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Abstract

Animating digital characters has an important role in computer
assisted experiences, from video games to movies to interac-
tive robotics. A critical challenge in the field is to generate
animations which accurately reflect the state of the animated
characters, without looking repetitive or unnatural. In this
work, we investigate the problem of procedurally generating
a diverse variety of facial animations that express a given se-
mantic quality (e.g., very happy). To that end, we introduce
a new learning heuristic called Precision Variety Learning
(PVL) which actively identifies and exploits the fundamental
trade-off between precision (how accurate positive labels are)
and variety (how diverse the set of positive labels is). We both
identify conditions where important theoretical properties can
be guaranteed, and show good empirical performance in vari-
ety of conditions. Lastly, we apply our PVL heuristic to our
motivating problem of generating smile animations, and per-
form several user studies to validate the ability of our method
to produce a perceptually diverse variety of smiles for different
target intensities.

Introduction

Virtual humans are increasingly a part of our games and other
digital media. They appear in movies as animated actors,
video games as interactive non-player characters, personal
avatars in games, virtual reality and social media, and are
even used to control human-like robots. A critical component
of creating compelling interactions with digital characters
is the animation of the human face. Humans use and expect
faces to produce a variety of cues for nonverbal communica-
tion such as intonation and emotion. Understanding the full
variety of movements that control and effect these cues is im-
portant both to fields that study real humans (e.g., medicine
and psychology) as well as those which seek to create realistic
virtual characters (e.g., games and movies).

Our goal in this work is to create algorithms that can auto-
matically generate a variety realistic animations for virtual
characters, a problem which is closely related to a field of AI
known as Procedural Content Generation (PCG). PCG is es-
pecially relevant in the realm of games and interactive digital
entertainment where is it important to present the user with
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engaging, dynamic experiences that respond to the user’s
actions in real time.

For procedurally animated virtual characters to meet their
goal of emotionally engaging the users, there are two im-
portant qualities the procedural animations must maintain.
Firstly, it is important that their expressions are as high qual-
ity and natural in appearance as possible. If the generated
motion is halting, confusing, or otherwise unrealistic in its
execution, the users will be distracted from the intended
emotional content of the expression. Secondly, the proce-
dural generation system must be able to create a variety
of motions that is reflective of the full diversity real peo-
ple have in showing the same basic expression. In fact, the
importance of variety in character animations has been estab-
lished through multiple users studies (McDonnell et al. 2008;
O’Sullivan 2009) and has been highlighted as an important
challenge in PCG (Preuss, Liapis, and Togelius 2014).

Unfortunately, these dual goals of generating high quality
content and generating a diverse variety of content are often
in direct conflict. Algorithms that focus too much on the
quality of their content often do so by sacrificing the variety
of their output. In this paper, we examine this trade-off in the
context of procedural systems for creating mouth movements
for virtual characters to form smiles of different intensity
(e.g., slight, full, none), and propose new methods to produce
a broad diversity of smiles that accurately display the target
intensity level. Our work presents three main contributions:

• Formalization and analysis of quality-variety trade-off :
We formally define the notions of quality and variety for
a certain class of content generation models (constraint-
based optimization formulations), and explore the theoreti-
cal basis of the inherent trade-offs between the two.

• Precision Variety Learning heuristic (PVL): We introduce
a framework for a constraint-based optimization formula-
tions of PCG which allows a user to tune the level of pre-
cision needed for a specific application, and automatically
maximize its variety of procedurally generated content for
a given level of precision.

• Variety-Enhanced, Data-driven Facial Animation Sys-
tem: We apply our PVL generation approach to a non-
parametric classifier trained on a recently published set of
smile animation data (Helwig et al. 2017) in order to create
a system capable of producing a large variety of smiles
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Figure 1: A variety of happy, smiling mouth shapes generated by our method, rendered in a high-quality real-time engine.

at a given level of smile intensity. We evaluate the quality
and diversity of the resulting smiles through user studies.

While the results presented here focus on PCG smiles (e.g.,
see Figure 1), the approach is generic and can be directly
applied both to other facial expressions (e.g, sad, angry), and
to other forms of procedurally generated content.

Background

The animation of digital human-like faces has a rich history
in the literature, from performance capture to modeling, to
human perception of facial actions, and creating facial expres-
sions for digital characters. Likewise, the study of PCG is a
quickly growing field, covering everything from game maps
and mechanics to textures and audio (Hendrikx et al. 2013).
Below, we briefly highlight some closely related works.

Facial Animation

There is a rich literature surrounding the task of facial an-
imation, an overview of which can be found in (Vinayag-
amoorthy et al. 2006). The most common technique is the
use of a 3D spatial mesh that is then manipulated according
to some model of facial movement. As with the models we
employ here, many models of natural facial deformations
are based on interpolative blendshapes (Zhang et al. 2016;
Bouaziz, Wang, and Pauly 2013; Li et al. 2013; Xu et al.
2014). Blendshape-based models involve linearly interpolat-
ing the mesh between a set of exemplar configurations.

In many cases, the approach to animating these models
utilize the capture of a facial performance by a human actor.
Researchers have proposed various methods to accomplish
this, from adaptive dimensionality reduction (Li et al. 2013),
to neural networks (Costigan, Prasad, and McDonnell 2014)
to local patch alignment (Zhang et al. 2016), and generating
blendshape segmentation schemes (Joshi et al. 2005).

Generative methods for digital character facial expressions
have also recently been explored. Some generate facial ex-
pressions from dialogue audio and text transcripts (Marsella
et al. 2013). Physically-based models of the face can also be
used to synthesize facial animation, such as speech (Sifakis
et al. 2006).

Researchers have employed user studies to evaluate the
effectiveness of digital character animation (Kokkinara and
McDonnell 2015; McDonnell 2012; Liu et al. 2016), as well
as to study the impact of variety (McDonnell et al. 2008;
O’Sullivan 2009).

Machine Learning for Facial Analysis

Supervised learning is the most closely related area of ma-
chine learning to our work, surveyed in (Kotsiantis, Za-
harakis, and Pintelas 2007). Others have developed special-
ized algorithms to recognize faces and facial actions (Pan-
tic and Rothkrantz 2000; Franco and Treves 2001; Bartlett
et al. 2005), as well as recognizing emotions (Michel and
El Kaliouby 2003).

PCG as Machine Learning

There are many PCG techniques, and some synopses of the
field are given in (Smith 2014; Hendrikx et al. 2013). Re-
cent works have considered how to create engaging (To-
gelius et al. 2013), diverse (Liapis, Yannakakis, and To-
gelius 2015), and interactive (Yannakakis and Togelius 2011;
Smith 2014) content. Machine learning techniques can be
applied to PCG problems in different ways, as content evalu-
ators or to generate content directly (Summerville et al. 2017;
Togelius et al. 2011).

Diverse, High-Quality Content

Quality-Diversity algorithms have recently been identified as
an important type of algorithm, with search-based approaches
like evolutionary algorithms (Pugh et al. 2015) and Human-
in-the-loop methods that combine user input with search to
efficiently traverse search spaces (Mouret and Clune 2015)
showing promise in this area. To the authors’ knowledge,
this work is the first to propose a machine-learning-based
approach for this class of algorithms.

Problem Definition

As a motivating context for our problem formulation, con-
sider the task of creating a 3D role-playing style game (RPG)
where the player is immersed in an open world, free to ex-
plore and interact with many non-player characters (NPCs).
To keep the NPCs engaging, their behaviors should be both
appropriate to context (e.g., convey the right emotion), and
appear natural and lifelike (i.e., not mechanically repetitious
or robotic). To do this, we must be able to produce facial
movements that exhibit the desired semantic meaning, while
capturing the diversity of motion seen in real human faces,
both within and across individuals. With these two goals as
our primary focus, we can establish a formal definition of our
problem.

We will represent facial animations as parameterized into
a feature space F , so that x ∈ F represents a complete facial
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Figure 2: Training Data (a) A visual summary of the seman-
tic classes. (b) Sample counts by class.

motion, and define S to be the set of semantic labels. Let
us also define a function D : X ⊆ F �→ R that operates
on a set of faces to measure its diversity, and a function
Qs : X ⊆ F �→ R as the quality of a set. Finally, let
Cs : F �→ {0, 1} be a binary function that identifies whether
or not a given animation exhibits a target semantic label s.
Then, given some target s ∈ S, our task is to find the set
of faces exhibiting the desired semantic that maximizes the
diversity and quality functions:

argmax
Cs

[
Qs(X), D(X) : ∀x ∈ X

(
Cs(x) = 1

)]
. (1)

This equation represents a multi-objective optimization prob-
lem. To develop a solution for our domain of facial anima-
tions, we must establish quantifiable definitions of Q and
D, identify an appropriate feature space for F , and learn C.
The remainder of this section describes our approach to each,
followed by our proposed method for actually generating
animations.

Measuring Quality & Diversity

We note that from here on we will assume X to be a finite
set that is representative of C’s continuous positive decision
region in feature space. Then we define the Quality Q(X) as
the percentage of x ∈ X that are true members of the target
class:

Qs(X) =
|{x ∈ X : [C∗

s (x) = 1]}|
|{X}| . (2)

Where C∗
s is the true semantic label function. In the context of

equation 1, this is equivalent to the precision of the classifier
D, which is how we will measure Q.

To measure the diversity of a set X , we will take its car-
dinality. This approach is consistent with existing measures
of diversity for finite sets of candidate samples proposed in
PCG (Preuss, Liapis, and Togelius 2014). Formally,

D(X) = |{X}|. (3)

An important property for D is that adding members to X can
never decrease the diversity measure overall (other reasonable
diversity metrics, such as the variance of the set, do not satisfy
this property).

Feature Space (F )

Along with their study, Helwig et al. proposed a generalizable,
low-dimensional feature space to be used to represent smile
animations. We refer to this feature space as facial space, and
adopt it for F . This feature space is composed of distances
between key points surrounding the mouth as identified by
medical professionals including: angle, extent, and dental
show. Angle is computed as the angle between the bottom lip
and mouth corner, extent is the width of the smile, and dental
show is the separation between the upper and lower lips.

Classifier (C)

By definition, the task for C is one of classification. To do
this, we will construct binary classifiers from annotated data
via supervised learning that maps samples to a membership
prediction given a target class in S. Our formulation allows
for any binary classifier, though different classifiers will have
different theoretical properties and performance. Here, we
consider several well established classifiers:

• Nearest Neighbor models (KNNs): We employ a variant
of KNN known as Restricted Neighborhood Search. The
prediction for a sample is positive if a sufficient number of
nearby neighbors (called witnesses) within some distance
r are positive. The prediction for a query sample q ∈ F is
positive if and only if

∑
x∈Wq

π(x)

|Wq| ≥ t ∧ |Wq| ≥ k, (4)

where Wq is the set of witnesses for q, t is the minimum
proportion of witnesses that must be positive, k is the
minimum number of witnesses to make a prediction, and
π(x) takes the value 1 if x is a positive training sample
and 0 otherwise. For our classifier, we choose k = 6 based
off the density of our training data, r = 0.4 based on
the distribution of inter-point distances, and t = 0.3 via
tuning.

• Support Vector Machines (SVMs): these classifiers use
quadratic programming to find a linear separator between
positive and negative samples that maximizes the margin
between them. A key property of SVMs is their use of
kernels, which transform training data into higher dimen-
sional spaces (where linear separators are more likely to
be found) before measuring distances via an inner product.
In this way, learning can take place in a high dimensional
space while computation stays in a low dimensional space.
Here, we employ the kernlab SVM package (Karatzoglou
et al. 2004) for the R programming language, using the
”vanilla” kernel.

• Random Forests (RFs): these classifiers take many random
subsets of the training data and build decision trees on each.
For prediction, a majority vote is taken of the random deci-
sion trees on the query sample, combating the tendency of
decision trees to over-fit. Here, we employ the randomFor-
est package for the R programming language (Liaw and
Wiener 2002) with 1000 trees.
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Figure 3: A graphical overview of our approach.

Semantic Classes (S)

We will choose S to be a set of discrete classes, which we
derive from training data that is then used to learn C. Discrete
classes are motivated in part by the scenario of RPG-style
video games; here, characters typically need to display one
of a small set of emotions depending on the players behavior.
Additionally, classification is a natural formulation for this
problem (as opposed to regression) in that it allows a single
semantic class to contain a variety of feature space points.

Approach & Implementation

An overview of how we utilize S , C, and F to generate facial
animations can be seen in Figure 3. Once training data has
been labeled for a target class, we apply our learning heuristic
as a pre-processing step, which we discuss in detail in the
next section. A binary classifier is then trained on the labeled
data to predict target class membership. We then use rejection
sampling to generate new animations, uniformly sampling
F and passing them through C keeping only those that yield
positive predictions. To render these new samples as a human
facial expression, they must be transferred onto a digital
facial model. For this we use a 3D mesh with interpolative
blendshapes as defined by an artist. We employ an iterative
local optimization technique to solve for blendshape weights
given a facial space target. Some examples (transferred onto
the 3D model by our method and rendered by professional
software) are shown in Figure 1 This transfer method can
be applied to any facial animation system that is locally
controllable in the feature space.

Dataset. In order to learn a model of happiness C and de-
rive a set of semantic classes for S , we will turn to a dataset
of annotated facial movements from (Helwig et al. 2017).
This dataset consists of results from a large-scale user study
at a state-wide fair. Participants were shown expressions from
a sweep of anatomically plausible mouth movements on a
tablet device, and asked to assign a quality score for how well
the face portrayed a smile. Over 900 subjects participated
in the survey, providing over 10,000 responses in total. The
stimuli contained mostly smile-like faces, but also had some
negatively angled mouths, which served as controls. We ag-
gregate the responses to produce a dataset composed of 63
facial expressions annotated with their mean perceived smile
quality.

Smile Intensities. We derive S by defining ranges of
quality scores from the dataset as four discrete classes of
smiles: None, Slight, Partial, and Full. A summary view
of the resulting classes are shown in Figure 2. An ANOVA
test shows high statistical significance with 4 classes, with
[F (3, 60) = 863.5, p < 0.001]. A post-hoc analysis also
confirms statistical significance between all pairs of classes.
Figure 2b shows similar class sizes.

Experimental Methodology. We compute a (noisy) esti-
mate of precision on our real-world face data via a hold-one-
out cross validation loop, computing the mean precision over
the folds using held out samples as test data. We also com-
pute a variety estimate within each fold, taking the mean over
the folds. Variety estimates are computed on a set of 1000
uniformly sampled points in facial space within the bounding
volume of the training data. These samples are passed to the
classifier, and the variety is reported as the proportion that
are predicted positive. We then validate our results with a
follow-up user study.

Maximizing Variety, Maintaining Precision

Our approach makes use of a binary classifier to identify
faces that match the targeted semantic class. While tradi-
tional binary classifiers seek to maximize predictive accuracy,
maximizing this alone fails to highlight the important trade-
off between the precision of the classifier and the diversity
of faces that will be generated. Because our model only gen-
erates positively classified faces, false positives will be dis-
carded, unseen by any user. As a result, for many animation
contexts maximizing precision is the most important goal;
the quality of the faces generated by our method is unaffected
by false negatives.

However, we would like to support the generation of a large
variety of positively classified faces (e.g, many faces that look
happy in different ways). In every classification task there
is a fundamental trade-off between precision and variety;
maximizing one comes at the cost of the other. Consider the
positive decision region of the feature space on which our
definition of variety depends: as this region grows larger, the
classifier has an increased risk of producing false positives
due to encroaching on regions that contain true negatives.
Below, we explore this trade-off within the context of our
facial generation system, and then present a learning heuristic
method that exposes this trade-off to allow us to maximize
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Algorithm 1: PVL Prediction
Input :sample, trainData, pClass,m
Output : prediction
pos ← getPositiveSamples(trainData, pClass);
neg ← getNegativeSamples(trainData, pClass);
pos ← sortByDistanceToNearest(pos, neg);
pos ← getfirstNSamples(positive,m);
trainData ← union(positive, negative);
prediction ← getPrediction(trainData, sample);
return(prediction);

variety in positively classified faces while retaining as much
precision as possible.

Precision Variety Learning

The key insight which enables our approach is that high
precision can be ensured by carefully selecting which posi-
tive samples are allowed in to the training set. For example,
choosing to only include positive training samples that are
far away from negative samples can increase the precision of
the model at the cost of false negatives, which is a favorable
trade given our goals. However, including too few positive
training samples results in very little variety, which is an
equally important objective. Varying the positive samples
allowed into the training set exposes this trade-off for tuning
between precision and variety.

To that end, we introduce a parameter m that controls what
samples are used in the training set for a binary classifier (e.g,
KNN). The training set is constructed by a heuristic ordering
of the positive training set by sample precision. To define
sample precision, we look at the subregion of the positive
decision region that is added by a sample given an existing
classifier. Sample precision is taken to be the proportion of
this new region that overlaps the true positive region of the
feature space. Figure 4 illustrates the regions involved and
how they are used. Importantly, sample precision considers
only the additional positive decision area supported by the
new training sample. When samples are arranged such that
sample precision is decreasing, we say they are in precision-
optimal order. The first m positive training samples (i.e.,
with the m highest sample precisions), together with all of
negative training samples are provided as input the the binary
classifier. For all m, all negative training samples are included
as they do not increase the risk of generating a false positive.
We call the resulting approach Precision-Variety Learning
(PVL), and the algorithm is presented in Algorithm 1.

Unfortunately, a positive training sample’s sample preci-
sion cannot be computed directly as it depends on the order-
ing of the points added to the classifier before it. We therefore
propose an order-independent estimation of sample precision
as the distance of a given positive training sample to its near-
est negative neighbors. Intuitively, this heuristic captures the
fact that false positives (which reduce precision) are likely
to lie near negative training samples. This assumption is ex-
plored further in the following section.

The key feature of m is the way in which it captures and
exposes the trade-off between precision and variety. This

Existing Positive
Decision Boundary

True Positive
Boundary

New Sample's 
Positive Decision 
Boundary

True Negative
Region

AB

C
D

E

F

Sample Precision 
    = |B|/|BUA|

Figure 4: Sample Precision Conceptual regions when adding
a positive sample into the training set are depicted and labeled.
We define sample precision as the ratio of area B to area
A. The precision of the existing classifier is the ratio |C ∪
E|/|C ∪ E ∪ D ∪ F|, and the precision of the resulting
classifier is |B ∪C ∪E|/|B ∪C ∪E ∪A ∪C ∪ F|

is our solution to the multi-objective optimization problem
posed in equation 1. Like the pareto-fronts used in many
solutions to multi-objective problems, m exposes a precision-
variety front that can be exploited to gain as much variety
as possible for a desired level of precision. While we do
not claim that m generates a pareto-optimal front, we can
identify conditions that guarantee the monotonicity of the
front, which m is designed to produce. A critical property
of pareto fronts, monotonicity insures that any loss of one
objective does not allow the loss of the other (e.g, giving up
precision will either maintain or increase variety). This also
enables a directed search for optimizing m given a desired
precision or variety.

In the case of a neighbor based classifier such as KNN with
a precision-optimal ordering of positive training samples, the
resulting trade-off front is provably monotonic in m under
some supporting assumptions. By monotonicity we mean
for increasing m, variety does not decrease and precision
does not increase, and vice versa for decreasing m. To prove
this, it is sufficient to show that as m increases, we have non-
increasing precision and non-decreasing variety. Our formal
arguments for each are as follows.

Proof of Monotonicity

When used with a neighbor-based classifier (such as KNN),
there are several key theoretical properties which are main-
tained by using the PVL approach, which we demonstrate
below. The first is that, under certain conditions of the under-
lying data, the precision of the classifier decreases monotoni-
cally as m increases. We also show, regardless of the quality
of data, both that specificity (the rate of true negatives) de-
creases monotonically and variety increases monotonically.
Taken together, this means as m increases our predictions
will have more inaccuracies (both in terms of admitting false
positives and rejecting true negatives), but will increase vari-
ety; this serves as the theoretical bases for our claim that PVL
is navigating a trade-off between the quality of procedurally
generated content and its variety.
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Definition 1: Quality of Approximation. We define the
quality of approximation of our heuristic for a given dataset
as the degree to which our distance-based ordering maintains
a precision-optimal ordering. The quality of approximation
will be high when two conditions hold: 1) the data has a
clear positive decision boundary (i.e., samples are more ho-
mogeneous the further they are from the boundary) and 2)
the boundary has limited curvature. Because our heuristic
ordering first adds points that are far away from negative
samples, the existence of a clear decision boundary ensures
initial points will contribute new positive classification area
with higher precision than later points which are closer to
the boundary. Assuming limited curvature allows us to safely
approximate the distance to the decision boundary as the
distance to the single nearest negative sample.

Theorem 1: Decreasing Precision as m increases. Let Pm

be the precision of the classifier for arbitrary m and Pm+1

be the precision of the classifier after including the (m +
1)th positive training sample. Further let Ps be the sample
precision of the (m + 1)th sample. Given their respective
false positive (FP ) and true positive (TP ) counts we can
compute the precision of new classifier with m+ 1 samples
as:

Pm+1 =
TPm + TPs

TPm + TPs + FPm + FPs
. (5)

We therefore need to show that Pm ≥ Pm+1, that is:
TPm

TPm + FPm
≥ TPm + TPs

TPm + TPs + FPm + FPs
, (6)

which (by cross multiplication) is equivalent to the condition

TPm ∗ FPs ≥ TPs ∗ FPm. (7)

When the quality-of-approximation (Definition 1) hold per-
fectly, we have Pm ≥ Ps, which implies

TPm

TPm + FPm
≥ TPs

TPs + FPs

⇐⇒ TPm ∗ FPs ≥ TPs ∗ FPm, (8)
satisfying the requirement of equation 7.

Theorem 2: Decreasing Specificity as m increases. As
with precision, maximizing specificity (true negative rate), is
important for a classifier that is to be used in the generation
of procedural content. We note that specificity and precision
can be jointly optimized via the elimination of false positives.
Formally, specificity is defined as

TN/(TN + FP ), (9)

where TN represents the true negatives and FP the false
positives of a classifier. To show we have decreasing speci-
ficity over m, it suffices to observe that increasing m only
adds positive training samples to the classifier. As a result,
the negative decision region of a neighbor-based classifier
cannot increase, and the positive decision region cannot de-
crease. Thus, false positives are increasing and true negatives
decreasing, constraining specificity to decrease. Notably, this
property is independent of the order in which the positive
samples are added.

Theorem 3: Increasing Variety as m increases. The sup-
porting argument for increasing variety over m is already
established in Theorem 2; since adding positive samples con-
strains the positive decision region to increase, by definition
the variety of the classifier will also increase. This property is
also independent of the positive samples’ order of inclusion.

Results & Analysis

Behavior of m. To observe the impact of m on classifica-
tion, we estimate precision and variety over different values
of m on a synthetic dataset with a circular ground truth de-
cision boundary. This allows precision to be computed with
arbitrary accuracy by sufficiently sampling the feature space
and testing them on the classifier. Similarly, variety can be
estimated by sampling in the feature space and measuring the
positive classification rate. Figure 5 shows our results using
the KNN classifier: for small m, the precision of the model
remains high, but results in a classifier that produces little va-
riety when sampled. Conversely, for large m, a larger variety
of points can be generated, at the cost of precision. Thus, m
allows us to tune the precision/variety trade-off in the learn-
ing process. This curve exhibits the expected monotonicity
for this type of classifier.

The curve produced by varying m resembles the ROC
curves used to indicate the performance of binary classifiers.
Just as ROC curves report the interplay between two conflict-
ing goals of interest (true positive rate and false positive rate),
our PVL curves report the performance of a binary classifier
in terms of two other conflicting goals relevant to the task at
hand.

Comparing Classifiers As our PVL heuristic supports
multiple classification techniques, we compare several al-
gorithms in terms of their precision and specificity over m.
Specificity-variety curves for the different classifiers on our
real-world data with four classes are shown in Figure 6. As
in Figure 5, each curve exhibits increasing m from left to
right, with the exception of the Partial and Slight classes for
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Figure 6: Specificity Curve Comparison Specificity curves
over m for each semantic class using different supervised
learning methods.

SVM. The KNN classifier curves exhibit the monotonicity
guaranteed for specificity over increasing m.

We also compute curves for Precision, as depicted in Fig-
ure 7. The limited number of positive samples in our face
data cause the uncertainty in estimating precision to be pro-
hibitively large for four classes. To accommodate for this,
we construct two classes from the data, and suppress values
of m that produce less than 10 positive predictions. In the
case of KNN, our method shows a strong monotonic trend,
demonstrating its effectiveness on real-world data where our
data condition assumptions (see Definition 1) do not hold
perfectly.

Notably, the SVM and RF algorithms differ from KNN
in both the specificity and precision variety curves; the gen-
eral behavior is similar, but can be erratic for some classes
(such as Slight and Partial). While our theoretical guarantees
concerning monotonicity do not extend to RFs and SVMs,
in practice the curves tend towards monotonicity; SVMs pre-
serve monotonicity when conditions are favorable (and suffer
more erratic behavior when conditions are poor), and RFs
robustly exhibit a general if not local monotonic trend. Theo-
retical similarities between RFs and neighbor based methods
have been noted (Lin and Jeon 2006), which likely contribute
to this phenomenon.

Analysis of Faces. Our method is capable of producing a
variety of mouth shapes with a targeted smile intensity. Tak-
ing advantage of its theoretical properties, we use our KNN
based set of classifiers to train C and render the resulting fa-
cial animations. Figure 1 demonstrates some examples where
the Full smile class was targeted, with m = 8. This m value
provides a large gain in variety without a large loss of preci-
sion, resulting in faces that differ in appearance, but are all
happy. Figure 9 shows some examples of training our PVL
model to produce faces from other semantic categories. The
middle and bottom rows show faces generated from classes
Slight and None respectively.

We note that all of our semantic classes exhibited a large
amount of variety, though it varies with the range of m (which
is bound by the sample counts in Figure 2). While there
is generally more variety achievable for a given level of
precision in the None class (as a smile is just one of many
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Figure 7: PVL Curve Comparison PVL curves over m for
a two-class split of our face data using different supervised
learning methods.

kinds of facial expressions), there is still significant variety
present for Full smiles, including those that have no dental
show (as in the top center of Figure 9). This highlights the
fact that no single feature was responsible for the semantic
meaning of the expression.

Validation Study. To validate our method’s effectiveness
in creating a variety of faces within a targeted happiness level,
we performed a two-part user study with 19 participants (11
women and 8 men with average age 28.3). We created a
second facial model of a different race to test the extendability
of our approach to other models. Subjects assessed side-by-
side pairs of generated animations in terms of their similarity
and happiness (see Figure 8).

The first section of the study analyzed the PVL learning ap-
proach. Here, pairs of faces were shown from sets generated
using the same m value (i.e., either two faces from the m=3
set or two faces from the m=8 set) with Full as the target
class . Some examples of the faces shown can be seen in the
top row of Figure 9. Participants were asked to indicate on a
Likert scale how similar the two facial expressions appeared.
Our hypothesis was that pairs from sets with lower m would
be more similar (have less variety) than sets from higher m. A
Wilcoxon signed rank test confirms (Z = 4.78, p < 0.0001,
r = 0.367) that comparisons between two expressions from

Figure 8: An example question from our follow-up user study,
using a different virtual character.
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Figure 9: Example set of generated faces with High (top
row) Medium (middle row) and None (bottom row) targeted
happiness levels.

m = 3 were perceived as more similar than those generated
with m = 8, confirming our hypothesis and validating our
PVL learning approach.

The second section of the study aimed at validating the
predictive accuracy of our PVL classification approach. Here
we used a two-alternative forced choice (2AFC) design where
participants were asked to indicate which of two smiles ap-
peared happier. In every pair of smiles, one came from a set
of smiles with a predicted Partial category smile and one with
a predicted as Full. Both sets of smiles were generated with
m=8, so as to have a variety of different smiles. A two-sided
binomial test showed that smiles predicted as Full were most
likely to be rated happier (p < 0.001, P (success)= 0.68,
RR = 1.26), validating our ability to generate faces with
different smile intensities.

Conclusions

In this work, we have proposed and implemented a system
for the generation of a variety of smiles for use in digital
characters. We formulated our problem as a multi-objective
optimization task, seeking both high quality and diverse ani-
mations. Our approach to generate new animations utilized
a dataset of annotated facial expressions as training samples
for a binary classifier to predict whether or not a new facial
expression would be perceived as having a targeted semantic
class. To solve our multi-objective problem, we introduced
Precision-Variety Learning, which allows a balance between
precision and variety of a classifier to be directed by manipu-
lating the training data set, providing theoretical guarantees
under certain conditions. The classifier was then used to gen-
erate a variety of faces with targeted smile intensities novel
to the existing data.

Limitations. Some limitations of our method motivate fur-
ther study. The dataset we used is limited in terms of its

coverage of plausible facial positions. Data covering a larger
range could enable the study of a more diverse set of emo-
tions. Another limitation is the fact that the blendshapes used
for animation have a limited extent, thereby necessitating
constrained optimization. This could be relaxed by allowing
blendshapes to be extrapolated past their original bounds.
We also note that increasing the coverage and density of the
annotated faces could allow for more granular categories or
regression classifiers to be trained. This could support more
fine-tuned control over the target emotions or the genera-
tion of mixtures of emotions. While empirically our PVL
approach performs very well, the theoretical properties are
dependent on some data assumptions that may not hold in
real-world settings. Further analysis may identify guarantees
that hold when these assumptions are relaxed.

Future Work. In the future we intend to explore extensions
to our work both in the areas of facial animation and the uses
and properties of PVL. One such avenue is the generation of
other emotions and mixtures of emotions by incorporating
additional datasets and facial features. Building data-driven
models that capture how perceived emotional intent relates
to facial movement has implications beyond making com-
pelling digital characters. As computational techniques allow
us to permute facial positions in a way that human actors
cannot, another exciting area of future work is to investi-
gate faces with large asymmetry or other issues which may
arise from facial trauma or nervous system damage. This can
allow our work to inform areas of medicine such as facial
reconstructive surgery, emotional recognition therapy, and
psychologists looking to quantitatively study how interven-
tion can help patients express emotional intent. We also plan
to explore the application of PVL to different domains. Addi-
tionally, we will investigate further the theoretical properties
of our approach, such as alternate heuristic orderings for
m, conditions that influence existence of precision-optimal
orderings, and what guarantees can be made for different
classifiers and different data conditions.
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