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Abstract

Feedback centralities are one of the key classes of centrality
measures. They assess the importance of a vertex recursively,
based on the importance of its neighbours. Feedback centrali-
ties includes the Eigenvector Centrality, as well as its variants,
such as the Katz Centrality or the PageRank, and are used
in various AI applications, such as ranking the importance
of websites on the Internet and most influential users in the
Twitter social network. In this paper, we study the theoreti-
cal underpinning of the feedback centralities. Specifically, we
propose a novel axiomatization of the Eigenvector Central-
ity and the Katz Centrality based on six simple requirements.
Our approach highlights the similarities and differences be-
tween both centralities which may help in choosing the right
centrality for a specific application.

Introduction

Feedback centralities are one of the key classes of centrality
measures (Koschützki et al. 2005). They assess the impor-
tance of a vertex recursively, based on the importance of its
neighbours. In the AI literature, such measures have been
popularized by PageRank (Page et al. 1999), which is used
by Google to rank the importance of websites on the Inter-
net. Since then, feedback centralities have been widely used
in a number of AI applications, such as finding the most
influential users in the Twitter social network (Weng et al.
2010) and balancing energy consumption in wireless sensor
networks (Jain and Reddy 2015). The goal of this paper is to
study the theoretical underpinnings of feedback centralities.

Arguably, the most well-known feedback centrality is the
Eigenvector Centrality (Bonacich 1972). It is a natural ex-
tension of the Degree Centrality which simply counts the
number of ties that a vertex has. In result, in the Degree Cen-
trality, each neighbour is treated equally regardless of its im-
portance. The idea behind the Eigenvector Centrality is that
the important vertex has connections to other vertices that
are themselves important. In result, the Eigenvector Central-
ity of a vertex is proportional not to a number of neighbours,
but to the sum of their Eigenvector Centralities.

In our work we study weighted directed networks, where
the Degree and Eigenvector Centralities account for both
the directions of edges and their weights. In particular, only
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the vertices with edges incoming to a vertex in question are
taken into account, and this proportionally to the weights of
such an edge. For instance, consider journal citation network
where vertices represent journals and weighted and directed
ties represent citations. Now, the Degree Centrality simply
counts the number of citations, i.e., sums the weights of in-
coming ties. On the other hand, the Eigenvector Centrality
counts each citation with the centrality of the journal which
this citation comes from. In result, one citation from a good
journal might be more important than a couple of citations
from a weak one.

Over the years, many extensions of the Eigenvector Cen-
trality have been proposed. Two most prominent ones are
the Katz Centrality (Katz 1953) and the PageRank (Page
et al. 1999). In this paper, beside the original Eigenvector
Centrality, we study the former one. The Katz Centrality is
defined as the sum of the predecessors’ importance shifted
by a constant value, b. While seemingly insignificant, this
change means that the importance of a vertex depends more
than previously on the number of neighbours and less on the
importance of the neighbours. Thus, the Katz Centrality can
be considered as a middle point between the Degree Cen-
trality and the Eigenvector Centrality.

Despite their popularity, there is a striking lack of the the-
oretical analysis that captures and highlights the differences
between the feedback centralities. As noted by Brandes and
Erlebach (2005), “there are several approaches concerning
axiomatization, but up to now there is a lack of structure and
generality”. While there have been several attempts to ax-
iomatize various feedback centralities, many problems still
remain (see the Related Work section for details).

To address this issue, in this paper we propose a novel ax-
iomatization of both the Eigenvector Centrality and the Katz
Centrality. We begin with the axiomatization of the Eigen-
vector Centrality based on four requirements. The first one,
namely Source Dependency, specify centrality in a simple
graph with only two vertices and two edges. The remaining
requirements – Endpoint Removal, Weak Set Locality and
Convex Combination – define several graph operations and
specify how they affect the centrality in the graph. Next, we
analyze the Katz Centrality and prove that replacing Source
Dependency andWeak Set Locality with two axioms – Com-
pound Dependency and Set Locality uniquely characterize
the Katz Centrality.
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Preliminaries

In this section, we introduce basic definitions and notations
used in this paper.

Graphs: In our work we consider directed, weighted graphs
with possible loops. Such a graph is an ordered triplet
G = (V,E, ω), where V is the set of n = |V | vertices,
E ⊆ V × V is the set of edges and ω : E → R+ is a weight
function reflecting how strong is the connection between a
pair of vertices. Sometimes, it is convenient to use gener-
alised weight function ω∗ : V × V → R+ ∪ {0} defined as
follows:

ω∗(u, v) = ω(u, v) if (u, v) ∈ E, ω∗(u, v) = 0 otherwise.

If the function ω is constant, i.e., there exists α ∈ R+ such
that ω(e) = α, for every e ∈ E, we will simply write
ω(·) = α to define it. For a subset of vertices, U ⊆ V , a
subgraph induced by U is denoted G|U . Formally, G|U =
(U,E|U , ω|U ), where E|U = {(u, v) ∈ E : u, v ∈ U} and
ω|U (e) = ω(e) for every e ∈ E|U . The set of all possible
graphs is denoted by G.
Every edge (u, v) is an outgoing edge for the vertex u

which is the start of this edge and an incoming edge for the
vertex v – its end. If u �= v, we say the edge is proper. Oth-
erwise, it is called a loop. The set of starts of all incoming
edges for any vertex v is called a set of predecessors and is
denoted by N−G (v) for a graph G.

An ordered set of pairwise different vertices, p =
(v1, v2, . . . , vk), such that every but the last vertex is a pre-
decessor of the next one, i.e., (vi, vi+1) ∈ E for every
i ∈ {1, . . . , k − 1}, is called a path. If for every pair of
vertices, u, v ∈ V , there exists a path from v to u and from
u to v, then the graph is strongly connected.
A cycle is a path in which the last vertex is a predecessor

of the first one, i.e., (vk, v1) ∈ E. The set of all cycles in G
will be denoted by C(G). For a cycle, c = (v1, v2, . . . , vk),
the length of a cycle, denoted by |c|, is the number of vertices
in c. Furthermore, the weight of a cycle, denoted by ω(c), is
the product of weights of all edges that constitute cycle c:

ω(c) = ω(vk, v1) ·
k−1∏
i=1

ω(vi, vi+1). (weight of a cycle)

If for two graphs G1 = (V1, E1, ω1) and G2 =
(V2, E2, ω2) there exists a bijection f : V1 → V2 such
that (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2 and ω1(u, v) =
ω2(f(u), f(v)), then these graphs are isomorphic, which is
denoted by G1 � G2.

For a graph, G = (V,E, ω), multiplying it by a scalar
a > 0 is an operation producing a graph

a ·G = (V,E, a · ω).
Similarly, for two graphs G1 = (V1, E1, ω1) and G2 =
(V2, E2, ω2) the sumG1 +G2 is a graph defined as follows:

G1 +G2 = (V1 ∪ V2, E1 ∪ E2, ω1 + ω2)

where ω1 + ω2(e) = ω∗1(e) + ω∗2(e) for every e ∈ E1 ∪E2.

Centralities: For a graph, G = (V,E, ω), a centrality is a
positive vector x ∈ R

n
+ with each coordinate corresponding

to a specified vertex of G which reflects its importance. A
centrality of particular vertex v is denoted by xv and x−v

is a notation for a vector y ∈ R
n−1 such that yu = xu for

every u ∈ V \ {v}.
Following the definition of Eigenvector Centrality, in this

paper we define the centrality function as a function that as-
signs a set, and not a single centrality for each graph.1

Definition 1. (Centrality Function) A centrality function F
is a function that for every graph, G ∈ G, returns a set of
centralities: F (G) ⊆ R

n
+.

Eigenvector Centrality Function (Bonacich 1972), de-
noted by EV , is a centrality function such that x ∈ EV (G)
for a graph G = (V,E, ω) if and only if there exists λ ∈ R

that satisfies

λxv =
∑

u∈N−G (v)

ω(u, v) · xu, (1)

for every vertex v ∈ V . In other words, for the adjacency
matrix A of graphG (i.e., aij = ω∗(j, i)), every x ∈ EV (G)
is an eigenvector of the matrix A and λ would be the corre-
sponding eigenvalue. Formally:

EV (G) =
{

x ∈ R
n
+ : Ax = λx

}
.

In general, each matrix can have up to n different eigen-
values, where n is its dimension. However, from Perron-
Frobenius Theorem (Perron 1907) we know that in every
strongly connected graphG every positive eigenvector x cor-
responds to the same eigenvalue λ – the maximal eigenvalue
of the adjacency matrix. Moreover, the ratio of centralities
of any two vertices is always the same.

In this paper, we will not restrict ourselves to strongly
connected graphs. If graphG is not strongly connected, then
it is possible that the set of centralities EV (G) loses its pro-
portionality property or is empty. However, what is impor-
tant is that since we allow only positive values of centralities,
all centralities for a specific graph always refer to the same,
nonnegative eigenvalue λ.

Katz centrality is a similar concept (Katz 1953). We say
that centrality function F is a Katz Centrality function if
there exists a, b > 0 such that

xv = a
∑

u∈N−G (v)

ω(u, v) · xu + b, (2)

for every graph G and x ∈ F (G). As before it has its alge-
braic interpretation using adjacency matrix

Ka,b(G) =
{

x ∈ R
n
+ : aAx + b = x

}
,

where b is n-dimensional vector of bs. Notice that contrary
to Eigenvector Centrality, because of fixed a and b, there is at
most one solution for every graph and there are no solutions
if a is too big.2

1Similar concept, under the name centrality correspondence,
was proposed by Dequiedt and Zenou (2014).

2More precisely, the set of solutions is empty if and only if a is
greater or equal 1

λ
, where λ is the maximal eigenvalue of A.
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Axiomatization of the Eigenvector Centrality

In this section, we introduce our axiomatization of the
Eigenvector Centrality. Our axiomatization consists of four
axioms – Source Dependency, Endpoint Removal, Weak Set
Locality and Convex Combination. In a description of ax-
ioms, we will often refer to the journal citation interpretation
from the introduction.

Our first axiom, called Source Dependency, specifies a
centrality in a simple borderline case. Assume there are
only two journals, the second one does not cite anyone,
and the first one cite the other journal k times more often
than itself. Then, Source Dependency states that the second
journal is k times more important.

Source Dependency: For every two vertices u, v and
function ω:

F
({u, v},{(u, u),(u, v)}, ω)=

{
x∈R2

+ :
xu

xv
=
ω(u, u)

ω(u, v)

}
.

Our next three axioms describe several graph operations
and specify how these operations affect the centrality of
vertices. For our second axiom, called Endpoint Removal,
assume that there exists a journal that does not cite anyone
else. Endpoint Removal states that removing this journal
does not affect the relative importance of the others. The
intuition behind this axiom is that an assessment of an
importance of a journal should be made based on how often
it is cited (i.e., incoming edges) and not how often it cites
others (i.e., outcoming edges).

Endpoint Removal: For every G = (V,E, ω) and v ∈ V
such that (v, u) �∈ E for every u �= v:

x ∈ F
(
G
)⇒ x−v ∈ F

(
G|V \{v}

)
.

Our next axiom, called Weak Set Locality, considers a
graph that consists of several independent parts. Assume
there exists a number of exactly identical and independent
"worlds", i.e., copies of the same journal citation network.
Since the worlds are independent, a centrality in one world
should not affect the centrality in other worlds. According to
this intuition, Weak Set Locality states that every combina-
tion of centralities in each world/copy is a valid centrality of
the whole system.

Weak Set Locality: For G1 = (V1, E1, ω1), . . . , Gk =
(Vk, Ek, ωk) ∈ G such that G1 � · · · � Gk and Vi ∩
Vj = ∅, for every i �= j:

F (G1 + · · ·+Gk) = F (G1)× · · · × F (Gk).

Eigenvector Centrality depends on the structure of the entire
network. Because of that, identical structure of the ’worlds’
is crucial and the stronger version of this axiom – Set Local-
ity (introduced in the next section) is not satisfied.
Finally, our last axiom imposes a certain consistency

condition on centrality function. Assume there are two
separate citation networks considering the same journals,
e.g., citations limited to theory papers and citations limited
to application papers. Now, Convex Combination states that
if both network have the same centrality, then the (convex)

combination of both networks has this centrality. To put it
differently, if some assessment of importance of journal is
true based on both networks, then both can be combined
and the assessment will remain the same. Moreover, if one
of the networks and a convex combination have the same
centrality, then the second network has this centrality, too.

Convex Combination: For every G1 = (V,E1, ω1),
G2 = (V,E2, ω2) and t ∈ (0, 1):

x∈F (G1)⇒
(

x∈F (G2)⇔ x∈F (t·G1+(1−t)·G2)
)
.

In Theorem 7 we will prove that these four axioms charac-
terize the Eigenvector Centrality, i.e., it is the only centrality
function that satisfies them. Now, we begin with the theorem
stating that the Eigenvector Centrality indeed satisfies these
axioms.
Theorem 1. The Eigenvector Centrality satisfies Source De-
pendency, Endpoint Removal, Weak Set Locality and Convex
Combination.

The proofs of our further theorems rely on the notion of
unity graphs.
Definition 2. (Unity Graphs) A graph G = (V,E, ω) ∈ G
is called a unity graph if and only if every vertex of G has at
most one incoming edge and there exists at least one edge.
The set of all possible unity graphs is denoted by UG:

UG =
{
G ∈ G : ∀v∈V |N−G (v)| ≤ 1, E �= ∅}.

If additionally, every vertex has exactly one incoming edge
and there exists α such that the weight of every cycle, c,
equals α|c|, then we say that the graph is regular. For α ∈
R+, the set of all possible regular unity graphs is denoted by
RUGα:

RUGα=
{
G ∈ G : ∀v∈V |N−G (v)| = 1, ∀c∈G ω(c) = α|c|

}
.

Unity graphs are of our interest because the Eigenvector
Centrality in those graphs is easily calculated.
Lemma 2. Let G = (V,E, ω) ∈ UG be a unity graph. If G
is not regular, then EV (G) = ∅. Otherwise, if G ∈ RUGα,
then:

EV (G) =
{

x ∈ R
n
+ : ∀(u,v)∈E xv/xu = ω(u, v)/α)

}
.

Proof. First, we show that if there exists a vertex in G with-
out incoming edges, than EV (G) = ∅. To this end, ob-
serve that in a unity graph λ > 0 – since a unity graph
has at least one edge, say (u, v) ∈ E, from (1) we get
λ = ω(u, v)xu/xv for xv, xu, ω(u, v) > 0. In result, if a
vertex, v, has no incoming edges, (1) implies xv = 0. How-
ever, since we assumed that centralities are positive vectors,
we get EV (G) = ∅.
Now, assume that every vertex has exactly one incom-

ing edge. Notice that the Eigenvector Centrality equation (1)
simplifies to:

xv = xu · ω(u, v)/λ, for every (u, v) ∈ E. (3)

For a cycle, c = (v1, v2, . . . , vk), from (3) we get that

xv1 = xvk
· ω(vk, v1)/λ = . . . = xv1 · ω(c)/λ|c|.
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Thus, λ = |c|
√

ω(c). In result, (3) has a solution if and only
if there exists α ∈ R+ such that ω(c) = α|c| for every cycle
c ∈ C(G), i.e., the graph is regular.

Assume now that G is regular, i.e., G ∈ RUGα for some
α ∈ R+. Then, for λ = α, (3) transforms into

xv = xu · ω(u, v)/α, for every (u, v) ∈ E.

Now, for a cycle c = (v1, . . . , vk), from ω(c) = α|c| we
know that there exists a solution and fixing xv1 determines
the values of other xv2 , . . . , xvk

. In particular, if (v, v) ∈ E,
then xv is any real number. This concludes the proof.

The proof that Source Dependency, Endpoint Removal,
Weak Set Locality and Convex Combination uniquely char-
acterize the Eigenvector Centrality has the following struc-
ture. Assume F satisfies these axioms.
• In Lemma 3 and 4, we show conditions imposed on F
in simple unity graphs, in which there exists at most one
proper edge.

• In Lemma 5, we show that if graph is a regular unity
graph, then F contains the Eigenvector Centrality.

• In Lemma 6, we prove that every graph such that for ev-
ery vertex the sum of weights of all incoming edges (i.e.,
in-degree) is the same can be obtained as a linear combi-
nation of regular unity graphs.

• Finally, in Theorem 1, building upon Lemmas 3–6, we
show that F is equal to the Eigenvector Centrality.
As mentioned, we begin by considering the simplest unity

graphs – graphs in which every edge is a loop.

Lemma 3. Let G = (V,E, ω) ∈ UG be a unity graph in
which every edge is a loop, i.e., E ⊆ {(v, v) : v ∈ V }.
Assume F satisfies Source Dependency, Endpoint Removal,
Weak Set Locality and Convex Combination. If G is regular,
then F (G) = R

n
+. Otherwise, F (G) = ∅.

Proof. First, we will show that if G is regular, i.e., ev-
ery vertex has a loop and all loops have identical weights,
then F (G) = R

n
+. Assume G ∈ RUGα and V =

{u1, . . . , un}. Now, let v1, . . . , vn be vertices not from V
and let us construct graphs G1, . . . , Gn such that Gi =({ui, vi}, {(ui, ui), (ui, vi)}, ωi

)
, where ωi(·) = α. From

Source Dependency we have that F (Gi) = {x ∈ R
2
+ :

xui = xvi}. As these graphs are isomorphic to each other
from Weak Set Locality we know that F (G1 + · · ·+Gn) =∏n

i=1 F (Gi) =
{

x ∈ R
2n
+ : xvi

= xui

}
. By using End-

point Removal for vertices v1, . . . , vn we get F (G) = R
n
+.

Now, assume that G is not regular, i.e., assume that there
exists u, v ∈ V such that (u, u) ∈ E and ω(u, u) > ω(v, v)
or (v, v) �∈ E. We will prove by contradiction that F (G) =
∅. To this end, assume there exists a centrality x ∈ F (G)
and consider graph G|{u,v}. From Endpoint Removal we
know that there exists at least one centrality in F (G|{u,v}),
say x′ = (xu, xv). We will now prove that there exists a
graph, G2 = ({u, v}, {(u, u)}, ω2), such that x′ ∈ F (G2).
If (v, v) �∈ E, then G|{u,v} is such a graph and we de-
fine ω2(u, u) = ω(u, u). Otherwise, consider graphsG1, G2

such that G|{u,v} = 1/2G1 + 1/2G2 (see Figure 1):
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Figure 1: The graph construction used in the second part of
the proof of Lemma 3.

G1 =
({u, v},{(u, u), (v, v)}, ω1

)
, ω1(·) = 2ω(v, v),

G2 =
({u, v},{(u, u)}, ω2

)
, ω2(·) = 2(ω(u, u)−ω(v, v)).

From the first part of the proof we know that F (G1) = R
2
+,

therefore x′ ∈ F (G1). Since x′ ∈ F (G|{u,v}), from Convex
Combination we have that x′ ∈ F (G2).
Finally, consider the following two graphs that satisfies

1/2G2 + 1/2G3 = G4 (see Figure 1):
G3 =

({u, v}, {(u, u),(u, v)}, ω3

)
, ω3(u, t)=xt,∀t∈{v,u},

G4 =
({u, v}, {(u, u),(u, v)}, ω4

)
, ω4(u, u) = xu/2 +

ω2(u, u)/2, ω4(u, v) = xv/2.

According to Source Dependency x′ ∈ F (G3). Since we
proved that x′ ∈ F (G2) and x′ ∈ F (G3), from Convex
Combination x′ ∈ F (G4). However, this contradicts Source
Dependency, as xu/xv differs from ω4(u, u)/ω4(u, v). This
concludes the proof.

Note that Lemma 2 and 3 implies that F (G) = EV (G),
for every unity graph in which every edge is a loop.

The next lemma considers regular unity graphs in which
there is only one proper edge.
Lemma 4. Let G = (V,E, ω) ∈ RUGα be a regular unity
graph with only one proper edge (u, v), i.e., (u, v) ∈ E and
E \ (u, v) = {(t, t) : t ∈ V \ {v}}. Assume F satisfies
Source Dependency, Endpoint Removal, Weak Set Locality
and Convex Combination. Then:

F (G) ⊇ {
x ∈ R

n
+ : xv/xu = ω(u, v)/ω(u, u)

}
.

Proof. Assume V = {u, v, t1, . . . , tn−2} and con-
sider G|{u,v}. From Source Dependency we get that
F (G|{u,v}) = {x ∈ R

2
+ : xv = xu · ω(u, v)/ω(u, u)}.

Now, let s1, . . . , sn−2 be vertices not from V and con-
sider graphs G1, . . . , Gn−2 isomorphic to G|{u,v}: Gi =
({ti, si}, {(ti, si), (ti, ti)}, ωi) with ωi(ti, si) = ω(u, v)
and ωi(ti, ti) = ω(u, u). From Weak Set Locality we get
that F (G|{u,v} +G1 + . . .+Gn−2) consists of x ∈ R

2n−2
+

such that xv/xu = xsi/xti = ω(u, v)/ω(u, u) for every
i ∈ {1, . . . , n−2}. By removing vertices s1, . . . , sn−2 from

 

 

 

 

    

 

 

  

 

 

  

 

 

  

 

 

  

     

Figure 2: The construction used in the proof of Lemma 4.
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G|{u,v} + G1 + · · · + Gn−2 we obtain graph G and from
Endpoint Removal we get our thesis (see Figure 2).

Finally, we consider all regular unity graphs.
Lemma 5. If F satisfies Source Dependency, Endpoint Re-
moval, Weak Set Locality and Convex Combination, then for
every graph G ∈ RUGα, EV (G) ⊆ F (G).

Proof. Assume F satisfies all four axioms. Let G =
(V,E, ω) ∈ RUGα be a regular unity graph and x ∈
EV (G). From Lemma 2 we know that x satisfies xv =
xu · ω(u, v)/α for every (u, v) ∈ E. Our goal is to prove
that x ∈ F (G).
For every edge (u, v) ∈ E, let us construct a graph

G(u,v) = (V, {(u, v)} ∪ {(t, t) : t ∈ V \ {v}} , ω(u,v)),

where ω(u,v)(u, v) = ω(u, v) and ω(u,v)(t, t)=α for every
t∈V \ {v} (for an example see Figure 3). From Lemma 4:

F (G(u,v)) ⊇
{

x ∈ R
n
+ : xv/xu = ω(u, v)/α

}
.

Let us denote an average of all graphsG(u,v) byG′. Since F
satisfies Convex Combination and for every (u, v) ∈ E we
know that x ∈ F (G′(u,v)), we get that x ∈ F (G′).

Finally, let G′′ be a graph that contains only loops of
weight α: G′′ = (V, {(v, v) : v ∈ V }, ω′′) with ω′′(·) = α.
Observe that G′ = 1/|V | · G + (|V | − 1)/|V | · G′′ (see
Figure 3). From Lemma 3 we get that F (G′′) = R

n
+, which

implies x ∈ F (G′′). In result, from Convex Combination we
get that x ∈ F (G). This concludes the proof.

In the next lemma, we show the key property of the proof
of uniqueness. It states that every graph such that for every
vertex the sum of weights of all incoming edges is the same
is a linear combination of regular unity graphs (for an exam-
ple see Figure 4).
Lemma 6. For every graph G = (V,E, ω) such that∑

u∈N−G (v) ω(u, v) = β, for every v ∈ V and some β ∈ R+,
there exist regular unity graphs G1 = (V,E1,1), . . . , Gk =
(V,Ek,1) ∈ RUG1 so that

G = α1G1 + . . .+ αkGk,

for some real values α1, . . . , αk ∈ R+, with
∑k

i=1 αi = β.

Proof. We will prove this lemma by induction on the num-
ber of edges of the graph G. For the basis of induction, ob-
serve that since the sum of incoming edges of every vertex

   
  

 

  

 

  

 

  

 

  

 
     

  

Figure 3: An illustration of the graph construction that is
used in the proof of Lemma 5 for an exemplary graph G =({u, v, w}, {(u, u), (u, v), (v, w)}, ω).

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

   

   

Figure 4: A decomposition of an exemplary graph G with
the sum of weights of incoming edges equal to 3 for its every
vertex in the way described by Lemma 6. Thicker edges have
weight 2, and the thickest one – weight 3.

is larger than zero, we know that |E| ≥ |V |. If |E| = |V |,
then every vertex must have exactly one incoming edge
of weight β. This means G is a regular unity graph and
G = β · (V,E,1).
Now, assume that |E| = m > |V | and the thesis holds

for every graph with less than m edges. Let α be a minimal
weight of an edge: α = mine∈E ω(e). It is clear that α < β,
because otherwise all weights of all edges would have to be
equal to β and we would get |E| = |V |.
Let Es be any subset of E that contains at least one

edge e with ω(e) = α and includes exactly one incoming
edge for every vertex. Thus, graph Gs = (V,Es,1) is a
regular unity graph. Consider graph G′ = (V,E′, ω′) ob-
tained from G by decreasing weight of each edge from Es

by α (and removing edges that will have zero weight as a
result). We have G = G′ + αGs. In result, we get that∑

u∈N−
G′ (v)

ω′(u, v) = β−α for every v∈V and |E′|< |E|.
With the inductive assumption this concludes the proof.

Finally, based on Lemmas 3–6, we prove the main theo-
rem of this section.

Theorem 7. If F satisfies Source Dependency, Endpoint Re-
moval, Weak Set Locality and Convex Combination, then it
is equal to Eigenvector Centrality Function.

Proof. Assume that F satisfies these requirements. Firstly,
let us consider graphs without any edges. For such a graph,
G = (V, ∅, ω), we have EV (G) = R

n
+, as for λ = 0

equation (1) trivializes for every v ∈ V . Let us construct
a graph G′ = (V, {(t, t) : t ∈ V },1) and see that
1/2 · G + 1/2 · G′ = 1/2 · G′. From Lemma 3 we have
that F (G) = F (1/2 ·G′) = R

n
+, thus from Convex Combi-

nation F (G) = EV (G).
In the remainder of the proof we will consider graphs hav-

ing at least one edge – first we prove that EV (G) ⊆ F (G)
for every such a graph G and then we prove that F (G) ⊆
EV (G) as well.

Let G = (V,E, ω) be a graph, x ∈ EV (G) and λ be the
corresponding eigenvalue, i.e., real value for which (1) is
satisfied. We need to show that x ∈ F (G). Consider graph
G′ = (V,E, ω′) where ω′(u, v) = ω(u, v) · xu/λxv , for
every (u, v) ∈ E. From (1) we get that the sum of weights
of incoming edges of every node equals 1. Hence, on behalf
of Lemma 6 we know that we can write G′ as a sum: G′ =
α1G

′
1 + . . . + αkG

′
k, where G

′
i = (V,Ei,1) ∈ RUG1 for

every i ∈ {1, . . . , k} and∑k
i=1 αi = 1.
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For every i ∈ {1, . . . , k}, let us construct a new graph,
Gi = (V,Ei, ωi), obtained from Gi by modifying weights
of edges as follows: ωi(u, v) = λ · xv/xu for every (u, v) ∈
Ei. Note that graphs G1, . . . , Gk are also regular unity
graphs – each graph has exactly one incoming edge for ev-
ery vertex and the weight of every cycle, c, equals λ|c|. Also,
observe that x ∈ EV (Gi), since

∑
u∈N−Gi

(v) ωi(u, v) ·xu =

λxv for every v ∈ V , which means (1) is satisfied. From
Lemma 5 we know that since x ∈ EV (Gi), then x ∈ F (Gi).
Finally, we show that G is a convex combination of

graphs G1, . . . , Gk. Since the weight of every edge, (u, v),
in α1G

′
1 + . . . + αkG

′
k is equal to ω(u, v) · xu/λxv , then

we get that α1G1 + . . . + αkGk = G. From Convex Com-
bination we get x ∈ F (G). This concludes the proof that
EV (G) ⊆ F (G).
In the remainder of the proof, we show that F (G) ⊆

EV (G). To this end, let us take any x ∈ F (G). We will
prove by contradiction that it implies x ∈ EV (G). As-
sume G = (V,E, ω) is the graph with the smallest num-
ber of proper edges such that x ∈ F (G), but x �∈ EV (G).
If there are no proper edges, i.e., all edges in G are loops,
then from Lemma 2 and 3 we know that x ∈ F (G) implies
x ∈ EV (G). Assume otherwise. Let (u, v) ∈ E be a proper
edge from G. Consider two graphs:

G1 = (V, {(t, t) : t ∈ V } , ω1) , ω1(·) = ω(u, v) · xu/xv,

G2 = (V, {(u, v)} ∪ {(t, t) : t ∈ V \ {v}} , ω2) ,

ω2(u, v) = ω(u, v), ∀t∈V \{v}ω2(t, t) = ω(u, v) · xu/xv.

From Lemma 3 we get that x ∈ F (G1). Moreover, by check-
ing condition xu/xv = ω2(u, u)/ω2(u, v), from Lemma 4
we get that x ∈ F (G2). Now, let us define graphG3 that sat-
isfies the equation 1/2 ·G+1/2 ·G1 = 1/2 ·G2+1/2 ·G3:

G3 = (V,E\{(u, v)}, ω3), ω3(v, v) = ω(v, v)+ω(u, v)
xu

xv

and ω3(e) = ω(e), for every e ∈ E \ {(u, v), (v, v)}. From
Convex Combination we get that x ∈ F (G3) and, since G3

has less proper edges than G, we know that x ∈ EV (G3).
Thus, from (1) we know that there exists λ ∈ R+ such
that xt = 1/λ

∑
s∈N−G3

(t) ω3(s, t)xs, for every t ∈ V .
Since only incoming edges of v differ between graphs G3

and G, then only the equation for t = v differs in both
cases. Nevertheless, by looking at the definition of ω3 we get
that xv = 1/λ

(
ω(u, v) · xu +

∑
s∈N−G3

(v) ω(s, v)xs

)
=

1/λ
∑

s∈N−G (v) ω(s, v)xs. In result, we get x ∈ EV (G).
This contradiction concludes the proof.

It is worth mentioning that all four axioms are required to
get uniqueness.

Axiomatization of the Katz Centrality

In this section, we will provide our axiomatization of the
Katz Centrality. What is important, this axiomatization is
close to the axiomatization of the Eigenvector Centrality.
Specifically, our axiomatization will consist of two previ-
ously introduced axioms, namely Endpoint Removal and

Convex Combination, and two new axioms, that we call
Compound Dependency and Set Locality.

First new axiom, named Compound Dependency, is a
modification of the Source Dependency, which constitutes
a borderline case in the Eigenvector Centrality axiomatiza-
tion. Using our journal citation interpretation assume there
are only two journals, the second one not citing anyone, and
the first one citing the other journal k times more often than
itself. Source Dependency states that the second journal
is k times more important. It is clear from the definition
that because of the constant b added, the Katz Centrality
does not satisfy this condition. However, what we can say,
is that the proportion between relative difference between
importance of both journals is some fixed part (equal to a)
of the difference between the numbers of citations.

Compound Dependency: There exist a > 0, such
that for every two vertices u, v and every graph G =
({u, v}, E, ω) with E ⊆ {(u, u), (u, v)}:

x ∈ F
(
G
)⇒ xv − xu

xu
= a · (ω∗(u, v)− ω∗(u, u)) ,

and F (G) = ∅ ⇔ a · ω∗(u, u) ≥ 1.

Our second new axiom is called Set Locality. Consider a
graph that consists of several independent parts. Set Locality
simply states that the centrality of this graph is a product of
sets of centrality in these parts taken separately.

Set Locality: For every G1 = (V1, E1, ω1), . . . , Gk =
(Vk, Ek, ωk) such that Vi ∩ Vj = ∅ for any i �= j:

F (G1 + · · ·+Gk) = F (G1)× · · · × F (Gk).

The name of this axiom refers to Locality, proposed by Skib-
ski et al. (2016). This axiom states that the centrality of a
vertex depend solely on a connected part it belongs to. Thus,
Set Locality is a version of this axiom for centrality functions
which by the definition return not one centrality, but a set of
centralities.

In what follows, we show that these two axioms along
with Endpoint Removal and Convex Combination axioma-
tize the Katz Centrality. In other words, each centrality func-
tion that satisfies these axioms is the Katz Centrality for
some constants a and b. We begin with a theorem that shows
the Katz Centrality for every a and b satisfies all four ax-
ioms.

Theorem 8. The Katz Centrality satisfies Compound De-
pendency, Endpoint Removal, Set Locality and Convex Com-
bination.

To show that the Katz Centrality is the unique centrality
function that satisfies our axioms we will again use the unity
graphs. However, in the Katz Centrality the relation between
vertex centrality and centrality of its only predecessor in a
unity graph is not as simple as in the Eigenvector Centrality:

Lemma 9. For a centrality x and a unity graph G =
(V,E, ω) ∈ UG we have x ∈ Ka,b(G) if and only if
ω(u, v) = rx(u, v) for every (u, v) ∈ E and |N−G (v)| =
0 ⇒ xv = b for every v ∈ V , where for centrality x and
constants a, b ∈ R+ function rx : V × V → R is defined as
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follows:

rx(u, v) =
xv − b

a · xu
, for every u, v ∈ V.

Moreover, if x ∈ Ka,b(G), then Ka,b(G) = {x}.
Proof. Taking (2) for a vertex v without any predecessors,
i.e., |N−G (v)| = 0, gives xv = b. For every other vertex v
and its only predecessor u it states xv = a · ω(u, v)xu + b,
which is equivalent to ω(u, v) = (xv−b)/(a·xu). The thesis
follows from the system of these equations for every vertex
v ∈ V .

In the previous section, our axioms determined single cen-
trality function that happened to be the Eigenvector Central-
ity. Here, our axioms lead to multiple centrality functions,
but we show that each is the Katz Centrality Ka,b for some
parameters a, b. Parameter a is determined by a from Com-
pound Dependency. On the other hand, parameter b is equal
to the centrality of a vertex in a graph with only one vertex.
Lemma 10. If F satisfies Compound Dependency and Set
Locality, then there exists b ∈ R+ such that

F
({v}, ∅, ω) = {b}, for every v.

Proof. Assume that F ({v}, ∅, ω) = ∅ for some vertex v.
Take any vertex u �= v. From Set Locality we get that
F ({u, v}, ∅, ω) = ∅ which contradicts Compound Depen-
dency. Thus, we proved that F ({v}, ∅, ω) �= ∅.

Now, assume that b1 ∈ F ({u}, ∅, ω), b2 ∈ F ({v}, ∅, ω)
and b1 �= b2 for vertices u �= v. Then, again from Set
Locality we get that (b1, b2) ∈ F

({u, v}, ∅, ω3

)
, which

contradicts Compound Dependency. This also means that
F ({u}, ∅, ω) cannot contain two centralities, as at least one
of it would be different than a centrality from F ({v}, ∅, ω)
(which we know exists). This concludes the proof.

In the remainder of this section, we will say that F satis-
fies Compound Dependency and Set Locality with constants
a, b if (1) F satisfies Compound Dependency with constant
a, (2) F satisfies Set Locality, and (3) F for a vertex in a
graph with only one vertex equals b (from Lemma 10 we
know such b exists). We will prove that the Katz Centrality
Ka,b is the only centrality that satisfies Endpoint Removal,
Convex Combination and Compound Dependency and Set
Locality with constants a, b.

The scheme of our proof and is analogous to the cor-
responding proof for the Eigenvector Centrality. We begin
with the lemma concerning graphs that consist only of loops.
Lemma 11. Let G = (V,E, ω) ∈ UG be a unity graph
in which every edge is a loop: E ⊆ {(v, v) : v ∈ V }.
Assume F satisfies Compound Dependency and Set Locality
with constants a, b. Then,

F (G)=Ka,b(G)=

{
x∈Rn

+ : ∀v∈V xv=
b

1−a·ω∗(v, v)
}
.

Proof (sketch).3 For every vertex u ∈ V that has a loop, we
consider a graph Gu =

({u, v}, {(u, u)}, ω|{u}), where v

3Techniques used in Lemmas 11–13 and Theorem 14 are simi-
lar to those from the previous section. Due to space constraints, we
present only sketches of the proofs.

is an arbitrary node not from V . From Compound Depen-
dency, Weak Set Locality and Lemma 10, we obtain that
F (Gu) = Ka,b(Gu). Moreover, centrality functions F and
Ka,b are also equal for the graph obtained from Gu by re-
moving vertex v. Since G can be expressed as the sum of
these graphs by using Set Locality we obtain the thesis.

The next lemma considers unity graphs with exactly one
proper edge.

Lemma 12. Let G = (V,E, ω) ∈ UG be a unity graph
with only one proper edge (u, v), i.e., (u, v) ∈ E and
E \ {(u, v)} ⊆ {(t, t) : t ∈ V }. If F satisfies Compound
Dependency, Endpoint Removal and Set Locality with con-
stants a, b, then F (G) ⊇ Ka,b(G).

Proof (sketch). From Compound Dependency, Endpoint
Removal and Lemma 11 we obtain that for the sub-
graph induced by vertices u and v, i.e., G|{u,v}, we have
F (G|{u,v}) = Ka,b(G|{u,v}). In the graph induced by
remaining vertices, i.e., G|V \{u,v}, all of the edges are
loops, thus from Lemma 11 we get F (G|V \{u,v}) =
Ka,b(G|V \{u,v}). Since G is the sum of graphs G|{u,v} and
G|V \{u,v}, from Set Locality the thesis follows.

Now, let us consider all unity graphs.

Lemma 13. Let G = (V,E, ω) ∈ UG be a unity graph. If
F satisfies Compound Dependency, Endpoint Removal, Set
Locality and Convex Combination with constants a, b, then
F (G) ⊇ Ka,b(G).

Proof (sketch). The proof follows the similar reasoning as
the proof of Lemma 5. We assume that there exists a cen-
trality x ∈ Ka,b(G). Using Lemma 12 for every edge e in
G we construct a graph, Ge, that consists of this edge and
loops with weights tailored so that x ∈ F (Ge) (for an exam-
ple see Figure 5). If we denote the average of these graphs
by G′, then from Convex Combination we get x ∈ F (G′).
Using Lemma 11 we construct a graphG′′ that contains only
loops with weights so that x ∈ F (G′′). Since G is a convex
combination of graphs G′ and G′′, the thesis follows from
Convex Combination.

Finally, using Lemmas 11-13 and Lemma 6 from previous
section we show that any centrality function F satisfying all
four axioms is the Katz Centrality.

Theorem 14. If F satisfies Compound Dependency, End-
point Removal, Set Locality and Convex Combination with

   
  

 

  

 

  

 

  

 
    

 

Figure 5: An illustration of the graph construction that is
used in the proof of Lemma 13 for an exemplary graph G =({u, v, w}, {(u, v), (v, w)}, ω).
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constants a, b, then it is equal to Katz Centrality function
with constants a, b.

Proof (sketch). First, we prove that Ka,b(G) ⊆ F (G), for
any graph G. To this end, we modify the edges and their
weights in G, so that the sum of weights of all incoming
edges to every vertex is equal to 1. For this modified graph
we use Lemma 6 to get regular unity graphs G′1, . . . , G

′
k of

which it is a convex combination. By modifying them in the
opposite manner, we obtain unity graphs G1, . . . , Gk and
we prove, that taking the same convex combination of these
modified unity graphs, will produce graphG. Using Convex
Combination and Lemma 13 concludes this part of the proof.

Second, we consider the graph with the smallest number
of proper edges for which there exists x such that x ∈ F (G)
and x �∈ Ka,b(G). Then, by contradiction, we prove that it
does not exist. If it is a graph with only loops – the con-
tradiction is due to Lemma 11. If not, then we construct
a graph, G′, with one proper edge less than G. From in-
ductive assumption we know x ∈ F (G′). By showing that
Ka,b(G) = Ka,b(G

′), we obtain the thesis.

It can be proven that all four axioms are required to obtain
uniqueness.

Related Work

Recently, there have been a number of papers concerning
axiomatization of centrality measures (e.g., (Boldi and Vi-
gna 2014; Skibski et al. 2016)). However, just a few of them
concentrated on feedback centralities such as the Eigenvec-
tor, Katz and PageRank Centralities. We discuss them below.

Dequiedt and Zenou (2014) proposed axioms for the
Eigenvector and Katz Centralities for undirected graphs.
In their axiomatization, the authors extended the class of
graphs by considering graphs with vertices of fixed central-
ity and used axioms that depends on the maximal eigenvalue
λ of a graph. Our axiomatization is provided for directed
graphs, does not go beyond the class of standard graphs and
do not use eigenvalue in any axiom.

The Eigenvector Centrality has also been an object of one
of the axiomatizations by Kitti (2016). Axioms proposed
were algebraic properties of adjacency matrix. Kitti did not
provide an axiomatization of the Katz Centrality.

Palacios-Huerta and Volij (2004) proposed an axiomati-
zation of simplified version of the PageRank Centrality in
a setting of journal citation network, which they called In-
variant method. The Eigenvector Centrality in that setting
was also mentioned (under the name The Liebowitz-Palmer
method), however they did not provide its complete axiom-
atization. Altman and Tennenholtz (2005) provided the ax-
iomatization of the same version of the PageRank Centrality
in the general setting. The authors proposed several axioms
based on simple graph operations. Unlike us, the authors ax-
iomatized not the numerical values of the PageRank Cen-
trality, but the ranking resulting from it.

Conclusions

In this paper, we studied the axiomatic characterization of
the Eigenvector and Katz Centralities. We proved that the

Eigenvector Centrality is the only one that satisfies four
axioms – Source Dependency, Endpoint Removal, Weak
Set Locality and Convex Combination. Moreover, replac-
ing Weak Set Locality with Set Locality and Source Depen-
dency with Compound Dependency we get the axiomatiza-
tion of the Katz Centrality. In our future work, we plan to
create a similar axiomatization for the PageRank Centrality.
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