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Abstract

We consider a two-player resource allocation polytope game,
in which the strategy of a player is restricted by the strategy of
the other player, with common coupled constraints. With re-
spect to such a game, we formally introduce the notions of in-
dependent optimal strategy profile, which is the profile when
players play optimally in the absence of the other player; and
common contiguous set, which is the set of top nodes in the
preference orderings of both the players that are exhaustively
invested on in the independent optimal strategy profile. We
show that for the game to have a unique PSNE, it is a nec-
essary and sufficient condition that the independent optimal
strategies of the players do not conflict, and either the com-
mon contiguous set consists of at most one node or all the
nodes in the common contiguous set are invested on by only
one player in the independent optimal strategy profile. We
further derive a socially optimal strategy profile, and show
that the price of anarchy cannot be bound by a common uni-
versal constant. We hence present an efficient algorithm to
compute the price of anarchy and the price of stability, given
an instance of the game. Under reasonable conditions, we
show that the price of stability is 1. We encounter a paradox
in this game that higher budgets may lead to worse outcomes.

Introduction

The problem of resource allocation is relevant to a large
number and wide variety of applications, from small house-
hold applications to citywide, marketwide, and worldwide
applications (Johari and Tsitsiklis 2004; Wei et al. 2010;
Clearwater 1996; Thomas 1990). A primary goal of an agent
is to allocate its resources or budget in such a way that its
utility is maximized. In most scenarios, there exist compet-
ing agents who also aim to allocate their resources with the
aim of maximizing their own utilities. Furthermore, there
could be correlation among the agents’ utilities, for instance,
an investment by an agent on a node may benefit or harm the
utility of another agent (Borodin, Filmus, and Oren 2010).

A node or machine for which the resources are to be al-
located (or on which investments are to be made) may have
a bound or capacity beyond which it cannot be invested on.
So the set of feasible investment profiles would be restricted.
This would result in strategic investment by the agents, not
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only because they have to invest on multiple nodes, but also
because there would be competition among the agents for
investing on the nodes. This results in a game whose players
are the agents and a player’s strategy is how to allocate its
resources among the nodes while respecting node capacities.

We now describe the setting in detail, and see how it be-
longs to the class of games called polytope games (Bhat-
tacharjee, Thuijsman, and Vrieze 2000).

Setting

We label the two players as A and B, and the set of nodes as
N . Let n = |N |. Let wAi be the benefit that A gets by invest-
ing a unit amount on node i. Similarly, let wBi be the benefit
that B gets by investing a unit amount on i. Consistent with
most applications, we assume wAi, wBi > 0, ∀i ∈ N . Let
xi and yi be the respective investments made by A and B on
i. Since the benefit that A gets by investing on i would be an
increasing function of xi and wAi, we assume the benefit to
be wAixi for analytical tractability. Similarly, wBiyi is the
benefit that B gets by investing on i. Let wA = (wAi)i∈N ,
wB = (wBi)i∈N , x = (xi)i∈N , y = (yi)i∈N .

There may be correlation between the players’ utilities by
investing on a node, for example, A’s investment of xi on
node i could result in an added amount of αwAixi in B’s
utility. This could be a benefit if α > 0, a loss if α < 0,
or an uninfluential term if α = 0. So the marginal utility
that B gets from i is (wBiyi + αwAixi). Similarly, if B’s
investment of yi results in an added amount of βwBiyi in
A’s utility, the marginal utility that A gets from i is (wAixi+
βwBiyi). Let uA(x,y) and uB(x,y) denote their respective
utilities. So the net total utility of A summed over all nodes
is uA(x,y) =

∑
i∈N (wAixi + βwBiyi) and that of B is

uB(x,y) =
∑

i∈N (wBiyi + αwAixi).
The players have budget constraints stating that A can in-

vest a total of, say kA, across all nodes, and B can invest a
total of kB . That is,

∑
i∈N xi ≤ kA,

∑
i∈N yi ≤ kB . Also,

the total amount that can be invested on a node is bounded.
We assume that all nodes have a common bound or capacity.
We assume this bound to be 1 without loss of generality. So
we have another set of constraints: xi+yi ≤ 1, ∀i, which are
common coupled constraints (a player’s constraints are satis-
fied if and only if constraints of the other player are satisfied
for every strategy profile). We assume that kA + kB ≤ |N |,
that is, there are enough nodes to be able to invest on.
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So players A and B aim to maximize their own utilities:

uA(x,y) =
∑
i∈N

(wAixi + βwBiyi),

uB(x,y) =
∑
i∈N

(wBiyi + αwAixi) (1)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xi, yi ≥ 0, ∀i ∈ N∑
i∈N

xi ≤ kA,
∑
i∈N

yi ≤ kB

xi + yi ≤ 1, ∀i ∈ N

Since the common coupled constraints and the utility
functions are linear, it can be classified as a polytope game.

Motivation

There are several scenarios where there would be bound on
allocation on each node by the players combined. Such a
bound could account for critical scenarios where exceed-
ing a certain limit is infeasible or highly undesirable. For
instance, players may want to allocate jobs to machines
(nodes), where each machine cannot accept more than a cer-
tain total load, beyond which it would overheat and crash.
In scenarios where investing on a node means providing in-
formation and convincing arguments (such as during elec-
tions), the bounding constraint may arise owing to the at-
tention capacity of a node, beyond which any information
may be ignored. In routing, the links usually have capaci-
ties, which are responsible for the cost or time expended; in
scenarios where there is a time limit before which the data
transfers should be completed, the amount of data that can
be transferred over a link would be bounded. Such resource
allocation examples with linear bounding constraints form
our motivation to study resource allocation polytope games.

The study of existence and uniqueness of equilibrium, and
price of stability and price of anarchy, is often important for
games inspired by practical applications. There have been
extensive studies on these topics in resource allocation set-
ting (such as routing) and other games such as congestion
games, where there is an underlying cost function for allo-
cating resources (or assigning job) to a node. The funda-
mental assumption in such studies is that the cost function is
continuous, while most studies also assume smoothness for
deriving the price of stability and the price of anarchy. An
additional assumption of strict concavity is made to prove
uniqueness of equilibrium. Our setting can be transformed
so as to have a cost function instead of a bound on nodes,
however such a cost function would have to be discontinu-
ous, since the cost would shoot to infinity beyond the bound.
So though the fundamental base is common, replacing con-
tinuous cost functions with bounding constraints demands a
very different treatment, which this paper aims to study.

Preliminaries

Definition 1 (Feasible strategy). We say that x is a feasible
strategy, given the strategy y, if and only if ∀i, 0 ≤ xi ≤
1 − yi and

∑
i xi ≤ kA. Similarly, y is a feasible strategy,

given x, if and only if ∀i, 0 ≤ yi ≤ 1−xi and
∑

i yi ≤ kB .

So a strategy profile (x,y) is feasible if and only if∑
i xi ≤ kA,

∑
i yi ≤ kB and ∀i, 0 ≤ xi + yi ≤ 1. Given

a strategy y of player B, we represent the set of feasible
strategies of player A by F (y). And given a strategy x of A,
let the set of feasible strategies of B be F (x).
Definition 2 (Pure strategy Nash equilibrium (PSNE)). A
feasible strategy profile (x∗,y∗) is a PSNE if and only if

∀x′ ∈ F (y∗), uA(x
∗,y∗) ≥ uA(x

′,y∗)

and ∀y′ ∈ F (x∗), uB(x
∗,y∗) ≥ uB(x

∗,y′)

Since the feasible strategy set of a player depends on the
strategy of the other player, this equilibrium is termed gen-
eralized Nash equilibrium (Facchinei and Kanzow 2007).

The linear utility function and a bound on investment
per node, result in a preference ordering on nodes by the
players. It can be seen that uA(x

′,y) ≥ uA(x
′′,y) ⇐⇒∑

i wAix
′
i ≥ ∑

i wAix
′′
i . So if wAi > wAj , then A would

invest on node j only if it is not possible to further invest on
node i (owing to constraint xi ≤ 1−yi). Hence, wAi > wAj

implies that A prefers i over j; let us denote this by i �A j.
One of the primary goals of this paper is to study condi-

tions under which the game has a unique PSNE. However,
if multiple nodes hold the same benefit for a player, invest-
ing an amount in one node would be as good as investing
this amount in another node holding the same benefit, which
also would be as good as distributing this amount over mul-
tiple nodes holding the same benefit. So, in order to avoid
trivial non-uniqueness of PSNE due to ties, we assume that
wAi’s are distinct, that is, wAi 	= wAj for i 	= j. Similarly,
wBi 	= wBj for i 	= j. So each player has a strict ordering
over nodes. Hence wA induces a strict preference ordering
on nodes with respect to player A, say πA, such that

r1>r2 ⇐⇒ πA(r1)�AπA(r2) ⇐⇒ wAπA(r1)>wAπA(r2)

where πA(r) is the rth node in the preference ordering of
player A. Similarly, wB induces ordering πB for player B.

Related Work

As explained earlier, the game we consider falls in the class
of polytope games (Bhattacharjee, Thuijsman, and Vrieze
2000), and the notion of equilibrium we study is generalized
Nash equilibrium (Facchinei and Kanzow 2007). A notable
study (Rosen 1965) shows existence of equilibrium in a con-
strained game, and its uniqueness in a strictly concave game.
Another study (Altman and Solan 2009) focuses on equilib-
rium behavior in games with common coupled constraints.

There have been studies on existence and uniqueness of
Nash equilibrium with respect to a variety of applications
transformed into games (Szidarovszky and Okuguchi 1997;
Yamazaki 2008). It is known that PSNE is guaranteed to ex-
ist in a class of games having an underlying potential func-
tion, popularly known as potential games (Monderer and
Shapley 1996). There have also been studies on convergence
to Nash equilibrium with respect to a number of applications
(Arslan and Shamma 2004; Brandt, Fischer, and Harrenstein
2013). A two-node multiple links system has been shown
to have a unique equilibrium under certain convexity condi-
tions (Orda, Rom, and Shimkin 1993).
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The quality or goodness of Nash equilibria has been a
topic of study in several application, and has been of par-
ticular interest in network games with regard to the price
of stability (Fiat et al. 2006; Anshelevich et al. 2008) and
the price of anarchy (Roughgarden 2005; Christodoulou and
Koutsoupias 2005; Bharathi, Kempe, and Salek 2007).

Our Contributions

Though there have been studies on generalized Nash equi-
libria and the existence of equilibrium in polytope games
is known, it is not clear if it is unique and what the price
of stability and the price of anarchy are. Most studies on
uniqueness leverage the strict concavity (or convexity) of the
underlying game. Since our game is neither strictly convex
nor strictly concave, it requires a different treatment to de-
termine the conditions under which the game would have a
unique equilibrium. Also, though price of stability and price
of anarchy have been studied with respect to congestion and
other resource allocation games, such studies assume the
cost functions to be continuous and do not consider common
coupled constraints. Hence, this is the first game theoretic
study on resource allocation polytope games, with respect
to determining the conditions for uniqueness of equilibrium
and deriving the price of stability and the price of anarchy.

Conditions for Uniqueness of PSNE

We first provide a simple existential proof.
Lemma 1. PSNE exists in the considered game.

Proof. Suppose that player A plays a strategy x′ that max-
imizes

∑
i wAixi, that is,

∑
i wAix

′
i ≥ ∑

i wAixi, ∀x ∈
[0, 1]n. Let player B play a strategy y′ ∈ F (x′) such that∑

i wBiy
′
i ≥ ∑

i wBiyi, ∀y ∈ F (x′). Adding
∑

i αwAix
′
i

on both sides, we get uB(x
′,y′) ≥ uB(x

′,y), ∀y ∈ F (x′).
Since y′ ∈ F (x′), we have x′

i + y′i ≤ 1, ∀i, and
hence x′ ∈ F (y′). As x′ is such that

∑
i wAix

′
i ≥∑

i wAixi, ∀x ∈ [0, 1]n, we would have
∑

i wAix
′
i ≥∑

i wAixi, ∀x ∈ F (y′). Adding
∑

i βwBiy
′
i on both sides,

we get uA(x
′,y′) ≥ uA(x,y

′), ∀x ∈ F (y′). So strategy
profile (x′,y′) is a PSNE. Since we can always find such a
strategy profile with this procedure, there exists a PSNE.

Also, uA(x
′,y) − uA(x

′′,y) =
∑

i(wAix
′
i + wBiyi) −∑

i(wAix
′′
i + wBiyi), ∀x′,x′′ ∈ F (y) (by adding

∑
i(1 −

β)wBiyi to both uA(x
′,y) and uA(x

′′,y)). Similarly, we
have uB(x,y

′) − uB(x,y
′′) =

∑
i(wAixi + wBiy

′
i) −∑

i(wAixi + wBiy
′′
i ), ∀y′,y′′ ∈ F (x). So the game can

be classified as an exact restricted potential game (Schöbel
and Schwarze 2006), with potential function Φ(x,y) =∑

i(wAixi +wBiyi) and the restrictions on the strategies of
A and B being x ∈ F (y) and y ∈ F (x), respectively. Since
there exists a PSNE in an exact restricted potential game,
this gives an alternative proof of Lemma 1. The lemma could
also be viewed as a special case of a more general existential
result (Arrow and Debreu 1954).

We now introduce some important terminologies.
Definition 3 (Independent optimal strategy). An indepen-
dent optimal strategy of a player is the strategy that it would
play in the absence of the other player.

Let x̂ = (x̂i)i∈N , ŷ = (ŷi)i∈N be the independent op-
timal strategies of A and B, respectively. The independent
optimal strategy of A is to invest on nodes, one at a time,
according to its ordering πA, with a maximum of 1 unit per
node, until its budget kA is exhausted. That is, x̂πA(r) =
1, ∀r ≤ 
kA� and x̂πA(�kA�+1) = frac(kA) = kA − 
kA�
and x̂πA(r) = 0, ∀r ≥ 
kA� + 2. The independent optimal
strategy of B is analogous. Let (x̂, ŷ) be the independent op-
timal strategy profile (IOS). As we assume orderings πA, πB

to be strict (hence unique), we have that the IOS is unique.

Definition 4 (Non-conflicting IOS). The IOS (x̂, ŷ) is non-
conflicting if and only if x̂i + ŷi ≤ 1, ∀i ∈ N .

Lemma 2. For the game to have a unique PSNE, it is nec-
essary that the IOS is non-conflicting.

Proof. If the IOS is conflicting, there exists a node i such
that x̂i + ŷi > 1. On similar lines as the proof of Lemma 1,
if player A plays first, it would invest x̂i on node i, and B
would then be able to invest 1 − x̂i < ŷi on node i. On the
other hand, if player B plays first, it would invest ŷi on node
i, and A would then be able to invest 1− ŷi < x̂i on node i.
These result in two different PSNE’s since x̂i + ŷi 	= 1.

In general, for every xi ∈ [1 − ŷi, x̂i] and yi = 1 − xi,
the nodes in N \ {i} can be invested upon by A and B with
respective budgets kA − xi and kB − yi, according to the
procedure in the proof of Lemma 1. It can be seen that such
an allocation would be a PSNE. Since [1 − ŷi, x̂i] is an un-
countable set, we have uncountable number of PSNE’s.

Lemma 3. The IOS being non-conflicting is not sufficient
for the uniqueness of PSNE.

Proof. We provide a counterexample. Let kA = kB = 2,
wA = (5 4 3 2 1), wB = (3 1 5 2 4). These result in
non-conflicting IOS: x̂ = (1 1 0 0 0), ŷ = (0 0 1 0 1). But
it has multiple PSNE’s, for instance, x = (1 1 0 0 0),y =
(0 0 1 0 1) and also x = (0 1 1 0 0),y = (1 0 0 0 1).

We introduce some notation to facilitate our proofs. The
notation can be understood with the illustration in Figure 1.

Let TA be the set of nodes on which player A would prefer
to invest 1 unit each, that is, it is the set of top 
kA� nodes in
the ordering πA. Let TB be defined analogously. That is,

TA = {i : x̂i = 1, ŷi = 0} = {πA(r)}�kA�
r=1

TB = {i : ŷi = 1, x̂i = 0} = {πB(r)}�kB�
r=1

If there is a residual budget of player A (frac(kA) = kA−

kA�) after investing in TA, let lA be the node on which
it would prefer to invest this residual budget. Note that lA
does not exist when kA is an integer, and if it exists, it is
πA(
kA�+ 1). Let lB be defined analogously. That is,

lA = i s.t. x̂i = frac(kA) ∈ (0, 1)

and ∃lA =⇒ lA = πA(
kA�+ 1)

lB = i s.t. ŷi = frac(kB) ∈ (0, 1)

and ∃lB =⇒ lB = πB(
kB�+ 1)
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Figure 1: An example illustration of terminologies with re-
spect to player A’s ordering πA, where kA = 2.7, kB = 3.3
(grey corresponds to x̂, black corresponds to ŷ)

If lA and lB is the same node, we denote it by lAB . Note
that with respect to non-conflicting IOS, lAB exists only if
frac(kA) + frac(kB) ≤ 1. Finally, let E be the set of nodes
on which neither player opts to invest in the IOS. That is,

E = {i : x̂i = ŷi = 0}
Definition 5 (Contiguous set). We define the contiguous set
in a player’s preference ordering to be the set of top nodes
in its ordering until we encounter a node which has partial
or zero combined investment in the IOS.
Let CA and CB denote the contiguous set in the preference
orderings of players A and B, respectively. So,

CA = {πA(r)}qA−1
r=1

s.t. x̂i + ŷi = 1, ∀i ∈ CA and x̂πA(qA) + ŷπA(qA) < 1

CB = {πB(r)}qB−1
r=1

s.t. x̂i + ŷi = 1, ∀i ∈ CB and x̂πB(qB) + ŷπB(qB) < 1

Definition 6 (Common contiguous set). We define common
contiguous set to be the set of nodes belonging to the con-
tiguous sets in the preference orderings of both the players.
Let CAB denote the common contiguous set. So,

CAB = CA ∩ CB

Let SA denote the set of nodes in TA, which also belong
to the common contiguous set in the ordering of player B.
Let SB be defined analogously. So we have

SA = CB ∩ TA and SB = CA ∩ TB

Lemma 4. If IOS (x̂, ŷ) is non-conflicting, then a strategy
profile (x,y) is a PSNE only if xi + yi = x̂i + ŷi, ∀i ∈ N .

Proof. Since the IOS is non-conflicting, we have that x̂i +
ŷi ≤ 1, ∀i ∈ N . If ∃i ∈ TA s.t. xi + yi < 1, since player
A’s budget kA ≥ |TA|, it must have invested in some node
j /∈ TA, that is, xj > 0. Now since i �A j, ∀i ∈ TA, ∀j /∈
TA, player A can gain by transferring an amount ε > 0 from
node j to node i, that is, by investing xi + ε in node i and
xj − ε in node j. So a strategy profile in which ∃i ∈ TA s.t.
xi + yi < 1, cannot be a PSNE. So (x,y) is a PSNE only
if xi + yi = 1, ∀i ∈ TA. Similarly, (x,y) is a PSNE only
if xi + yi = 1, ∀i ∈ TB . So we have proved that (x,y) is a
PSNE only if xi + yi = x̂i + ŷi (= 1), ∀i ∈ TA ∪ TB .

The total budget to be invested over all nodes by both the
players combined is kA + kB . Now we consider different

cases depending on the existence of lA, lB (or lAB) and show
that xi + yi = x̂i + ŷi for these nodes in PSNE.

If �lA, �lB , there is nothing to prove.
If ∃lA, ∃lB (lA 	= lB), we have xi+yi = 1, ∀i ∈ TA∪TB ,

so the total amount invested in TA∪TB is 
kA�+
kB�. Since
the budget invested by both the players combined is kA +
kB , the residual amount of (kA + kB) − (
kA� + 
kB�) =
frac(kA) + frac(kB) = x̂lA + ŷlB has to be distributed over
nodes not in TA ∪ TB , namely, E ∪ {lA} ∪ {lB}. That is,∑
i∈E

(xi+ yi) + (xlA+ ylA) + (xlB+ ylB ) = x̂lA+ ŷlB (2)

If xlA +ylA < x̂lA = frac(kA), A’s investment in TA∪{lA}
is less than |TA| + x̂lA = 
kA� + frac(kA) = kA, which is
its budget. So it must have invested in some node j /∈ TA ∪
{lA}, that is, xj > 0. Now since lA �A j, ∀j /∈ TA ∪ {lA},
A can gain by transferring an amount ε > 0 from j to lA,
that is, by investing xlA +ε in lA and xj−ε in j. So a profile
in which xlA + ylA < x̂lA , cannot be a PSNE. So (x,y) is a
PSNE only if xlA +ylA ≥ x̂lA = frac(kA). Similarly, (x,y)
is a PSNE only if xlB +ylB ≥ ŷlB = frac(kB). These, along
with Equation (2), give our desired condition:∑
i∈E

(xi + yi) = 0 , (xlA+ ylA) = x̂lA , (xlB+ ylB ) = ŷlB

The cases �lA, ∃lB and ∃lA, �lB can be proved on similar
lines as the above case.

We now consider the case ∃lAB (lA = lB). If ∃lAB , the
residual amount of (kA+kB)−(
kA�+
kB�) = frac(kA)+
frac(kB) = x̂lAB

+ ŷlAB
has to be distributed over nodes not

belonging to TA ∪ TB , namely, E ∪ {lAB}. That is,∑
i∈E

(xi + yi) + (xlAB
+ ylAB

) = x̂lAB
+ ŷlAB

(3)

If xlAB
+ylAB

< x̂lAB
+ ŷlAB

= frac(kA)+frac(kB), the
combined investment of A and B in TA∪TB∪{lAB} is less
than |TA|+|TB |+x̂lAB

+ ŷlAB
= 
kA�+
kB�+frac(kA)+

frac(kB) = kA + kB . So A or B must have invested in
some node j ∈ E, that is, xj > 0. Now since lAB �A

j, lAB �B j, ∀j ∈ E, any player which has invested in node
j can gain by transferring an amount ε > 0 from node j
to node lAB , that is, by investing xlAB

+ ε in node lAB and
xj−ε in node j. So a strategy profile in which xlAB

+ylAB
<

x̂lAB
+ ŷlAB

, cannot be a PSNE. So (x,y) is a PSNE only if
xlAB

+ ylAB
≥ x̂lAB

+ ŷlAB
= frac(kA) + frac(kB). This,

along with Equation (3), gives our desired condition:∑
i∈E

(xi + yi) = 0 and (xlAB
+ ylAB

) = x̂lAB
+ ŷlAB

So in all the cases, we have shown that, if IOS (x̂, ŷ) is
non-conflicting and strategy profile (x,y) is a PSNE, then
xi + yi = x̂i + ŷi, ∀i ∈ N .

Corollary 1. If IOS (x̂, ŷ) is non-conflicting and a strategy
profile (x,y) is a PSNE, then x = x̂ ⇐⇒ y = ŷ.

We now present the necessary and sufficient conditions
for the uniqueness of PSNE. The reader may refer to Table 1
for better understanding the different cases in the proof.
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πA πB kA kB TA {m} SB TB CA CB CAB
CAB invested on Case
by one player? #

(a b c d e) (c b a d e) 1.5 1.4 {a} {} {} {c} {a} {c} {} − 1
(a b c d e) (c e a d b) 2 1.5 {a, b} {} {c} {c} {a, b, c} {c} {c} Yes 1
(a b c d e) (c d e a b) 2 2 {a, b} {} {c, d} {c, d} {a, b, c, d} {c, d} {c, d} Yes 1
(a b c d e) (d b c a e) 1.5 1.5 {a} {b} {} {d} {a, b} {d, b} {b} No 2
(a b c d e) (c e a d b) 2 2 {a, b} {} {c} {c, e} {a, b, c} {c, e, a} {a, c} No 3
(a b c d e) (c b a d e) 1.5 1.5 {a} {b} {c} {c} {a, b, c} {c, b, a} {a, b, c} No 3

Table 1: Examples for different cases in the proof of Proposition 1

Proposition 1. Assuming that nodes can be strictly ordered
by both players, the game has a unique PSNE if and only if
the IOS is non-conflicting and either (a) the common con-
tiguous set consists of at most one node, or (b) all the nodes
in the common contiguous set are invested on by only one
player in the IOS. Also, if the game has a unique PSNE, it is
same as the IOS, else the number of PSNE’s is uncountable.

Proof. Since it is necessary that the IOS is non-conflicting,
we look at all possibilities of non-conflicting IOS.

Recall that a contiguous set consists of nodes which are
exhaustively invested on in the IOS. Such nodes can be in-
vested on by player A or B or both. If such a node i is com-
pletely invested on by player A in IOS, then i ∈ TA, while
if it is invested on by player B, then i ∈ TB . If it is in-
vested on by both the players combined, then i = lAB . In
what follows, if node lAB is such that x̂lAB

+ ŷlAB
= 1,

we label the node as m. Now, the contiguous set of player
A (CA) would typically consist of all the nodes on which it
would want to invest 1 unit each (TA), followed perhaps by a
node on which it would want to invest the residual fractional
part of its budget (m), followed perhaps by some nodes on
which player B would want to invest 1 unit each (SB). Sim-
ilar would be the contiguous set of player B (CB). We now
consider all possible cases to prove the result.

Case 1 (CA = TA) or (CB = TB):
We prove for CA = TA (proof for CB = TB is similar).
If CA = TA, we have that the node i = πA(
kA� + 1)

following the last node of TA (and hence CA) in the ordering
of A, is such that x̂i + ŷi < 1. Note also that i /∈ TB , since
x̂j + ŷj = 1, ∀j ∈ TB . So we have i �A j, ∀j ∈ TB . Since
x̂i + ŷi < 1, any PSNE would follow xi + yi < 1 (from
Lemma 4). So a strategy profile in which player A invests
xj > 0 in some node j ∈ TB cannot be a PSNE, since it can
gain by transferring an amount ε > 0 from node j to node i.
So player A does not invest in any j ∈ TB in a PSNE.

So if �lB , we have y = ŷ and so x = x̂ (Corollary 1).
If ∃lAB , it has to be πA(
kA�+1), in which case, x̂lAB

+
ŷlAB

< 1 (it cannot be exhausted since CA = TA). Since
lAB is shared node, it is partially invested on by B, and so it
has to also be πB(
kB�+1). Since lAB follows the last node
of TB in the ordering of B and is not exhausted in IOS, we
have CB = TB . Since assuming CA = TA, we showed A
does not invest in TB , in this case where CB = TB , we can
similarly show B does not invest on TA. So in any PSNE,

A invests 
kA� in TA and B invests 
kB� in TB . So the
residual budget of A (frac(kA) = x̂lAB

) would be invested
in lAB since lAB �A j, ∀j /∈ TA∪{lAB}; that is, in a PSNE,
xlAB

= x̂lAB
. Since we now have x = x̂, it implies y = ŷ.

Now if ∃lB (not shared in IOS), lB is not invested on by
A in IOS, and since by definition, lB /∈ TB , we have x̂lB +
ŷlB < 1. Since lB follows the last node of TB in the ordering
of B and is not exhausted in IOS, we have CB = TB . So
with the same argument as the above case of ∃lAB , in any
PSNE, A invests 
kA� in TA and B invests 
kB� in TB . If B
does not invest the residual amount of frac(kB) = ŷlB on lB ,
it would have invested some amount in node j /∈ TB ∪{lB};
and B can gain by transferring some amount from j to lB .
So in any PSNE, we would have B investing frac(kB) = ŷlB
in lB . And since we now have y = ŷ, it implies x = x̂.
This follows regardless of whether or not TA, TB are empty.

Since CAB ⊆ CA, CAB ⊆ CB , this case had CAB ⊆ TA

(if CA = TA) or CAB ⊆ TB (if CB = TB), and so all nodes
of CAB were invested on by only one player in the IOS, or
CAB = {}. We showed for this case, IOS is the only PSNE.

Since we have considered the case where CA = TA or
CB = TB , the remaining cases have {m} or SB or both in
CA, and {m} or SA or both in CB .

Case 2 (CA = TA ∪ {m} and CB = TB ∪ {m}):
Here, we have that i = πA(
kA� + 2) following node m

in the ordering of A, is such that x̂i + ŷi < 1. Since there
is shared node m, it can be the only shared node, and since
i /∈ TA ∪ TB because x̂j + ŷj = 1, ∀j ∈ TA ∪ TB , we have
i ∈ E and hence x̂i + ŷi = 0. So we have i �A j, ∀j ∈ TB

and i �B j, ∀j ∈ TA. Since x̂i + ŷi = 0, any PSNE would
follow xi + yi = 0 (from Lemma 4). So a strategy profile in
which A invests xj > 0 in some j ∈ TB cannot be a PSNE,
since it can gain by transferring an amount ε > 0 from node
j to node i. So A does not invest in any j ∈ TB in a PSNE.
Similarly, B does not invest in any j ∈ TA in a PSNE.

So in any PSNE, A invests 
kA� in TA and B invests 
kB�
in TB . So the residual budget of A is frac(kA) and that of B
is frac(kB). Since there is a node m, by its definition, we
have frac(kA)+ frac(kB) = 1. Since m �A j, ∀j ∈ TB ∪E
and m �B j, ∀j ∈ TA ∪ E, the residual budget of both the
players would be invested in node m in any PSNE. So we
have a unique PSNE (x,y) which follows x = x̂,y = ŷ.
This follows regardless of whether or not TA, TB are empty.

In this case, CAB consisted of only one node (m), and for
this case, we showed that the IOS is the only PSNE.
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Case 3 (CA = TA ∪ {m} ∪ SB and CB = TB ∪ {m})
or (CA = TA ∪ {m} and CB = TB ∪ {m} ∪ SA)
or (CA = TA ∪ {m} ∪ SB and CB = TB ∪ {m} ∪ SA)
or (CA = TA ∪ SB and CB = TB ∪ SA) :

In this case, we have |CAB | ≥ 2,
∑

i∈CAB
x̂i > 0,∑

i∈CAB
ŷi > 0. If we have an allocation

∑
i∈CAB

xi =∑
i∈CAB

x̂i,
∑

i∈CAB
yi =

∑
i∈CAB

ŷi and xj = x̂j , yj =

ŷj , ∀j /∈ CAB , player A cannot improve by removing any
amount from CAB , since ∀i ∈ CAB , any node t �A i would
be exhaustively invested on (because CAB ⊆ CA and from
Lemma 4). Similarly, B cannot improve since CAB ⊆ CB .
So any allocation satisfying the following conditions would
be a PSNE:

∑
i∈CAB

xi =
∑

i∈CAB
x̂i > 0,

∑
i∈CAB

yi =∑
i∈CAB

ŷi > 0 and xj = x̂j , yj = ŷj , ∀j /∈ CAB . This
results in uncountable number of possible allocations, and
hence uncountable number of PSNE’s.

In this case, the common contiguous set consisted of at
least two elements and all of these elements were not in-
vested on by only one player in the IOS. For this case, we
showed the existence of uncountable number of PSNE’s.

So we have proved that, if condition (a) or (b) of the
proposition is satisfied (Cases 1 and 2), we have that the
game has a unique PSNE and it is same as the IOS. Con-
versely, if neither of the conditions is satisfied (Case 3), we
have that the game has uncountable number of PSNE’s.

Price of Stability and Price of Anarchy

A socially optimal strategy profile is a profile that maxi-
mizes the sum of players’ utilities. In our game, it is a profile
(x,y) that maximizes

∑
i(wAixi+βwBiyi)+

∑
i(wBiyi+

αwAixi) =
∑

i ((1 + α)wAixi + (1 + β)wBiyi). Let ‘best
PSNE’ be a PSNE that maximizes the sum of players’ utili-
ties, and ‘worst PSNE’ be a PSNE that minimizes it.

The price of stability is defined as the ratio between the
sum of players’ utilities in a socially optimal strategy profile
and that in the best PSNE. Similarly, the price of anarchy is
the ratio between the sum of players’ utilities in a socially
optimal strategy profile and that in the worst PSNE.

Socially Optimal Strategy Profile

Let zAi = (1 + α)wAi and zBi = (1 + β)wBi. So a
socially optimal strategy profile, and hence the maximum
sum of players’ utilities, can be obtained by maximizing∑

i(zAixi + zBiyi) over the set of feasible strategy profiles.
If α ≤ −1 and β > −1, it can be seen that the socially

optimal strategy profile would have player A not investing at
all and player B investing ŷ, so the sum of players’ utilities
would be

∑
i(1 + β)wBiŷi. Similarly, if β ≤ −1 and α >

−1, the socially optimal profile would have player B not
investing at all and player A investing x̂, thus resulting in the
sum of players’ utilities as

∑
i(1 + α)wAix̂i. If α, β ≤ −1,

neither player would invest in the socially optimal profile,
and so the sum of players’ utilities would be zero.

We now analyze the more involved case when α, β > −1.
In this case, zA = (1+α)wA and zB = (1+β)wB are con-
stant positive scaling. So the orderings of A and B (πA and
πB) remain unchanged if they respectively order the nodes

according to zA and zB , instead of wA and wB . In an opti-
mal profile, let jB be the last node in the preference ordering
of player B on which B invests, that is, B does not invest
beyond this node. Let jA be defined analogously. Let

IA = {πA(r)}jA−1
r=1 and IB = {πB(r)}jB−1

r=1

JA = {πA(r)}nr=jA+1 and JB = {πB(r)}nr=jB+1

If ∃i ∈ IB : xi+yi < 1, value of
∑

i zBiyi can be increased
(without altering

∑
i zAixi), by transferring some of B’s in-

vestment from πB(jB) to i. So in a social optimal profile, it
should be that ∀i ∈ IB : xi + yi = 1, that is, yi = 1 − xi.
Also, ∀i ∈ JB : yi = 0 (by definition). So we have

max
x

max
y≤1−x

∑
i∈N

(zAixi + zBiyi)

= max
x

max
jB

∑
i∈N

zAixi +
∑
i∈IB

(1− xi)zBi

+
(
kB −

∑
i∈IB

(1− xi)
)
zBπB(jB)

= max
x

max
jB

∑
i∈N

zAixi −
∑
i∈IB

xi

(
zBi − zBπB(jB)

)

+
∑
i∈IB

(
zBi − zBπB(jB)

)
+ kBzBπB(jB)

= max
jB

max
x

∑
i∈N

zAixi −
∑
i∈N

xi

(
max{zBi−zBπB(jB),0}

)

+
∑
i∈N

max{zBi − zBπB(jB), 0}+ kBzBπB(jB)

= max
jB

[
max
x

(∑
i∈N

xi

(
zAi −max{zBi − zBπB(jB),0}

))

+
∑
i∈N

max{zBi − zBπB(jB), 0}+ kBzBπB(jB)

]
(4)

For checking the consistency of jB , we check if the
amount left for B after investing in IB , that is, the amount
allocated for πB(jB), is between 0 and 1−xπB(jB). That is,

0 ≤ kB −
∑
i∈IB

(1− xi) ≤ 1− xπB(jB)

Lower bound ⇐⇒
∑
i∈IB

xi ≥ (jB − 1)− kB (5)

Upper bound ⇐⇒
∑
i∈IB

xi + xπB(jB) ≤ jB − kB (6)

Since at least �kB� nodes are required for B to spend its
budget, we have yπB(r) = 1− xπB(r), ∀r < �kB�. So from
the definition of jB , we have jB ≥ �kB�. Also, if A invests
in the most preferred nodes of B (amounting to a maximum
of kA), B would invest its available amount kB in nodes
so as to be a feasible investment strategy, given A’s invest-
ment. So B would not invest in any node which is beyond
πB(�kA + kB�) in its ordering. That is, jB ≤ �kA + kB�.

Player A’s strategy in socially optimal profile can be ob-
tained by maximizing (4) subject to Constraints (5) and (6),
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Algorithm 1: Socially optimal strategy profile
Input: wA, wB , kA, kB , α, β
Output: Strategy profile (x,y) that maximizes

v = uA(x,y) + uB(x,y)
v∗ ← −∞
for jB ← �kB� to �kA + kB� do

for i ← 1 to n do

ν
(jB)
i = (1 + α)wAi

−max{(1 + β)(wBi − wBπB(jB)), 0}
χ(jB) = maxx

∑
i xiν

(jB)
i s.t.∑jB−1

i=1 xπ(i) ≥ (jB − kB)− 1 and
∑jB

i=1 xπ(i) ≤ jB − kB (using greedy method)
v(jB) = χ(jB) + kB(1 + β)wBπB(jB)

+
∑

i max{(1 + β)(wBi − wBπB(jB)), 0}
if v(jB) > v∗ then

v∗ ← v(jB)

x∗ ← x

y∗ = argmaxy

∑
i yizBi s.t. y ≤ 1− x∗

and xi ∈ [0, 1], ∀i, over values of jB ∈ [�kB�, �kA+kB�].
With jB fixed, we use a greedy algorithm (instead of solv-
ing the linear program), where A invests in nodes i one at a
time (up to 1 unit per node) in ascending order of the value
(zAi −max{zBi − zBπB(jB), 0}), until kA is exhausted. If
this investment, say x(o), is consistent with (5) and (6), it
is our solution. If it is inconsistent, we make Constraint (5)
tight (then (6) is automatically satisfied), and invest greedily
on nodes in IB , a total of (jB − 1) − kB (such an invest-
ment is possible since |IB | > (jB − 1)− kB). The residual
amount is invested greedily on nodes in N \ IB . Suppose
this results in investment x(l). We similarly check by mak-
ing Constraint (6) tight, and obtain the corresponding greedy
investment x(u). Owing to linearity of the system, if x(o) is
inconsistent with the constraints, either x(l) or x(u) has to
be optimal. So our solution is x(l) or x(u), whichever gives
a higher value of

∑
i xi(zAi −max{zBi − zBπB(jB), 0}).

To maximize (4), we iterate over jB ∈ [�kB�, �kA+kB�]
to obtain socially optimal strategy of A, say x∗. The socially
optimal strategy of B, say y∗, can be obtained by investing
greedily subject to a maximum of 1 − x∗

i in node i, until
kB is exhausted. The social optimal profile is thus, (x∗,y∗).
This method is presented as algorithm in Algorithm 1.

The Price of Anarchy

We first show that we cannot have a universal constant bound
for the price of anarchy for the entire class of such games.
Example 1. Say N = {i, j}, kA= kB =1. Consider wAi=
wBj= M >1 and wAj= wBi= 1. Let α=β=0. A socially
optimal profile has xi = 1, yi = 0 and xj = 0, yj = 1. Now
there is a PSNE with xi = 0, yi = 1 and xj = 1, yj = 0. The
ratio between the sum of players’ utilities in socially optimal
profile and that in this PSNE, is M+M

1+1 =M . So the price of
anarchy can be arbitrarily large for arbitrarily large M .

In order to compute the price of anarchy for an instance
of the game, we first provide a characterization of PSNE.

Lemma 5. A strategy profile (x,y) is a PSNE if and only if
there exist integers jA, jB such that

∀i ∈ IA ∪ IB : xi + yi = 1

For i = πA(jA), πB(jB) : xi + yi ≤ 1

∀i ∈ JA : xi = 0, yi ≤ 1, ∀i ∈ JB : yi = 0, xi ≤ 1∑
i∈N

xi = kA,
∑
i∈N

yi = kB , ∀i ∈ N : xi, yi ≥ 0

Proof. Since the number of nodes and budgets are finite, for
any feasible strategy profile, there would always exist nodes
πA(jA) and πB(jB) in the preference orderings of players
A and B respectively, beyond which A and B would not in-
vest; so there would exist integers jA, jB corresponding to
any PSNE. Note however that, given integers jA, jB , we can
have several strategy profiles which may or may not be fea-
sible, and so may not correspond to any PSNE. We need to
show that we would obtain a PSNE if and only if we are able
to find integers jA, jB which satisfy the above conditions.

Note that the last three conditions are generic with respect
to the studied problem (the budget constraints are tight since
it is suboptimal for players to not exhaust their entire bud-
gets). Moreover, the conditions ∀i ∈ JA : xi = 0, yi ≤ 1
and ∀i ∈ JB : yi = 0, xi ≤ 1 always hold due to the defini-
tions of jA, jB and hence JA, JB . So we need to only prove
that the first condition is necessary and sufficient, given the
generic conditions and definitions result in feasible jA, jB .

If xi+yi = 1, ∀i ∈ IA∪IB , we have xi+yi = 1, ∀i ∈ IA,
and so player A cannot deviate to a better strategy since all
the top nodes in πA are invested on to their limits. Similarly,
we have xi + yi = 1, ∀i ∈ IB , and so B cannot deviate to a
better strategy. So strategy profile (x,y) is a PSNE.

Suppose ∃i ∈ IA such that xi+yi < 1, and A has invested
in node πA(jA), it can gain by transferring an amount ε > 0
from πA(jA) to i since i �A πA(jA). So the strategy profile
(x,y) is not a PSNE. Similar is the case for player B. So if
∃i ∈ IA ∪ IB such that xi + yi 	= 1, (x,y) is not a PSNE if
A has invested in πA(jA) or B has invested in πB(jB).

Note that if ∃i ∈ IA such that xi + yi 	= 1, and A has not
invested in node πA(jA) or any node t �A i, we redefine
jA to be j′A so that πA(j

′
A) = i and redefine IA to be I ′A

accordingly. Similarly, we can redefine jB and IB to be j′B
and I ′B if required. If for a given strategy profile (x,y), any
j′A, j

′
B result in xi + yi 	= 1 for some i ∈ IA ∪ IB , (x,y) is

not a PSNE because of the above argument.

The following proposition follows immediately.
Proposition 2. A worst PSNE can be obtained by minimiz-
ing the value of

∑
i((1 + α)wAixi + (1 + β)wBiyi) over

all integers jA, jB that satisfy the conditions in Lemma 5.
A solution can be obtained efficiently without solving

the linear program, by using a greedy allocation. The idea
is to partition the set of nodes in which A would invest
(IA ∪ {πA(jA)}) into different subsets, and each subset is
allotted a part of the total budget based on the requirements
enforced by the conditions in Lemma 5; the nodes in each
partition are then greedily invested on, one at a time, until
the partition’s share of the budget is exhausted.
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Greedy Algorithm for Finding Worst PSNE

From Lemma 5, we have ∀i ∈ IA ∪ IB : xi + yi = 1 and
∀i ∈ JB : yi = 0, xi ≤ 1, which give ∀i ∈ IA∩JB : xi = 1.
Further, since player A exhausts its budget kA by allocating
among nodes only belonging to IA ∪ πA(jA), we have that∑

i∈IA
xi + xπA(jA) = kA. As earlier, we check the con-

sistency of jB by enforcing Inequalities (5) and (6). Also,
if πB(jB) ∈ IA, the amount allocated by player B for
node πB(jB) would be 1 − xπB(jB) (since the allocations
by both players should sum to 1). This would mean that up-
per bound in Inequality (6) would be tight, thus leading to∑

i∈IB
xi + xπB(jB) = jB − kB . Hence our optimization

problem is:

min
x

∑
i∈N

xi

(
zAi −max{zBi − zBπB(jB), 0}

)

subject to
∀i ∈ N : xi ∈ [0, 1]

∀i ∈ IA ∩ JB : xi = 1∑
i∈IA

xi + xπA(jA) = kA

if πB(jB) ∈ IA :

{ ∑
i∈IB

xi + xπB(jB) = jB − kB

if πB(jB) /∈ IA :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈IB

xi ≥ (jB − 1)− kB

∑
i∈IB

xi + xπB(jB) ≤ jB − kB

Case 1 (πB(jB) ∈ IA):
Case 1(a) (πA(jA) ∈ JB):
Since we should have ∀i ∈ IA ∩ JB , ∀i ∈ IA ∩ JB , the

total budget allocated by player A for the set IA∩JB should
be |IA ∩ JB |. Also we should have

∑
i∈IB

xi + xπB(jB) =
jB−kB , that is, the total budget allocated by player A for the
set IB ∪ πB(jB) should be jB − kB . Since player A invests
only in nodes belonging to IA ∪ πA(jA) and πA(jA) ∈ JB
(that is, πA(jA) /∈ IB ∪ πB(jB)), we have that the budget
allocated by player A for the set (IA ∪ πA(jA)) ∩ (IB ∪
πB(jB)) = IA ∩ (IB ∪ πB(jB)) should be jB − kB . The
residual budget can then be allocated to {πA(jA)}.

So the set IA ∪ {πA(jA)} can be partitioned into three
subsets, with the allocation for each partition as follows:

Partition (Z) Allocated budget
(∑

i∈Z xi

)

IA ∩ JB |IA ∩ JB |
IA ∩ (IB ∪ {πB(jB)}) jB − kB

{πA(jA)} kA − |IA ∩ JB | − (jB − kB)

The nodes in each partition are filled one at a time, in
ascending order of the value (1 + α)wAi − max{(1 +
β)(wBi − wBπB(jB)), 0}, until the allocation for that par-
tition is reached. The budget allocation is valid if and only
if the allocated budget for each partition is non-negative and
not larger than the size of the partition, and the allocated
budgets for the partitions sum to kA.

The other cases follow on similar lines; we now present
the allocations for the partitions in these cases.

Case 1(b) (πA(jA) ∈ IB ∪ {πB(jB)}):
Set IA ∪ {πA(jA)} can be partitioned into subsets,

Partition (Z) Allocation by A
(∑

i∈Z xi

)

IA ∩ JB |IA ∩ JB |
IA ∩ (IB ∪ {πB(jB)}) jB − kB

Case 2 (πB(jB) /∈ IA):
Partition (Z) Allocation by A

(∑
i∈Z xi

)

IA ∩ JB |IA ∩ JB |
(IA ∪ {πA(jA)}) \ (IA ∩ JB) kA − |IA ∩ JB |

Here, the allocation is valid if two conditions are satisfied:∑
i∈IB

xi ≥ (jB − 1)− kB

∑
i∈IB

xi + xπB(jB) ≤ jB − kB

If any of the above two conditions is violated, we need to
restructure the allocation budgets to forcibly satisfy one of
the two extreme possibilities:

Possibility 2(a) (
∑

i∈IB
xi = (jB − 1)− kB ):

Case 2(a)[i] (πA(jA) /∈ IB):
Partition (Z) Allocation by A

(∑
i∈Z xi

)

IA ∩ JB |IA ∩ JB |
IA ∩ IB (jB − 1)− kB

πA(jA) kA − |IA ∩ JB | − (jB − 1− kB)

Case 2(a)[ii] (πA(jA) ∈ IB):
Partition (Z) Allocation by A

(∑
i∈Z xi

)

IA ∩ JB |IA ∩ JB |
(IA ∪ πA(jA)) ∩ IB (jB − 1)− kB

Possibility 2(b) (
∑

i∈IB
xi + xπB(jB) = jB − kB ):

Note that this reduces to Case 1, since it also requires that∑
i∈IB

xi + xπB(jB) = jB − kB .

We then take the minimum of the values obtained in Pos-
sibilities 2(a) and 2(b).

We obtain a worst PSNE by taking the minimum of the
following expression over possible values of jA, jB :∑

i∈N

xi

(
zAi −max{zBi − zBπB(jB), 0}

)

+
∑
i∈N

max{zBi − zBπB(jB), 0}+ kBzBπB(jB)

Algorithm 2 presents the concise algorithm for finding
worst PSNE. The time complexity of determining the pref-
erence orderings is O(n log n), following which, the time
complexity for finding worst PSNE is O(nkAkB).
Remark 1. The greedy algorithm outputs a strategy profile
in which, there could be at most two nodes with non-integral
allocation by player A (similarly by player B). Also, if both
kA and kB are integers, all the nodes would have integral
allocation by both the players.

Since we know the socially optimal strategy profile and
worst PSNE, the price of anarchy can hence be computed.
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Algorithm 2: Worst PSNE
Input: wA, wB , kA, kB , α, β
Output: PSNE (x,y) that minimizes

v = uA(x,y) + uB(x,y)
v∗ ← +∞
for jA ← �kA� to �kA + kB� do

for jB ← �kB� to �kA + kB� do
for i ← 1 to n do

ν
(jB)
i = (1 + α)wAi

−max{(1+β)(wBi−wBπB(jB)), 0}
χ(jB) = minx

∑
i xiν

(jB)
i

where x is obtained using greedy method
v(jB) = χ(jB) + kB(1 + β)wBπB(jB)

+
∑

i max{(1+β)(wBi−wBπB(jB)), 0}
if v(jB) < v∗ then

v∗ ← v(jB)

x∗ ← x

y∗ = argmaxy

∑
i yiwBi s.t. y ≤ 1− x∗

The Price of Stability

Similar to Proposition 2, the following result can be proved.
Proposition 3. A best PSNE can be obtained by maximizing
the value of

∑
i((1 + α)wAixi + (1 + β)wBiyi) over all

integers jA, jB that satisfy the conditions in Lemma 5.
Algorithm 2 can be modified to find a best PSNE by ini-

tializing v∗ ← −∞ (instead of +∞), and assigning χ(jB) =

maxx
∑

i xiν
(jB)
i (instead of minx

∑
i xiν

(jB)
i ). That is, in

the greedy algorithm, the nodes in each partition should be
filled in descending order (instead of ascending order) of the
value (1+α)wAi−max{(1+β)(wBi−wBπB(jB)), 0}, un-
til the allocation for that partition is reached. Since we know
the socially optimal strategy profile and best PSNE, the price
of stability can be computed.

We now present a specific result for the price of stability
when α, β > −1. The condition α, β > −1 can be viewed
as a practically reasonable one, since in usual scenarios, if a
player’s action (such as allocating job to a machine or send-
ing data through a link) fetches it a certain benefit, it is the
direct effect of its action; the indirect effect of this action
on the other player’s utility would usually not be negatively
amplified, unless the setting is excessively antagonistic.
Proposition 4. If α, β > −1, the price of stability is 1.

Proof. Consider a strategy profile (x′,y′) that maximizes∑
i ((1 + α)wAix

′
i + (1 + β)wBiy

′
i). Suppose there exists

a strategy x′′ to which A can deviate so that uA(x
′′,y′) >

uA(x
′,y′), that is,

∑
i(wAix

′′
i + βwBiy

′
i) >

∑
i(wAix

′
i +

βwBiy
′
i) or equivalently,

∑
i wAix

′′
i >

∑
i wAix

′
i. Since

α > −1, this would result in
∑

i(1 + α)wAix
′′
i >

∑
i(1 +

α)wAix
′
i, hence

∑
i ((1 + α)wAix

′′
i + (1 + β)wBiy

′
i) >∑

i ((1 + α)wAix
′
i + (1 + β)wBiy

′
i). This implies (x′,y′)

is not socially optimal, a contradiction. So there is no strat-
egy to which A can unilaterally deviate to improve its utility.
Similarly, since β > −1, there is no strategy to which B can
unilaterally deviate to improve its utility. So the socially op-
timal strategy profile (x′,y′) is a PSNE.

A Note on Non-Strict Preference Orderings

Under the assumption that players have strict preference
orderings over nodes, we had the following condition in
Lemma 5: xi + yi = 1, ∀i ∈ IA ∪ IB . However, if the
orderings are not strict, this condition would no longer be
valid. Recall that non-strict ordering would mean that we
have wAi = wAj or wBi = wBj for some i 	= j. We now
discuss how this condition can be modified, and hence how
the price of anarchy and the price of stability can be com-
puted, when the ordering is not strict for at least one player.

Consider an ordering obtained by breaking ties using
any tie breaking rule. Since player A invested in πA(jA),
all nodes strictly more beneficial for A than πA(jA), must
be exhausted; else A could transfer some investment from
πA(jA) to such nodes. Let PA denote the set of such nodes.
However, nodes in IA which are as beneficial for A as
πA(jA) may not be exhausted. This would still be a PSNE
since player A transferring some investment from πA(jA)
to these nodes would not change its utility. Let QA be the
set of these nodes. The argument for player B is analogous
(with PB and QB defined accordingly). So the condition:
xi + yi = 1, ∀i ∈ (IA ∪ IB) changes to the two conditions:

xi + yi = 1, ∀i ∈ (PA ∪ PB),

xi + yi ≤ 1, ∀i ∈ (QA ∪QB).

With these modified conditions in Lemma 5, Proposi-
tion 2 can be used to determine the worst PSNE by solving
the linear program (our greedy algorithm cannot be used).
Similarly, Proposition 3 would give the best PSNE. For
α, β > −1, Proposition 4 still holds (the price of stability
is 1), since it does not require the unique ordering assump-
tion; so this best PSNE is the socially optimal profile. For
the cases when α ≤ −1 or β ≤ −1 or both, the correspond-
ing socially optimal profiles are on same lines as those under
strict preference orderings. Since we know the socially op-
timal profile, the worst PSNE, and the best PSNE, we can
compute the price of anarchy and the price of stability.

A Paradox

In Example 1, we found a PSNE which results in the sum of
players’ utilities to be 2. However, if we reduce the budget
of one of the players (say B) by an infinitesimal amount
ε > 0, the common contiguous set would be empty, thus
leading to a unique PSNE, which would be same as the IOS
(from Proposition 1). The sum of players’ utilities in this
new PSNE is (M +M −Mε), which would be significantly
higher than 2, for large values of M . So reducing the budget
may lead to a better ‘worst PSNE’. In fact, with kA = kB =
1, the set of PSNE’s can be characterized by allocation xi =
yj = ρ, xj = yi = 1 − ρ, where ρ ∈ [0, 1]. The sum of
players’ utilities would thus be 2Mρ + 2(1 − ρ), which for
almost all values of ρ, would be lesser than 2M−Mε (which
is the sum of utilities in the unique PSNE when B’s budget is
reduced). Further, both players would individually gain with
this reduced budget with respect to almost all values of ρ.

Though we used a particular example to show that lower-
ing the budget may lead to a better outcome, the underlying
reasoning is general. If the IOS is such that reducing play-
ers’ budgets by relatively small amounts, leads to a break
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in the contiguity and hence contraction of the common con-
tiguous set, the resulting IOS may satisfy the conditions in
Proposition 1. This would lead to a unique PSNE, the IOS
itself, which is desirable both individually and socially. On
the other hand, the original higher budgets would have been
such that they led to either the violation of the uniqueness
conditions owing to excessive contiguity, or a conflicting
IOS. This would result in uncountable number of PSNE’s,
of which a significant fraction may be starkly undesirable.

Conclusion

We considered a resource allocation game with linear util-
ity function and a bound on resources that can be allocated
to any node by the two players combined; these resulted in
linear common coupled constraints and hence a resource al-
location polytope game. We showed that, assuming players
have strict preference orderings over nodes, the game has a
unique PSNE if and only if the independent optimal strategy
profile (IOS) is non-conflicting and either (a) the common
contiguous set consists of at most one node, or (b) all the
nodes in the common contiguous set are invested on by only
one player in the IOS. Also, if the game has a unique PSNE,
it is same as the IOS, else the number of PSNE’s is uncount-
able. We also derived a socially optimal strategy profile. For
obtaining the price of anarchy and the price of stability, we
provided a characterization of PSNE, developed a linear pro-
gram, and proposed an efficient greedy algorithm. Under
reasonable conditions, we showed that the price of stability
is 1. We concluded by presenting an interesting paradox in
this game, that higher budgets may lead to worse outcomes.

A possible future direction is to consider more general
utility functions and complex common coupled constraints.
It would be interesting to study this game with more than
two players to see if the results are fundamentally different.
The paradox encountered in this game, has a potential of a
detailed study. It may be interesting to measure contiguity or
conflict in IOS that would lead to such a paradox.

References

Altman, E., and Solan, E. 2009. Constrained games: The im-
pact of the attitude to adversary’s constraints. IEEE Trans-
actions on Automatic Control 54(10):2435–2440.
Anshelevich, E.; Dasgupta, A.; Kleinberg, J.; Tardos, E.;
Wexler, T.; and Roughgarden, T. 2008. The price of stability
for network design with fair cost allocation. SIAM Journal
on Computing 38(4):1602–1623.
Arrow, K., and Debreu, G. 1954. Existence of an equilib-
rium for a competitive economy. Econometrica: Journal of
the Econometric Society 22(3):265–290.
Arslan, G., and Shamma, J. 2004. Distributed convergence
to Nash equilibria with local utility measurements. In 43rd
IEEE Conference on Decision and Control, volume 2, 1538–
1543. IEEE.
Bharathi, S.; Kempe, D.; and Salek, M. 2007. Competi-
tive influence maximization in social networks. In Internet
and Network Economics, volume 4858 of Lecture Notes in
Computer Science, 306–311. Springer.

Bhattacharjee, R.; Thuijsman, F.; and Vrieze, O. J. 2000.
Polytope games. Journal of Optimization Theory and Appli-
cations 105(3):567–588.
Borodin, A.; Filmus, Y.; and Oren, J. 2010. Threshold mod-
els for competitive influence in social networks. In Internet
and Network Economics, volume 6484 of Lecture Notes in
Computer Science, 539–550. Springer.
Brandt, F.; Fischer, F.; and Harrenstein, P. 2013. On the
rate of convergence of fictitious play. Theory of Computing
Systems 53(1):41–52.
Christodoulou, G., and Koutsoupias, E. 2005. The price of
anarchy of finite congestion games. In 37th Annual ACM
Symposium on Theory of Computing, 67–73. ACM.
Clearwater, S. 1996. Market-based control: A paradigm for
distributed resource allocation. World Scientific.
Facchinei, F., and Kanzow, C. 2007. Generalized Nash equi-
librium problems. 4OR: A Quarterly Journal of Operations
Research 5(3):173–210.
Fiat, A.; Kaplan, H.; Levy, M.; Olonetsky, S.; and Shabo,
R. 2006. On the price of stability for designing undirected
networks with fair cost allocations. In Automata, Languages
and Programming, volume 4051 of Lecture Notes in Com-
puter Science, 608–618. Springer.
Johari, R., and Tsitsiklis, J. 2004. Efficiency loss in a net-
work resource allocation game. Mathematics of Operations
Research 29(3):407–435.
Monderer, D., and Shapley, L. 1996. Potential games.
Games and Economic Behavior 14(1):124–143.
Orda, A.; Rom, R.; and Shimkin, N. 1993. Competitive
routing in multiuser communication networks. IEEE/ACM
Transactions on Networking 1(5):510–521.
Rosen, J. B. 1965. Existence and uniqueness of equilibrium
points for concave n-person games. Econometrica: Journal
of the Econometric Society 33(3):520–534.
Roughgarden, T. 2005. Selfish routing and the price of an-
archy, volume 174. MIT press Cambridge.
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