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Abstract

Automated story generation is the problem of automatically
selecting a sequence of events, actions, or words that can be
told as a story. We seek to develop a system that can gen-
erate stories by learning everything it needs to know from
textual story corpora. To date, recurrent neural networks that
learn language models at character, word, or sentence levels
have had little success generating coherent stories. We ex-
plore the question of event representations that provide a mid-
level of abstraction between words and sentences in order
to retain the semantic information of the original data while
minimizing event sparsity. We present a technique for pre-
processing textual story data into event sequences. We then
present a technique for automated story generation whereby
we decompose the problem into the generation of successive
events (event2event) and the generation of natural language
sentences from events (event2sentence). We give empirical
results comparing different event representations and their
effects on event successor generation and the translation of
events to natural language.

Introduction
Automated story generation is the problem of automatically
selecting a sequence of events, actions, or words that can be
told as a story. To date, most story generation systems have
used symbolic planning (Young et al. 2013) or case-based
reasoning (Gervás et al. 2005). While these automated story
generation systems were able to produce impressive results,
they rely on a human-knowledge engineer to provide sym-
bolic domain models that indicated legal characters, actions,
and knowledge about when character actions can and can-
not be performed; these systems are limited to only telling
stories that are covered by the domain knowledge. Conse-
quently, it is difficult to determine whether the quality of the
stories produced by these systems is a result of the algorithm
or good knowledge engineering.

Open story generation (Li et al. 2013) is the problem of
automatically generating a story about any domain without
a priori manual knowledge engineering. Open story gener-
ation requires an intelligent system to either learn a domain
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model from available data (Li et al. 2013; Roemmele et al.
2017) or to reuse data and knowledge available from a cor-
pus (Swanson and Gordon 2012).

In this paper, we explore the use of recurrent encoder-
decoder neural networks (e.g., Sequence-to-Sequence
(Sutskever, Vinyals, and Le 2014)) for open story genera-
tion. An encoder-decoder RNN is trained to predict the next
token(s) in a sequence, given one or more input tokens. The
network architecture and set of weights θ comprise a gen-
erative model capturing and generalizing over patterns ob-
served in the training data. For open story generation, we
must train the network on a dataset that encompasses as
many domains as possible. For this work, we use a corpus
of movie plot summaries extracted from Wikipedia (Bam-
man, O’Connor, and Smith 2014) under the premise that the
set of movie plots on Wikipedia covers the range of domains
that people want to tell stories about.

In narratological terms, an event is a unit of story featuring
a world state change (Prince 1987). Textual story corpora,
including Wikipedia movie plot corpora, are comprised of
unstructured textual sentences. One benefit to dealing with
movie plots is the clarity of events that occur, although this
is often at the expense of more creative language. Even so,
character- or word-level analysis of these sentences would
fail to capture the interplay between the words that make
up the meaning behind the sentence. Character- and word-
level recurrent neural networks can learn to create gram-
matically correct sentences but often fail to produce coher-
ent narratives beyond a couple of sentences. On the other
hand, sentence-level events would be too unique from each
other to find any real relationship between them. Even with a
large corpus of stories, we would most likely have sequences
of sentences that would only ever be seen once. For exam-
ple, “Old ranch-hand Frank Osorio travels from Patagonia
to Buenos Aires to bring the news of his daughter’s demise
to his granddaughter Alina.” occurs only once in our corpus,
so we have only ever seen one example of what is likely to
occur before and after it (if anything). Due to event sparsity,
we are likely to have poor predictive ability.

In order to help maintain a coherent story, one can provide
an event representation that is expressive enough to preserve
the semantic meaning of sentences in a story corpus while
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also reducing the sparsity of events (i.e. increasing the po-
tential overlap of events across stories and the number of
examples of events the learner observes). In this paper, we
have developed an event representation that aids in the pro-
cess of automated, open story generation. The insight is that
if one can extract some basic semantic information from the
sentences of preexisting stories, one can learn the skeletons
of what “good” stories are supposed to be like. Then, using
these templates, the system can generate novel sequences of
events that would resemble a decent story.

The first contribution of our paper is thus an event repre-
sentation and a proposed recurrent encoder-decoder neural
network for story generation called event2event. We evaluate
our event representation against the naive baseline sentence
representation and a number of alternative representations.
We measure the ability to predict the true successor event as
an indicator of how event representations facilitate the mod-
eling of context.

In event2event, a textual story corpus is preprocessed—
sentences are translated into our event representation by ex-
tracting the core semantic information from each sentence.
Event preprocessing is a linear-time algorithm using a num-
ber of natural language processing techniques. The pro-
cessed text is then used to train the neural network. How-
ever, event preprocessing is a lossy process and the resultant
events are not human-readable. To address this, we present
a story generation pipeline in which a second neural net-
work, event2sentence, translates abstract events back into
natural language sentences. The event2sentence network is
an encoder-decoder network trained to fill in the missing de-
tails necessary for the abstract events to be human-readable.

Our second contribution is the overall story generation
pipeline in which subsequent events of a story are generated
via an event2event network and then translated into natural
language using an event2sentence network. We present an
evaluation of event2sentence on different event representa-
tions and draw conclusions about the effect of representa-
tions on the ability to produce readable stories.

The remainder of the paper is organized as follows. First,
we discuss related work on automated story generation, fol-
lowed by an introduction of our event representation. Then
we introduce our event2event network and provide an eval-
uation of the event representations in the context of story
generation. We show how the event representation can be
used in event2sentence to generate human-readable sen-
tences from events. We end with a discussion of future work
and conclusions about these experiments and how our event
representation and event2sentence model will fit into our fi-
nal system.

Related Work
Automated Story Generation has been a research problem of
interest since nearly the inception of artificial intelligence.
Early attempts relied on symbolic planning (Young et al.
2013) or case-based reasoning using ontologies (Gervás
et al. 2005). These techniques could only generate stories
for predetermined and well-defined domains of characters,
places, and actions. The creativity of these systems conflated

the robustness of manually-engineered knowledge and algo-
rithm suitability.

Recently, machine learning has been used to attempt to
learn the domain model from which stories can be created
or to identify segments of story content available in an ex-
isting repository to assemble stories. The SayAnything sys-
tem (Swanson and Gordon 2012) uses textual case-based
reasoning to identify relevant existing story content in on-
line blogs. The Scheherazade system (Li et al. 2013) uses a
crowdsourced corpus of example stories to learn a domain
model from which to generate novel stories.

Recurrent neural networks can theoretically learn to pre-
dict the probability of the next character, word, or sentence
in a story. Roemmele and Gordon (Roemmele et al. 2017)
use a Long Short-Term Memory (LSTM) network (Hochre-
iter and Schmidhuber 1997) to generate stories. They use
Skip-thought vectors (Kiros et al. 2015) to encode sentences
and a technique similar to word2vec (Mikolov et al. 2013)
to embedded entire sentences into 4,800-dimensional space.
They trained their network on the BookCorpus dataset.
Khalifa et al. (2017) argue that stories are better generated
using recurrent neural networks trained on highly special-
ized textual corpora, such as the body of works from a sin-
gle, prolific author. However, such a technique is not capable
of open story generation.

Based off of the theory of script learning (Schank and
Abelson 1977), Chambers and Jurafsky (2008) learn causal
chains that revolve around a protagonist. They developed a
representation that took note of the event/verb and the type
of dependency that connected the event to the protagonist
(e.g. was the protagonist the object of this event?).

Pichotta and Mooney (2016a) developed a 5-tuple event
representation of (v, es, eo, ep, p), where v is the verb, p
is a preposition, and es, eo, and ep are nouns representing
the subject, direction object, and prepositional object, re-
spectively. Our representation was inspired by this work, al-
though we use a slightly different representation. Because it
was a paper on script learning, they did not need to convert
the event representations back into natural language.

Related to automated story generation, the story cloze test
(Mostafazadeh et al. 2016) is the task of choosing between
two given endings to a story. The story cloze test transforms
story generation into a classification problem: a 4-sentence
story is given along with two alternative sentences that can
be the 5th sentence. State-of-the art story cloze test tech-
niques use a combination of word embeddings, sentiment
analysis, and stylistic features (Mostafazadeh et al. 2017).

Event Representation
Automated story generation can be formalized as follows:
given a sequence of events, sample from the probability dis-
tribution over successor events. That is, simple automated
story generation can be expressed as a process whereby the
next event is computed by sampling from or maximizing
Prθ(et+1|et−k, ..., et−1, et) where θ is the set of parame-
ters of a generative domain model, ei is the event at time i,
and k indicates the size of a sliding window of context, or
history.
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In our work, the probability distribution is produced by
a recurrent encoder-decoder network with parameters θ. In
this section, we consider what the level of abstraction for the
inputs into the network should be such that it produces the
best predictive power while retaining semantic knowledge.
Event sparsity results in a situation where all event succes-
sors have a low probability of occurrence, potentially within
a margin of error. In this situation, story generation devolves
to a random generation process.

Following Pichotta and Mooney (2016a), we developed a
4-tuple event representation 〈s, v, o,m〉 where v is a verb, s
is the subject of the verb, o is the object of the verb, and m is
the modifier or “wildcard”, which can be a propositional ob-
ject, indirect object, causal complement (e.g., in “I was glad
that he drove,” “drove” is the causal complement to “glad.”),
or any other dependency unclassifiable to Stanford’s depen-
dency parser. All words were stemmed. Events are created
by first extracting dependencies with Stanford’s CoreNLP
(Manning et al. 2014) and locating the appropriate depen-
dencies mentioned above. If the object or modifier cannot
be identified, we insert the placeholder EmptyParameter,
which we will refer to as ∅ in this paper.

Our event translation process can either extract a single
event from a sentence or multiple events per sentence. If
we were to extract multiple events, it is because there are
verbal or sentential conjunctions in the sentence. Consider
the sentence “John and Mary went to the store,” our algo-
rithm would extract two events: 〈john, go, store,∅〉 and
〈mary, go, store,∅〉. The average number of events per
sentence was 2.69.

Our experiments below used a corpus of movie plots from
Wikipedia (Bamman, O’Connor, and Smith 2014), which
we cleaned to remove any extraneous Wikipedia syntax,
such as links for which actors played which characters. This
corpus contains 42,170 stories with the average number of
sentences per story being 14.515.

The simplest form of our event representation is achieved
by extracting the verb, subject, object, and modifier term
from each sentence. However, there are variations on the
event representation that increase the level of abstraction
(and thus decrease sparsity) and help the encoder-decoder
network predict successor events. We enumerate some of the
possible variations below.

• Generalized. Each element in the event tuple under-
goes further abstraction. Named entities were identified
(cf. (Finkel, Grenager, and Manning 2005)), and “PER-
SON” names were replaced with the tag <CHAR>n,
where n indicates the n-th character name in the sen-
tence. Other named entities were labeled as their named
entity recognition (NER) category (e.g. LOCATION, OR-
GANIZATION, etc.). The rest of the nouns were re-
placed by the WordNet (Miller 1995) Synset two lev-
els up in the inherited hypernym hierarchy, giving us a
general category (e.g. self-propelled vehicle.n.01 vs the
original word “car” (car.n.01)), while avoiding labeling
it too generally (e.g. entity.n.01). Verbs were replaced by
VerbNet (Schuler 2005) version 3.2.41 frames (e.g. “ar-

1https://verbs.colorado.edu/vn3.2.4-test-uvi/index.php

rived”/“arriving” become “escape-51.1”).
• Character Name Numbering. There were two ways of

numbering the character names that we experimented
with. One way had the character name numbering reset
with every sentence (consistent within sentence)–or, sen-
tence CHARs, our “default”. The other way had the num-
bering reset after every input-output pair (i.e. consistent
across two sentences)–or, continued CHARs.

• Adding Genre Information. We ran topic modeling on
the entire corpus using Python’s Latent Dirichlet Analy-
sis2 set for discovering 100 different categories. We took
this categorization as a type of emergent genre classifica-
tion. Some clusters had a clear pattern, e.g., “job company
work money business”. Others were less clear. Each clus-
ter was given a unique genre number which was added to
the event representation to create a 5-tuple 〈s, v, o,m, g〉
where s, v, o, and m are defined as above and g is the
genre cluster number.

We note that other event representations can exist, includ-
ing representations that incorporate more information as in
(Pichotta and Mooney 2016a). The experiments in the next
section show how different representations affect the ability
of a recurrent neural network to predict story continuations.

Event2Event
The event2event network is a recurrent multi-layer encoder-
decoder network based on (Sutskever, Vinyals, and Le
2014). Unless otherwise stated in experiments below,
our event2event network is trained with input x =
wn

1 , w
n
2 , w

n
3 , w

n
4 where each wn

i is either s, v, o, or m from
the n-th event, and output y = wn+1

1 , wn+1
2 , wn+1

3 , wn+1
4 .

The experiments described below seek to determine how
different event representations affected event2event predic-
tions of the successor event in a story. We evaluated each
event representation using two metrics. Perplexity is the
measure of how “surprised” a model is by a training set.
Here we use it to gain a sense of how well the probabilistic
model we have trained can predict the data. Specifically, we
built the model using an n-gram length of 1:

Perplexity = 2−
∑

x p(x) log2 p(x) (1)
where x is a token in the text, and

p(x) =
count(x)

∑
y∈Y count(y)

(2)

where Y is the vocabulary. The larger the unigram perplex-
ity, the less likely a model is to produce the next unigram in
a test dataset.

The second metric is BLEU score, which compares the
similarity between the generated output and the “ground
truth” by looking at n-gram precision. The neural network
architecture we use was initially envisioned for machine
translation purposes, where BLEU is a common evaluation
metric. Specifically, we use an n-gram length of 4 and so
the score takes into account all n-gram overlaps between the

2https://pypi.python.org/pypi/lda
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generated and expected output where n varies from 1 to 4
(Papineni et al. 2002).

We use a greedy decoder to produce the final sequence by
taking the token with the highest probability at each step.

Ŵ = argmax
w

Pr(w|S) (3)

where Ŵ is the generated token appended to the hypothesis,
S is the input sequence, and w represents the possible output
tokens.

Experimental Setup
For each experiment, we trained a sequence-to-sequence re-
current neural net (Sutskever, Vinyals, and Le 2014) us-
ing Tensorflow (Abadi et al. 2015). Each network was
trained with the same parameters (0.5 learning rate, 0.99
learning rate decay, 5.0 maximum gradient, 64 batch size,
1024 model layer size, and 4 layers), varying only the in-
put/output, the bucket size, the number of epochs and the
vocabulary. The neural nets were trained until the decrease
in overall loss was less than 5% per epoch. This took be-
tween 40 to 60 epochs for all experiments. The data was
split into 80% training, 10% validation, and 10% test data.
All reported results were evaluated using the the held-out
test data.

We evaluated 11 versions of our event representation
against a sentence-level baseline. Numbers below corre-
spond to rows in results Table 1.

0. Original Sentences. As our baseline, we evaluated how
well an original sentence can predict its following original
sentence within a story.

1. Original Words Baseline. We took the most basic, 4-word
event representation: 〈s, v, o,m〉 with no abstraction and
using original character names.

2. Original Words with <CHAR>s. This experiment is iden-
tical to the previous except entity names that were classi-
fied as “PERSON” through NER were substituted with
<CHAR>n.

3. Generalized. Using the same 4-word event structure, we
replaced character names and generalized all other words
through WordNet or VerbNet, following the procedure de-
scribed earlier.

To avoid an overwhelming number of experiments, the
next set of experiments used the “winner” of the first set of
experiments. Subsequent experiments used variations of the
generalized event representation (#3), which showed drasti-
cally lower perplexity scores.

4. Generalized, Continued <CHAR>s. This experiment
mirrors the previous with the exception of the number
of the <CHAR>s. In the previous experiment, the num-
bers restarted after every event. Here, the numbers con-
tinue across input and output. So if event1 mentioned
“Kendall” and event2 (which follows event1 in the story)
mentioned “Kendall”, then both would have the same
number for this character.

5. Generalized + Genre. This is the same event structure as
experiment #3 with the exception of an additional, 5th pa-
rameter in the event: genre. The genre number was used
in training for event2event but removed from inputs and
outputs before testing; it artificially inflated BLEU scores
since it was easy for the network to guess the genre num-
ber as the genre number was weighted equally to other
words.

6. Generalized Bigram. This experiment tests whether RNN
history aids in predicting the next event. We modified
event2event to give it the event bigram en−1, en and to
predict en+1, en+2. We believe that this experiment could
generalize to cases with a en−k, ..., en history.

7. Generalized Bigram, Continued <CHAR>s. This exper-
iment has the same continued <CHAR> numbering as
experiment #4 had but with event2event trained on event
bigrams.

8. Generalized Bigram + Genre. This is a combination of
the ideas from experiments #5 and #6: generalized events
in event bigrams and with genre added.

The following three experiments investigate extracting
more than one event per sentence in the story corpus when
possible; the prior experiments only use the first event per
sentence in the original corpus.

9. Generalized Multiple, Sequential. When a sentence yields
more than one event, e1n, e

2
n, ... where n is the nth sen-

tence and ein is the ith event created from the nth sen-
tence, we train the neural network as if each event occurs
in sequence, i.e., e1n predicts e2n, e2n predicts e3n, etc. The
last event from sentence n predicts the first event from
sentence n+ 1.

10. Generalized Multiple, Any Order. Here we gave the RNN
all orderings of the events produced by a single sentence
paired, in turn, with all orderings of each event of the fol-
lowing sentence.

11. Generalized Multiple, All to All. In this experiment, we
took all of the events produced by a single sentence to-
gether as the input, with all of the events produced by
its following sentence together as output. For example, if
sentence i produced events e1i , e2i , and e3i , and the follow-
ing sentence j produced events e1j and e2j , then we would
train our neural network on the input: e1i e2i e3i , and the
output: e1j e

2
j .

Results and Discussion
The results from the experiments outlined above can be
found in Table 1.

The original word events had similar perplexity to orig-
inal sentences. This parallels similar observations made by
Pichotta and Mooney (2016b). Deleting words did little to
improve the predictive ability of our event2event network.
However, perplexity improved significantly once character
names were replaced by generalized <CHAR> tags, fol-
lowed by generalizing other words.

Overall, the generalized events had much better perplex-
ity scores, and making them into bigrams—incorporating
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history—improved the BLEU scores to nearly those of the
original word events. Adding in genre information improved
perplexity.

The best perplexity was achieved when multiple general-
ized events were created from sentences as long as all of the
events were fed in at the same time (i.e. no order was being
forced upon the events that came from the same sentence).
The training data was set up to encourage the neural network
to correlate all of the events in one sentence with all of the
events from the next sentence.

Although the events with the original words (with or with-
out character names) performed better in terms of BLEU
score, it is our belief that BLEU is not the most appropriate
metric for event generation because it emphasizes the recre-
ation of the input. Overall, BLEU scores are very low for all
experiments, attesting to the inappropriateness of the metric.
Perplexity is a more appropriate metric for event generation
because it correlates with the ability for a model to predict
the entire test dataset. Borrowing heavily from the field of
language modeling, the recurrent neural network approach
to story generation is a prediction problem.

Our intuition that the generalized events would perform
better in generating successive events bears out in the data.
However, greater generalization makes it harder to return
events to natural language sentences. We also see that the
BLEU scores for the bigram experiments are generally
higher than the others. This shows that history matters and
that the additional context increases the number of n-gram
overlaps between the generated and expected outputs.

The movie plots corpus contains numerous sentences
that can be interpreted as describing multiple events. Naive
implementation of multiple events hurt perplexity because
there is no implicit order of events generated from the same
sentence; they are not necessarily sequential. When we al-
low multiple events from sentences to be followed by all of
the events from a subsequent sentence, perplexity improves.

Event2Sentence
Unfortunately, events are not human-readable and must be
converted to natural language sentences. Since the conver-

Table 1: Results from the event2event experiments. Best val-
ues from each of these three sections (baselines, additions,
and multiple events) are bolded.

Experiment Perplexity BLEU
(0) Original Sentences 704.815 0.0432
(1) Original Words Baseline 748.914 0.1880
(2) Original Words with CHARs 166.646 0.1878
(3) Generalized Baseline 54.231 0.0575
(4) Generalized, Continued CHARs 56.180 0.0544
(5) Generalized + Genre 48.041 0.0525
(6) Generalized Bigram 50.636 0.1549
(7) Generalized Bigram, Cont. CHARs 50.189 0.1567
(8) Generalized Bigram + Genre 48.505 0.1102
(9) Generalized Multiple, Sequential 58.562 0.0521
(10) Generalized Multiple, Any Order 61.532 0.0405
(11) Generalized Multiple, All to All 45.223 0.1091

Event2event

Event2sentence

eventn

eventn+1

Eventifysentencen

Slot Fillersentencen+1

Working & Long-
Term Memory

Figure 1: Our automated story generation pipeline. Dashed
boxes and arrows represent future work.

sion from sentences to (multiple) events for event2event is
a linear and lossy process, the translation of events back
to sentences is non-trivial as it requires adding details back
in. For example, the event 〈relative.n.01, characterize-29.2,
male.n.02, feeling.n.01〉 could, hypothetically, have come
from the sentence “Her brother praised the boy for his em-
pathy.” In actuality, this event came from the sentence “His
uncle however regards him with disgust.”

Complicating the situation, the event2event encoder-
decoder network is not guaranteed to produce an event that
has ever been seen in the training story corpus. Furthermore,
our experiments with event representations for event2event
indicate that greater generalization lends to better story gen-
eration. However, the greater the generalization, the harder it
is to translate an event back into a natural language sentence.

In this section we introduce event2sentence, a neural
network designed to translate an event into natural lan-
guage. The event2event network takes an input event en =
〈sn, vn, on, vn〉 and samples from a distribution over possi-
ble successor events en+1 = 〈sn+1, vn+1, on+1,mn+1〉. As
before, we use a recurrent encoder-decoder network based
on (Sutskever, Vinyals, and Le 2014). The event2sentence
network is trained on parallel corpora of sentences from a
story corpus and the corresponding events. In that sense,
event2sentence is attempting to learn to reverse the lossy
event creation process.

We envision event2event and event2sentence working
together as illustrated in Figure 1. First, a sentence—
provided by a human—is turned into one or more events.
The event2event network generates one or more successive
events. The event2sentence network translates the events
back into natural language and presents it to the human
reader. The dashed lines and boxes represent future work
for filling in story specifics. To continue story generation,
eventn+1 can be fed back into event2event; the sentence
generation is purely for human consumption.

The event2sentence experiments in the next section inves-
tigate how well different event representations can be “trans-
lated” back into natural language sentences.

Experimental Setup
The setup for this set of experiments is almost identical to
that of the event2event experiments, with the main difference
being that we used PyTorch3 which more easily lent itself to

3http://pytorch.org/
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implementing beam search. The LSTM RNN networks in
these experiments use beam search instead of greedy search
to aid in finding a more optimal solution while decoding.

The beam search decoder works by maintaining a num-
ber of partial hypotheses at each step (known as the beam
width or B, where B=5). Each of these hypotheses is a po-
tential prefix of a sentence. At each step, the B tokens with
the highest probabilities in the distribution are used to ex-
pand the partial hypotheses. This continues until the end-of-
sentence tag is reached.

The input for these experiments was the events of a par-
ticular representation and the output was a newly-generated
sentence based on the input event(s). The models in these
experiments were trained on the events paired with the sen-
tences they were “eventified” from. In a complete story gen-
eration system, the output of the event2event network feeds
into the event2sentence network. Examples of this can be
seen in Table 3. However, we tested the event2sentence net-
work on the same events that were used for the event2event
experiments in order to conduct controlled experiments–we
know the sentences from which they came–and compute
perplexity and BLEU.

To test event2sentence with an event representation that
used the original words is relatively straight forward. Ex-
perimenting on translating generalized events to natural lan-
guage sentences was more challenging since we would be
forcing the neural net to guess character names, other nouns,
and verbs.

We devised an alternative approach for generalized
event2sentence whereby sentences were first partially even-
tified. That is, we trained event2sentence on generalized sen-
tences where the “PERSON” named entities were replaced
by <CHAR> tags, other named entities were replaced by
their NER category, and the remaining nouns were replaced
by WordNet Synsets. Verbs were left alone since they often
do not have to be consistent across sentences within a story.
The intuition here is that the character names and particulars
of objects and places are highly mutable and do not affect
the overall flow of a story as long as they remain consistent.

Below, we show an example of a sentence and its partially
generalized counterpart. The original sentence

The remaining craft launches a Buzz droid at the ARC
1 7 0 which lands near the Clone Trooper rear gunner
who uses a can of Buzz Spray to dislodge the robot.

would be partially generalized to

The remaining activity.n.01 launches a
happening.n.01 droid at the ORGANIZATION 1
7 0 which property.n.01 near the person.n.01 en-
listed person.n.01 rear skilled worker.n.01 who uses a
instrumentality.n.03 of happening.n.01 chemical.n.01
to dislodge the device.n.01

We also looked at whether event2sentence performance
would be improved if we used multiple events per sentence
(when possible) instead of the default single event per sen-
tence. Alternatively, we automatically split and prune (S+P)
sentences; removing prepositional phrases, splitting senten-
tial phrases on conjunctions, and, when it does not start with

Table 2: Results from the event2sentence experiments.
Experiment Perplexity BLEU
Original Words Event → Original Sen-
tence

1585.46 0.0016

Generalized Event → Generalized Sen-
tence

56.516 0.0331

All Generalized Events → Gen. Sentence 59.106 0.0366
Original Words Event → S+P Sentence 490.010 0.0764
Generalized Event → S+P Gen. Sentence 53.964 0.0266
All Generalized Events → S+P Gen. Sent. 56.488 0.0283

a pronoun (e.g. who), splitting S’ (read: S-bar) from its orig-
inal sentence and removing the first word. This would allow
us to evaluate sentences that would have fewer (ideally one)
events extracted from each. For example,

Lenny begins to walk away but Sam insults him so he
turns and fires, but the gun explodes in his hand.

becomes

Lenny begins to walk away. Sam insults him. He turns
and fires. The gun explodes.

Although splitting and pruning the sentences should bring
most sentences down to a single event, this isn’t always the
case. Thus, we ran an event2sentence experiment where we
extracted all of the events from the S+P sentences.

Results and Discussion
The results of our event2sentence experiments are shown in
Table 2. Although generalizing sentences improves perplex-
ity drastically, splitting and pruning sentences yields better
BLEU scores when the original words are kept. In the case
of event2sentence, BLEU scores make more sense as a met-
ric since the task is a translation task. Perplexity in these
experiments appears to correspond to vocabulary size.

Generalized events with full-length generalized sentences
have better BLEU scores than when the original words are
used. However, when we work with S+P sentences, the pat-
tern flips. We believe that because both S+P and word gen-
eralizing methods reduce sparsity of events, when they are
combined too much information is lost and the neural net-
work struggles to find any distinguishing patterns.

Table 3 shows examples from the entire pipeline as it cur-
rently exists, that is from one sentence to the next sentence
without slot filling (See Figure 1). To get a full sense of how
the generalized sentences would read, imagine adding char-
acter names and other details as if one were completing a
Mad-Libs game.

Future Work
The question remains how to determine exactly what charac-
ter names and noun details to use in place for the <CHAR>s
and WordNet placeholders. In Figure 1, we propose the addi-
tion of Working Memory and Long-Term Memory modules.
The Working Memory module would retain the character
names and nouns that were removed during the eventifica-
tion process. The names and nouns could then be retrieved
at a later time during the story. After a partially generalized
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Table 3: End-to-end examples on previously-unseen input data. Let ∅ represent an empty (unfilled) parameter. Examples come
from synopses of Harry Potter and the Prisoner of Azkaban, Tales of Monkey Island (with Guybrush changed to John), and
Carry On Regardless, respectively.

Experiment Input Extracted Event(s) Generated Next Event(s) Generated Next Sentence
All General-
ized Events &
Generalized
Sentence

He reaches out to Re-
mus Lupin, a Defence
Against the Dark Arts
teacher who is eventu-
ally revealed to be
a werewolf.

〈male.n.02, get-13.5.1,
∅, <CHAR>0〉

〈ORGANIZATION,
say-37.7-1, monster.n.01,
∅〉

〈monster.n.01, amuse-31.1, sarge, ∅〉
〈monster.n.01, amuse-31.1, realize, ∅〉
〈monster.n.01, conjecture-29.5-1, ∅, ∅〉
〈male.n.02, conduit.n.01, entity.n.01,

∅〉
〈male.n.02, free-80-1, ∅,

penal institution.n.01〉

When monster.n.01
nemesis.n.01 describes
who finally realizes
male.n.02 can not,
dangerous entity.n.01
male.n.02 is released from
penal institution.n.01.

Generalized
Event & Gen-
eralized S+P
Sentence

John unwittingly un-
leashes an insidious
pox that rapidly spreads
across the Caribbean.

〈<CHAR>0,
disassemble-23.3,
contagious disease.n.01,
∅〉

〈male.n.02, spatial configuration-47.6,
∅, adopt-93 〉

male.n.02 crumples and is
about to be sheath.n.02.

Original
Words Event
& S+P Sen-
tence

He thinks he’s on a top
secret spying mission.

〈he, think, ∅, ∅〉 〈she, come, know, truth〉 She has come to the truth.

sentence is produced by event2sentence, the system can use
the Working Memory lookup table to fill character names
and nouns back into the placeholders. The intuition is that
from one event to the next, many of the details—especially
character names—are likely to be reused.

In stories it is common to see a form of turn-taking be-
tween characters. For example the two events “John hits An-
drew” & “Andrew runs away from John” followed by “John
chases Andrew” illustrate the turn-taking pattern. If John
was always used as the first character name, the meaning of
the example would be significantly altered. The continuous
numbering of character names (event2event experiment #7)
is designed to assist event bigrams with maintaining turn-
taking patterns.

There are times when the Working Memory will not be
able to fill character name and WordNet Synset placeholder
slots because the most recent event bigram does not contain
the element necessary for reuse. The Long-Term Memory
maintains a history of all character names and nouns that
have ever been used in the story and information about how
long ago they were last used. See Martin et al. (2016) for a
cognitively-plausible event-based memory that can be used
to compute the salience of entities in a story. The underlying
assumption is that stories are more likely to reuse existing
entities and concepts than introduce new ones.

Our model of automated story generation as prediction
of successor events is simplistic; it assumes that stories can
be generated by a language model that captures generalized
patterns of event co-occurrence. Story generation can also
be formalized as a planning problem, taking into account
communicative goals. In storytelling, a communicative goal
can be to tell a story about a particular domain, to include
a theme, or to end the story in a particular way. In future
work, we plan to replace the event2event network with a re-
inforcement learning process that can perform lookahead to
analyze whether potential successor events are likely to lead
to communicative intent being met.

Conclusions
In automated story generation, event representation mat-
ters. We hypothesize that by using our intuitions about sto-
rytelling we can select a representation for story events
that maintains semantic meaning of textual story data while
reducing sparsity of events. The sparsity of events, in
particular, results in poor story generation performance.
Our experiments with different story representations during
event2event generation support our hypothesis about event
representation. We found that the events that most abstract
away from natural language text improve the generative
ability of a recurrent neural network story generation pro-
cess. Event bigrams did not significantly harm the generative
model and will likely help with coherence as they incorpo-
rate more history into the process, although story coherence
is difficult to measure and was not evaluated in our experi-
ments.

Although generalization of events away from natural lan-
guage appears to help with event successor generation, it
poses the problem of making story content unreadable. We
introduced a second neural network, event2sentence, that
learns to translate events with generalized or original words
back into natural language. This is important because it is
possible for event2event to generate events that have never
occurred (or have occurred rarely) in a story training cor-
pus. We maintain that being able to recover human-readable
sentences from generalized events is valuable since our
event2event experiments show use that they are preferred,
and it is necessary to be able to fill in specifics later for dy-
namic storytelling. We present a proposed pipeline architec-
ture for filling in missing details in automatically generated
partially generalized sentences.

The pursuit of automated story generation is nearly as old
as the field of artificial intelligence itself. Whereas prior ef-
forts saw success with hand-authored domain knowledge,
machine learning techniques and neural networks provide a
path forward toward the vision of open story generation–the
ability for a computational system to create stories about any
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conceivable domain without human intervention other than
providing a comprehensive corpus of story texts.
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