announces a failure as a report to inform
users when a serious failure event occurred on their mobile
network service. We obtained nine serious failure events re-
ported by a mobile network service provider which has mil-
lions of subscribers in Japan from November 2015 through
December 2016. Those failures were mainly caused by er-
rors in a network system or its applications. The failure event
ID, the event duration (time in minutes) and date and time
of each ID are shown in Table 1. These events are rare and
only occurred once or twice a month. The duration of fail-
ure events varied from 60 minutes to 1,554 minutes because
every failure event happened on different servers or parts of
the system.

We collected one social data and two operational data
as user activity data sets from November 2015 to January
2017. As social data, we obtained a set of tweets contain-
ing keywords such as the name of the service via Twitter
API. The total number of posts was 72,070 which was ex-
tremely small compared with common topics tweets such
as sports. The nouns, verbs, and adjectives in posts are ex-
tracted as words appearing and constructed a set of unique
words De = {de1, . . . , deMe

}, where |Me| = 5, 750. Stop
words, and words whose total frequency was less than three,
were removed.Then, we obtained the term frequency per
minute for the whole periodto create feature vectors. For
convenience, we denote tweet data as T . As operational
data, we employ web access logs and search queries on a
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Table 1: Failure events published by the network service
provider. The duration indicates amount of minutes to re-
cover from failure events. The date and time indicate start
day and time of each failure event.

ID Duration [min] Date and Time
1 188 Nov/13/2015, 08:22 a.m.
2 60 Feb/04/2016, 06:00 a.m.
3 60 Feb/13/2016, 10:52 p.m.
4 60 Mar/24/2016, 02:00 a.m.
5 150 Jun/10/2016, 09:20 p.m.
6 512 Jun/15/2016, 09:20 p.m.
7 100 Jul/06/2016, 08:50 a.m.
8 950 Jul/27/2016, 10:00 p.m.
9 1554 Dec/25/2016, 01:46 a.m.

Table 2: Training and test data sets. The ratio of failure labels
(yt = 1) in the test data set and the sparsity corresponds
the proportion of zero elements in the feature vector for the
training data sets.

Test ID Training ID Ratio Sparsity [%]
[%] T W Q

5 1 - 4 0.12 99.55 99.06 99.85
6 2 - 5 0.10 99.56 99.06 99.85
7 2 - 6 0.27 99.57 99.42 99.85
8 2 - 7 0.31 99.58 99.42 99.85
9 4 - 8 0.57 99.58 99.58 99.84

search engine provided by a network service provider in
Japan. We obtained 29,520,772 access logs on web sites
such as service portal pages, purchase pages, and support
pages from the network service provider. An example of
a web access log is given as the tuple: (Access Time =
“2016-03-20 11:54:12”, URL = “http://contact.XXX.com”,
TITLE = “Contact Form”). We created a set of unique pages
Dw = {dw1 , . . . , dwMw

}, where |Mw| = 6, 378. Then, we
calculated the frequency of access to the pages per minute to
create feature vectors. We used 82,136 search queries from
the service provider which is provided by a search engine
on the Internet. An example of a search query is given by
the tuple: (Search Time = “2016-03-21 21:31:56”, Query
= “XXX error”). We set keywords to be the same as the
Twitter data and extracted search queries containing the key-
words from all search queries. We created a unique query
set Dq = {dq1, . . . , d

q
Mq

} from the space-separated queries,
where |Mq| = 1, 209. We calculated the term frequency
in queries per minute in the same way as tweets to create
feature vectors. For convenience, we denote web access log
data and search query data as W and Q.

Failure event detection

Problem formulation

xt ∈ R
M is a feature vector of user activity data on the time

stamp t and yt ∈ {−1, 1} is a label that indicates whether
an event occurs (yt = 1) or not (yt = −1) at that time. We
denote a training data set and a test data set as {(xt, yt)}Tt=1

Figure 3: Evaluation settings of AUC for (1) Entire Period
(EP), which verify the performance during all periods of test
data set, (2) Early detection in 60 minutes (60min), which
verify the performance during the 60 minutes after a failure
event occur and the rest interval, and (3) Forecasting future
events (Forecast), which verify the performance during the
periods before a failure event.

and {xt}T+T ′
t=T+1, respectively, where T and T ′ are the dura-

tion of each data set. Our goal is to estimate a learning model
f that predict a label yt from a feature vector xt.

We utilized the last five failure events in Table 1 as the
test event. For each test event, we constructed a test data set
whose start and end time stamps were set at one week before
and after the time stamp when the failure event occurred.
Since two events (ID:5 and ID:6) occurred within one week,
we set test data sets for these events at four days before and
after. We employed the previous 210 days from the starting
time stamp of the test data set as a training data set. The first
four events are only utilized as training data set. We illustrate
how we constructed three types of training and test data sets
in Fig. 3.

We show the training ID for each test event, the ratio of
failure labels (yt = 1) in the test data set, and the sparsity
that corresponds the proportion of zero elements in the fea-
ture vector for the training data sets in Table 2. As shown
in Table 2, our data set contains only less than one percent
of labels for failure events. Moreover, the sparsity of every
training data is extremely high.

Feature construction for imbalanced labels and
sparse time series

The labels in our data set are highly imbalanced, as fail-
ure events in the network service rarely occur and are fixed
within an hour to a few days. To address the label imbal-
anced problem, we combine term frequency features with
a scaling method that considers the proportion of labels.
We adopt a feature scaling called the Bi-Normal Separa-
tion (BNS) that was proposed for text classification prob-
lems with imbalanced labels (Forman 2003). BNS can be
defined as: bns(di) = |F−1(tpr)−F−1(fpr)| where tpr =
tp/(tp + fn) and fpr = fp/(fp + tn) indicate true and
false positive rate, tp and fn indicate the positive cases con-
taining a feature di or not, fp and tn indicate the negative
cases, and F−1(·) is the inverse normal cumulative distri-
bution function. To avoid the undefined value F−1(0) and
F−1(1), zero and one are substituted by 0.0005 and 0.9995.
Then, we obtain feature vectors by multiplying the term fre-
quency vector tf(xi,t) =

xi,t∑M
m=1 xm,t

with BNS features :
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Table 3: Comparison of feature construction methods using
individual user activity data by AUC for EP. “tf-bns+sma”
outperformed the other methods for three user activity data
sets.

Method T W Q
td 0.52±0.03 0.68±0.11 0.50±0.01

tf-idf 0.53±0.03 0.69±0.10 0.50±0.01

tf-bns 0.53±0.03 0.67±0.07 0.50±0.01

td+sma 0.65±0.15 0.82±0.16 0.55±0.10

tf-idf+sma 0.74±0.13 0.88±0.10 0.57±0.09

tf-bns+sma 0.77±0.12 0.90±0.10 0.57±0.13

tf -bns(xi,t) = tf(xi,t)× bns(di).
Since our feature vector is highly sparse and often noisy,

we employ moving average techniques with a sliding time
window to address the sparsity problem (Botezatu et al.
2016). We use a simple moving average for a feature vec-
tor xt : xt =

∑t
s=s′

1
Sxs, where s′ = 1 if t − S ≤ 0 and

s′ = t − S otherwise. We use S as a duration of the sliding
time window. We expect that the observations from the past
time t−S are used for learning detection models in a time t.
A large S is used for assigning weights to observation from
the more distant past.

Model comparison

Each user activity data represents a different aspect of user
behavior on social media or the operation system. The most
suitable model should differ for every data set. Since the re-
lation between the user activity data sets and event labels is
not always linear, we utilize several linear and nonlinear su-
pervised classification models including Logistic Regression
(LR) (Ramakrishnan et al. 2014), AdaBoost (ADA) of deci-
sion stamps (Santillana et al. 2015), Random Forest (RF)
(Kallus 2014), and Neural Network (NN). In addition to su-
pervised models, regarding failure events as anomaly events,
we also employ unsupervised anomaly detection models
One Class SVM (OCS) and Auto Encoder (AE) as compar-
isons (Chandola, Banerjee, and Kumar 2009).

Experiments and discussion

We examine the Area Under the ROC Curve (AUC) to eval-
uate the predictive performance of the feature construction
methods. We employed “td”, which learn the model us-
ing the original features xt, “tf-idf” (Salton and McGill
1986), which can be defined as tf -idf(xi,t) = tf(xi,t) ×
idf(di) where idf(di) = log T

tp+fp , “tf-bns”, “td + sma”,
which applies the moving average to “td”, “tf-idf + sma”,
and “tf-bns + sma”. In this experiment, we used a logis-
tic regression model with ridge regularization implementa-
tion (sklearn.linear model.LogisticRegression) provided by
scikit-learn (Pedregosa et al. 2011), which is one of the sim-
plest linear models. We selected the regularization param-
eters C ∈ {0.01, 0.1, 1.0, 10, 100} and the window size
S ∈ {10, 30, 50} for the moving average by five-fold cross
validation.

The average of AUCs for the Entire Period (EP) of all
event IDs (from 5 through 9) in the tweet, web access logs,

and search queries are shown in Table 3. Boldface indicates
the highest AUC for each user activity data. As shown in Ta-
ble 3, “tf-bns+sma” provided the best average AUC among
all methods. The EP of this method was improved compared
to that of “td” by 31 %. We confirmed that improvement by
the simple moving average was 19 %. This result supports
the effectiveness of the feature scaling by BNS, and the sup-
pression of the sparseness by the simple moving average.

Next, to find the best model for each user activity data, we
compared the performance of models on failure event detec-
tion. In addition to AUC for EP, we utilize a weighted AUC
to evaluate the performance for early detection (60min) be-
cause early detection is important for quickly fixing sys-
tems (Keilwagen, Grosse, and Grau 2014). For the weighted
AUC, we denote a weight on a time stamp wt and set it to
1 if t is included a non-failure event and 60 minutes after
the failure event, and set it to 0 for the others. Feature vec-
tors with “tf-bns + sma” were utilized as input for every
data set. The regularization parameter for LR, the number
N ∈ {100, 300, 500} of weak classifiers as with decision
stamps to obtain RF and ADA and regularization parame-
ter nu ∈ {0.1, 0.5, 0.9} for OCS with Gaussian kernel were
determined by five-fold cross validation. We employed an
implementation provided by scikit-learn (Pedregosa et al.
2011). For NN and AE, we used the three-layer neural net-
work with M dimension input, a hidden layer with one hun-
dred neurons, ReLU activation function, and Adadelta op-
timizer. We implemented the two models with Keras. The
anomaly score of AE was calculated by the squared recon-
struction error.

The results of AUC (EP) and the weighted AUC (60min)
are shown in Table 4. “All” indicates the average and stan-
dard deviation of AUC of five events. As shown in Table 4,
for 60min, AE based on the input of tweet data provided the
best average AUC of six models and three data. For EP, LR
based on the input of web access logs provided the best aver-
age AUC of six models and three data. This result indicates
that the early detection based on tweet data performed better
than the other two data and the detection in the entire period
based on web access logs performed better than the other
two data. On the other hand, compared with the models and
data in each event, RF based on the input of web access logs
and search queries provided the best performance in ID:5
and ID:6 of test data. To sum up these results, the optimal
combinations of models and data are different in each event
due to the variety of the failure events. In addition, since
the score of Twitter data and web access logs were high-
est in 60min and EP, respectively, this result would suggest
an assumption on user behavior that users who detected a
failure tend to publish their posts first and then access web
pages to obtain failure information. This assumption would
shed light on understanding a sequence of user activities on
a failure event.

Model ensemble
We propose a two-level model ensemble method for utiliz-
ing the multiple user activity data sets. For each data set, we
employ LR, RF, and AE for the model ensemble because
these models were the best for at least one event ID in the
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Table 4: Comparison of models using individual user activity data. “60min” indicates the AUC calculated using during the 60
minutes after a event occur and the rest interval. “EP” indicates the AUC calculated using all periods in test data.The results
demonstrate that the best combinations of models and data are different in each event.

Data Model ID:5 ID:6 ID:7 ID:8 ID:9 All
60min EP 60min EP 60min EP 60min EP 60min EP 60min EP

T

LR 0.92 0.94 0.82 0.60 0.62 0.74 0.99 0.76 1.00 0.82 0.87±0.16 0.77±0.12

ADA 0.78 0.63 0.02 0.35 0.42 0.45 0.49 0.58 1.00 0.51 0.54±0.37 0.50±0.11

RF 0.83 0.79 0.72 0.76 0.95 0.96 0.99 0.83 1.00 0.83 0.90±0.12 0.83±0.08

NN 0.79 0.65 0.18 0.34 0.29 0.27 0.86 0.58 0.99 0.47 0.62±0.36 0.46±0.16

OCS 0.88 0.69 0.72 0.56 0.50 0.50 0.50 0.56 1.00 0.70 0.72±0.22 0.60±0.09

AE 0.94 0.82 0.86 0.73 0.93 0.90 0.90 0.70 1.00 0.73 0.93±0.05 0.78±0.08

W

LR 0.78 0.90 0.76 0.86 0.99 0.99 1.00 0.99 0.98 0.75 0.90±0.12 0.90±0.10

ADA 0.62 0.80 0.86 0.70 0.82 0.89 0.82 0.93 0.94 0.80 0.81±0.12 0.82±0.09

RF 0.94 0.97 0.82 0.75 0.68 0.73 0.93 0.95 1.00 0.71 0.87±0.13 0.82±0.13

NN 0.57 0.82 0.51 0.71 0.88 0.89 0.98 0.97 0.99 0.75 0.79±0.23 0.83±0.11

OCS 0.60 0.50 0.40 0.68 0.79 0.78 0.04 0.51 0.82 0.52 0.53±0.32 0.60±0.13

AE 0.41 0.50 0.38 0.69 0.81 0.81 0.03 0.50 0.82 0.47 0.49±0.33 0.59±0.15

Q

LR 0.53 0.39 0.86 0.58 0.78 0.74 0.45 0.61 0.60 0.55 0.65±0.17 0.57±0.13

ADA 0.26 0.33 0.16 0.56 0.61 0.62 0.45 0.53 0.27 0.50 0.35±0.18 0.51±0.11

RF 0.73 0.55 0.87 0.70 0.62 0.52 0.36 0.64 0.42 0.48 0.60±0.21 0.58±0.09

NN 0.25 0.32 0.20 0.51 0.30 0.47 0.54 0.52 0.50 0.52 0.36±0.15 0.47±0.09

OCS 0.77 0.68 0.70 0.56 0.66 0.60 0.47 0.57 0.88 0.58 0.70±0.15 0.60±0.05

AE 0.78 0.67 0.85 0.62 0.50 0.62 0.37 0.66 0.71 0.57 0.64±0.20 0.63±0.04

previous experiment. We define our ensemble method as:

(Level 1) p̂t = sig(wTzt + b) (1)

(Level 2) zt = (fD1

M1
(xt), f

D2

M1
(xt), . . . , f

Dq

M3
(xt)) (2)

where sig is the sigmoid function sig(a) = 1
1+exp(−a) , w ∈

R
3×q is the coefficients for models of Level 2, b is a bias

term. We used fDM(xt) and zt ∈ R
3×q as output of three

model M1(=LR), M2(=RF), and M3(=AE) with a data set
Dj , j = (1, . . . , q) in time t and the feature vector for Level
2, respectively. From the definition, the prediction score p̂t
on Level 1 is linearly dependent on Level 2 parameters zt.
We define a loss function to estimate the coefficient vector
w and the bias term b as:

L(w, b) = −
T∑

t=1

{(1− yt) log(1− pt)

+ yt log pt}+ ψ(w, b, C)

(3)

where ψ(w, b, C) is a regularization term.
We also employ a data ensemble method that trains a de-

tection model f(·) from a feature space with the concatena-
tion of multiple data. We examined the whole combination
of user activity data sets in this experiment.

We evaluated AUC for the entire period (EP) and the
weighted AUC (60min) for the model ensemble method
(ME) and the data ensemble method (DE). Feature vectors
with “tf-bns + sma” were used in this experiment. We used
a ridge regularization: ψ(w, b, C) = C

2 (||w||2 + b2). In this
experiment, we employed a logistic regression implementa-
tion (sklearn.linear model.LogisticRegression) provided by
scikit-learn (Pedregosa et al. 2011). Hyper parameters were
selected by five-fold cross validation.

Table 5: Comparison of AUC of model ensemble (denoted
as ME) and data ensemble (denoted as DE). The result indi-
cates that the ME with multiple user activity data sets con-
tributed to the improvement from the case where we only
used single data.

Data ME DE
60min EP 60min EP

T 0.94±0.09 0.87±0.08 - -
W 0.90±0.13 0.88±0.11 - -
Q 0.62±0.16 0.60±0.08 - -

(T ,W) 0.95±0.10 0.90±0.09 0.88±0.15 0.88±0.09

(T ,Q) 0.94±0.08 0.87±0.08 0.88±0.13 0.73±0.13

(W,Q) 0.90±0.13 0.88±0.11 0.90±0.13 0.89±0.10

(T ,W,Q) 0.94±0.09 0.91±0.09 0.88±0.14 0.88±0.10

The comparison of AUC of model and data ensemble are
shown in Table 5. Boldface indicates the highest AUC for
each evaluation. We confirmed that the model ensemble with
tweet and web access logs (T ,W) and the whole data set
(T ,W ,Q) achieved the best score for 60min and EP, respec-
tively. The result indicates that the model ensemble method
with multiple user activity data sets contributed to the im-
provement from the case where we only used single data.
On the other hand, as shown in Table 5, the data ensemble
method could not improve the performance. The increase
of the feature dimension might cause the overfitting for the
model.

An example of prediction scores and AUC for the entire
period of our model ensemble method and the best method
for every individual data set is shown in Fig. 4. We con-
firmed that the model ensemble successfully suppressed the
false negative, e.g. the prediction score in web access logs
in Dec/31/2016, in the period before and after the failure
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Table 6: Comparison of forecasting performance in α minutes. Model ensemble method outperforms the other methods for the
failure event forecasting.

Model α = 10 α = 20 α = 30 α = 40 α = 50 α = 60
ME(T ,W) 0.81±0.27 0.79±0.25 0.78±0.21 0.74±0.18 0.69±0.18 0.67±0.19

ME(T ) 0.72±0.35 0.71±0.36 0.71±0.34 0.68±0.31 0.72±0.20 0.76±0.15

ME(W) 0.76±0.25 0.74±0.22 0.77±0.17 0.70±0.16 0.77±0.09 0.70±0.24

DE(T ,W) 0.72±0.35 0.69±0.31 0.66±0.26 0.64±0.18 0.69±0.08 0.68±0.12

LR(T ) 0.79±0.27 0.67±0.31 0.60±0.29 0.54±0.25 0.48±0.23 0.49±0.19

LR(W) 0.70±0.25 0.71±0.27 0.71±0.25 0.73±0.22 0.73±0.20 0.73±0.18
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Figure 4: Performance and observed user activities of the
test ID:9. The model ensemble ME(T ,W ,Q) outperformed
RF(T ), LR(W), and AE(Q). Black lines indicate the pre-
diction score. Blue, green, and red colored line indicate the
number of tweets, web access logs, and search queries. Fig-
ures in the right side correspond the AUC for the entire pe-
riod of the test data set.

event occurred. For the failure period, our method provided
a rapid rise and long-tailed decreasing of the prediction score
because it can exploit both the rapid rise of scores on tweet
data and the delayed rise of web access logs.

Failure event forecasting

We address the future failure event forecasting problem in
this section. We denote a training set of user activity data
as {(xt, yt+α)}T−α

t=1 , where T is a time stamp 210 days + α
minutes before the failure event started. Thus, the problem
is to predict the failure event labels on α minutes later. To
evaluate the predictive performance, we set the test set as
{xt}T+s

t=T−α+1. We employed the model ensemble method
with tweets and web access logs in this experiment. We used
LR with tweets or web access logs (LR(T ) and LR(W)),
the data ensemble method with tweets and web access logs
(DE(T ,W)), and the model ensemble methods with Twitter
or web access logs (ME(T ) and ME(W)) for comparisons.
The time step α were set to (10, 20, 30, 40, 50, 60). To eval-
uate the predictive performance, we calculated AUC for the
forecasting, see Fig. 3.

The average and standard deviations of AUC for each time

step α are shown in Table 6. Boldface indicates the best per-
formance for each time step. ME(T ,W) showed the best per-
formance for α = 10, 20, 30, and 40. ME(T ) and ME(W)
showed the best performance for α = 50 and α = 60. On
the other hand, LR(T ) and LR(W) resulted in lower AUC
than that of ME. This result indicates that our model ensem-
ble method was more highly effective than existing methods
for the failure event forecasting with both multiple and indi-
vidual user activity data.

Conclusion

We proposed a feature construction method and model en-
semble method for detecting and forecasting failure events
on mobile network services from multiple user activity data
sets. Because we would like to help service providers to take
quick measures for fixing their system, we conducted two
types of extensive experiments that considered the perfor-
mance on (1) stable failure event detection on the entire test
period and early failure detection in 60 minutes (2) before-
hand forecasting of a failure event. With real-world failure
events, we demonstrated that our proposed approaches out-
performed existing methods utilizing only single user activ-
ity data set.

There are promising directions for future works below.
We employed three types of user activity data sets in this
study. Utilizing additional data sets that we mentioned in
Fig. 1 or something else would be beneficial for providing
more accurate predictions. According to wide movements on
neural networks, a nonlinear method for time series analysis
would be useful for our target. Moreover, analyzing failure
symptoms in each event and deploying a monitoring system
based on our ensemble approaches using multiple user ac-
tivity data would be important future works.
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