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Abstract

Balancing fairness and efficiency in resource allocation is a
classical economic and computational problem. The price of
fairness measures the worst-case loss of economic efficiency
when using an inefficient but fair allocation rule; for indivis-
ible goods in many settings, this price is unacceptably high.
One such setting is kidney exchange, where needy patients
swap willing but incompatible kidney donors. In this work,
we close an open problem regarding the theoretical price of
fairness in modern kidney exchanges. We then propose a gen-
eral hybrid fairness rule that balances a strict lexicographic
preference ordering over classes of agents, and a utilitarian
objective that maximizes economic efficiency. We develop a
utility function for this rule that favors disadvantaged groups
lexicographically; but if cost to overall efficiency becomes
too high, it switches to a utilitarian objective. This rule has
only one parameter which is proportional to a bound on the
price of fairness, and can be adjusted by policymakers. We
apply this rule to real data from a large kidney exchange and
show that our hybrid rule produces more reliable outcomes
than other fairness rules.

1 Introduction

Chronic kidney disease is a worldwide problem whose soci-
etal burden is likened to that of diabetes (Neuen et al. 2013).
Left untreated, it leads to end-stage renal failure and the need
for a donor kidney—for which demand far outstrips supply.
In the United States alone, the kidney transplant waiting list
grew from 58,000 people in 2004 to over 100,000 needy pa-
tients (Hart et al. 2016).1

To alleviate some of this supply-demand mismatch, kid-
ney exchanges (Rapaport 1986; Roth, Sönmez, and Ünver
2004) allow patients with willing living donors to trade
donors for access to compatible or higher-quality organs.
In addition to these patient-donor pairs, modern exchanges
include non-directed donors, who enter the exchange with-
out a patient in need of a kidney. Exchanges occur in cycle-
or chain-like structures, and now account for 10% of liv-
ing transplants in the United States. Yet, access to a kid-
ney exchange does not guarantee equal access to kidneys
themselves; for example, certain classes of patients may be
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particularly disadvantaged based on health characteristics or
other logistical factors. Thus, fairness considerations are an
active topic of theoretical and practical research in kidney
exchange and the matching market community in general.

Intuitively, any enforcement of a fairness constraint or
consideration may have a negative effect on overall eco-
nomic efficiency. A quantification of this tradeoff is known
as the price of fairness (Bertsimas, Farias, and Trichakis
2011). Recent work by Dickerson, Procaccia, and Sand-
holm (2014) adapted this concept to the kidney exchange
case, and presented two fair allocation rules that strike a bal-
ance between fairness and efficiency. Yet, as we show in this
paper, those rules can “fail” unpredictably, yielding an arbi-
trarily high price of fairness.

With this as motivation, we adapt to the kidney exchange
case a recent technique for trading off a form of fairness and
utilitarianism in a principled manner. This technique is pa-
rameterized by a bound on the price of fairness, as opposed
to a set of parameters that may result in hard-to-predict fi-
nal matching behavior, as in past work. We implement our
rule in a realistic mathematical programming framework
and–on real data from a large, multi-center, fielded kidney
exchange–show that our rule effectively balances fairness
and efficiency without unwanted outlier behavior.

1.1 Related Work

We briefly overview related work in balancing efficiency and
fairness in resource allocation problem. Bertsimas, Farias,
and Trichakis (2011) define the price of fairness; that is, the
relative loss in system efficiency under a fair allocation rule.
Hooker and Williams (2012) give a formal method for com-
bining utilitarianism and equity. We direct the reader to those
two papers for a greater overview of research in fairness in
general resource allocation problems.

Fairness in the context of kidney exchange was first stud-
ied by Roth, Sönmez, and Ünver (2005b); they explore con-
cepts like Lorenz dominance in a stylized model, and show
that preferring fair allocations can come at great cost. Li
et al. (2014) extend this model and present an algorithm
to solve for a Lorenz dominant matching. Stability in kid-
ney exchange, a concept intimately related to fairness, was
explored by Liu, Tang, and Fang (2014). The use of ran-
domized allocation machanisms to promote fairness in styl-
ized models is theoretically promising (Fang et al. 2015;

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1161



Aziz et al. 2016; Mattei, Saffidine, and Walsh 2017). Re-
cent work discusses fairness in stylized random graph mod-
els of dynamic kidney exchange (Ashlagi, Jaillet, and Man-
shadi 2013; Anderson et al. 2015). None of these papers pro-
vide practical models that could be implemented in a fully-
realistic and fielded kidney exchange.

Practically speaking, Yılmaz (2011) explores in simula-
tion equity issues from combining living and deceased donor
allocation; that paper is limited to only short length-two kid-
ney swaps, while real exchanges all use longer cycles and
chains. Dickerson, Procaccia, and Sandholm (2014) intro-
duced two fairness rules explicitly in the context of kidney
exchange, and proved bounds on the price of fairness un-
der those rules in a random graph model; we build on that
work in this paper, and describe it in greater detail later. That
work has been incorporated into a framework for learning
to balance efficiency, fairness, and dynamism in matching
markets (Dickerson and Sandholm 2015); we note that the
fairness rule we present in this paper could be used in that
framework as well.

1.2 Our Contributions

Dickerson, Procaccia, and Sandholm (2014) finds that the
theoretical price of fairness in kidney exchange is small
when only patient-donor pairs participate in the exchange.
They did not include non-directed donors (NDDs). However,
in modern kidney exchanges, non-directed donors (NDDs)
provide many more matches than patient-donor pairs; fur-
thermore, NDDs create more opportunities to expand the fair
matching, potentially increasing the price of fairness. Here,
we prove that adding NDDs to the theoretical model actu-
ally decreases the price of fairness, and that—with enough
NDDs—the price of fairness is zero.

Real kidney exchanges are less dense and more uncertain
than the (standard) theoretical model in which we prove our
results. Previous approaches to incorporating fairness into
kidney exchange have neglected this fact: they have been ei-
ther ad-hoc—e.g., “priority points” decided on by commit-
tee (Kidney Paired Donation Work Group 2013)—or brit-
tle (Roth, Sönmez, and Ünver 2005b; Dickerson, Procac-
cia, and Sandholm 2014), resulting in an unacceptably high
price of fairness. This paper provides the first approach to
incorporating fairness into kidney exchange in a way that
both prioritizes disadvantaged participants, but also comes
with acceptable worst-case guarantees on the price of fair-
ness. Our method is easily applied as an objective in the
mathematical-programming-based clearing methods used in
today’s fielded exchanges; indeed, using real data we show
that this method guarantees a limit on efficiency loss.

Section 1.3 introduces the kidney exchange problem. Sec-
tion 2 extends work by Ashlagi and Roth (2014) and Dicker-
son, Procaccia, and Sandholm (2014), showing that the price
of fairness is small on the canonical random graph model
even with NDDs. Section 3 shows that two recent fair allo-
cation rules from the kidney exchange literature (Dickerson,
Procaccia, and Sandholm 2014) can perform unacceptably
poorly in the worst case. Then, Section 4 presents a new
allocation rule that allows policymakers to set a limit on
efficiency loss, while also favoring disadvantaged patients.

Section 5 shows on real data from a large fielded kidney
exchange that our method limits efficiency loss while still
favoring disadvantaged patients when possible.

1.3 Preliminaries

A kidney exchange can be represented as a directed com-
patibility graph G = (V,E), with vertices V = P ∪ N
including both patient donor pairs p ∈ P and non-directed-
donors n ∈ N (Roth, Sönmez, and Ünver 2004; 2005a;
2005b; Abraham, Blum, and Sandholm 2007). A directed
edge e is drawn from vertex vi to vj if the donor at vi can
give to the patient at vj . Fielded kidney exchanges consist
mainly of directed cycles in G, where each patient vertex in
the cycle receives the donor kidney of the previous vertex.
Modern exchanges also include non-cyclic structures called
chains (Montgomery et al. 2006; Rees et al. 2009). Here, an
NDD donates her kidney to a patient, whose paired donor
donates her kidney to another patient, and so on.

In practice, cycles are limited in size, or “capped,” to some
small constant L, while chains are limited in size to a much
larger constant R—or not limited at all. This is because
all transplants in a cycle must execute simultaneously; if a
donor whose paired patient had already received a kidney
backed out of the donation, then some participant in the mar-
ket would be strictly worse off than before. However, chains
need not be executed simultaneously; if a donor backs out af-
ter her paired patient receives a kidney, then the chain breaks
but no participant is strictly worse off. We will discuss how
these caps affect fairness and efficiency in the coming sec-
tions.

The goal of kidney exchange programs is to find a match-
ing M—a collection of disjoint cycles and chains in the
graph G. The cycles and chains must be disjoint because
no donor can give more than one of her kidneys (although
ongoing work explores multi-donor kidney exchange (Er-
gin, Sönmez, and Utku Ünver 2017; Farina, Dickerson, and
Sandholm 2017)). The clearing problem in kidney exchange
is to find a matching M∗ that maximizes some utility func-
tion u : M → R, where M is the set of all legal match-
ings. Real kidney exchanges typically optimize for the maxi-
mum weighted cycle cover (i.e., u(M) =

∑
c∈M

∑
e∈c we).

This utilitarian objective can favor certain classes of patient-
donor pairs while disadvantaging others. This is formalized
in the following section.

1.4 The Price of Fairness

As an example for this paper, we focus on highly-sensitized
patients, who have a very low probability of their blood pass-
ing a feasibility test with a random donor organ; thus, finding
a kidney is often quite hard, and their median waiting time
for an organ jumps by a factor of three over less sensitized
patients.2 Utilitarian objectives will, in general, marginalize
these patients. Sensitization is determined using the Calcu-
lated Panel Reactive Antibody (CPRA) level of each patient,
which reflects the likelihood that a patient will find a match-
ing donor.

2
https://optn.transplant.hrsa.gov/data/
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Formally the sensitization of each patient-donor vertex v
be vs ∈ [0, 100], the CPRA level of v’s patient; NDD ver-
tices are not associated with patients, so they do not have
sensitization levels. Each patient-donor vertex v ∈ P is
considered highly sensitized if vs exceeds threshold τ ∈
[0, 100], and lowly-sensitized otherwise. These vertex sets
VH and VL are defined as:

• Lowly sensitized: VL = {v | v ∈ P : vs < τ}
• Highly sensitized: VH = {v | v ∈ P : vs ≥ τ}.

By definition, highly-sensitized patients are harder to match
than lowly-sensitized patients. Naturally, efficient matching
algorithms prioritize easy-to-match vertices in VL, marginal-
izing VH . Let uf : M → R be a fair utility function. For-
mally, a utility function is fair when its corresponding opti-
mal match M∗

f is viewed as fair, where M∗
f is defined as:

M∗
f = argmax

M∈M
uf (M)

Bertsimas, Farias, and Trichakis (2011) defined the price of
fairness to be the “relative system efficiency loss under a
fair allocation assuming that a fully efficient allocation is
one that maximizes the sum of [participant] utilities.” Cara-
giannis et al. (2009) defined an essentially identical concept
in parallel. Formally, given a fair utility function uf and the
utilitarian utility function u, the price of fairness is:

POF(M, uf ) =
u (M∗)− u

(
M∗

f

)

u (M∗)
(1)

The price of fairness POF(M, uf ) is the relative loss in
(utilitarian) efficiency caused by choosing the fair outcome
M∗

f rather than the most efficient outcome.
In the next section we show that the theoretical price of

fairness in kidney exchange is small, even when both cycles
and chains are used—thus generalizing an earlier result due
to Dickerson, Procaccia, and Sandholm (2014) to modern
kidney exchanges.

2 The Theoretical Price of Fairness with

Chains is Low (or Zero)

In this section we use the random graph model for kidney
exchange introduced by Ashlagi and Roth (2014) to show
that the theoretical price of fairness is always small, espe-
cially when NDDs are included. A complete description of
this model can be found in Appendix A3. Dickerson, Pro-
caccia, and Sandholm (2014) finds that without NDDs, the
maximum price of fairness is 2/33. Adding NDDs to this
model creates more opportunities to match highly sensitized
patients, which could potentially lead to a higher price of
fairness. However we find that including chains in this model
only decreases the price of fairness; furthermore, when the
ratio of NDDs to patient-donor pairs is high enough, the
price of fairness is zero.

3
Full paper and Appendices can be found at https://arxiv.org/abs/1702.08286.

2.1 Price of Fairness

Ashlagi and Roth (2014) characterize efficient matchings in
a random graph model without chains, and Dickerson, Pro-
caccia, and Sandholm (2014) build on this to show that the
price of fairness without chains is bounded above by 2/33.
Dickerson, Procaccia, and Sandholm (2012) extend the effi-
cient matching of Ashlagi and Roth (2014) to include chains,
but do not calculate the price of fairness. We close the gap
in theory regarding the price of fairness with chains.

Given |P | patient-donor pairs, we parameterize the num-
ber of NDDs |N | with β ≥ 0 such that |N | = β|P |. Theo-
rems 1 and 2 state our two main results: adding chains to the
random graph model does not increase the price of fairness,
and when the fraction of NDDs is high enough (β > 1/8),
the price of fairness is zero. The proofs of the following the-
orems are given in Appendix A.

Theorem 1. Adding NDDs to the random graph model (β >
0) does not increase the upper bound on the price of fairness
found by Dickerson, Procaccia, and Sandholm (2014).

Proof Sketch: We explore every possible efficient match-
ing on the random graph model with chains; only four of
these matchings have nonzero price of fairness. For each
case, we compare the price of fairness to that of the efficient
matching without chains found in Dickerson, Procaccia, and
Sandholm (2014), and find that the upper bound does not
increase.

Theorem 2. The price of fairness is zero when β > 1/8.

Proof sketch: For each matching with nonzero price of
fairness, β ≤ 1/8. When β > 1/8, a different matching
occurs, and the price of fairness is zero.

With chains

Without chains

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

M
ax
Po
F

Figure 1: Price of fairness with chains. (The horizontal dot-
ted line at 2/33 is the price of fairness without chains.)

To illustrate these results, we compute the price of fair-
ness when β ∈ [0, 1/8]. These calculations confirm our the-
oretical results, as shown in Figure 2.1: the price of fairness
decreases as β increases, and is zero when β > 1/8.

The worst-case price of fairness is small in the ran-
dom graph model, with or without NDDs. However, real
exchange graphs are typically much sparser and less
uniform—in reality the price of fairness can be high. In the
next section, we discuss two notions of fairness in kidney
exchange and determine their worst-case price of fairness.
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3 The Price of Fairness in State-of-the-Art

Fair Rules can be Arbitrarily Bad

The price of fairness depends on how fairness is defined.
This is especially true in real exchanges where the price
of fairness can be unacceptably high. In this section, we
discuss two kidney-exchange-specific fairness rules intro-
duced by Dickerson, Procaccia, and Sandholm (2014): lexi-
cographic fairness and weighted fairness. These rules favor
the disadvantaged class without considering overall loss in
efficiency; we show that in the worst case these rules allow
the the price of fairness to approach 1 (i.e., total efficiency
loss). Proofs of these theorems are in Appendix B.

3.1 Lexicographic Fairness

As proposed by Dickerson, Procaccia, and Sand-
holm (2014), α-lexicographic fairness assigns nonzero
utility only to matchings that award at least a fraction α
of the maximum possible fair utility. Letting uH(M) and
uL(M) be the utility assigned to only vertices in VH and
VL, respectively, the utility function for α-lexicographic
fairness is given in Equation (2).

uα(M) =

⎧⎪⎪⎨
⎪⎪⎩
uL(M) + uH(M)

if uH(M) ≥ α max
M′∈M

uH(M ′)

0 otherwise.
(2)

Theorems 3 and 4 state that strict lexicographic fairness
(α = 1) allows the price of fairness to approach 1.
Theorem 3. For any cycle cap L there exists a graph G
such that the price of fairness of G under α-lexicographic
fairness with 0 < α ≤ 1 is bounded by POF(M, uα) ≥ L−2

L
.

Theorem 4. For any chain cap R there exists a graph
G such that the price of fairness of G under the α-
lexicographic fairness rule with 0 < α ≤ 1 is bounded by
POF(M, uα) ≥ R−1

R
.

Thus, α-lexicographic fairness allows for a price of fair-
ness that approaches 1 as the cycle and chain cap increase.

3.2 Weighted Fairness

The weighted fairness rule (Dickerson, Procaccia, and Sand-
holm 2014) defines a utility function by first modifying the
original edge weights we by a multiplicative factor γ ∈ R

such that

w′e =

{
(1 + γ)we if e ends in VH

we otherwise.

Then the weighted fairness rule uWF is

uWF (M) =
∑
c∈M

u′(c),

where u′(c) is the utility of a chain or cycle c with modified
edge weights. The modified edge weights prompt the match-
ing algorithm to include more highly-sensitized patients; as
in the lexicographic case, we now show that the price of fair-
ness approaches 1 under weighted fairness.
Theorem 5. For any cycle cap L and γ ≥ L−1, there exists
a graph G such that the price of fairness of G under the
weighted fairness rule is bounded by POF(M, uWF ) ≥ L−2

L
.

Theorem 6. For any chain cap R and γ ≥ R−1, there exists
a graph G such that the price of fairness of G under the
weighted fairness rule is bounded by POF(M, uWF ) ≥ R−1

R
.

In the worst case, weighted fairness allows a price of fair-
ness that approaches 1 as the cycle and chain caps increase.
The price of fairness also approaches 1 as γ increases.
Theorem 7. With no chain cap, there exists a graph G such
that the price of fairness of G under the weighted fairness
rule is bounded by POF(M, uWF ) ≥ γ

γ+1
.

A similar result exists with cycles rather than chains.
Theorem 8. With no cycle cap there exists a graph G such
that the price of fairness of G under the weighted fairness
rule is bounded by POF(M, uWF ) ≥ γ

γ+1
.

These bounds show that weighted fairness allows for a
price of fairness that approaches 1, i.e., arbitrarily bad, as
the cycle cap, chain cap, or γ increase.

We have shown that the worst-case prices of fairness ap-
proach 1 under both the lexicographic and weighted fairness
rules of Dickerson, Procaccia, and Sandholm (2014). Next,
we propose a rule that favors disadvantaged groups, but also
strictly limits the price of fairness using a parameter set by
policymakers.

4 Hybrid Fairness Rule

In this section, we present a hybrid fair utility function
that balances lexicographic fairness and a utilitarian ob-
jective. We generalize the hybrid utility function proposed
by Hooker and Williams (2012), which chooses between a
Rawlsian (or maximin) objective and a utilitarian objective
for multiple classes of agents.

4.1 Utilitarian and Rawlsian Fairness

Consider two classes of agents that receive utilities u1(X)
and u2(X), respectively, for outcome X . The fairness rule
introduced by Hooker and Williams (2012) maximizes the
utility of the worst-off class, unless this requires taking too
many resources from other classes. When the inequality ex-
ceeds a threshold Δ (i.e., |u1(X)−u2(X)| > Δ) they switch
to a utilitarian objective that maximizes u1(X)+u2(X). The
utility function for this rule is

uΔ(X) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2min(u1(X), u2(X)) + Δ

if |u1(X)− u2(X)| ≤ Δ

u1(X) + u2(X)

otherwise.

The parameter Δ is problem-specific, and should be cho-
sen by policymakers. Figure 2(a) shows the level sets of this
utility function, with Δ = 2. This utility function can be
generalized by switching to a different fairness rule in the
fair region (i.e. when |u1(X) − u2(X)| ≤ Δ). The next
section generalizes this rule using lexicographic fairness.

4.2 Hybrid-Lexicographic Rule

When it is desirable to favor one class of agents g1 over class
g2, lexicographic fairness favors g1. We propose a rule that
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Figure 2: Level sets for hybrid fair utility functions with Δ = 2, with example outcomes XL and XF .

implements lexicographic fairness only when inequality be-
tween groups does not exceed Δ. This rule uses two steps: 1)
determine whether inequality is small enough to use lexico-
graphic fairness 2) choose the optimal outcome. These steps
are outlined below, and formalized in Algorithm 1.

Step 1: Find all outcomes that maximize a hybrid util-
ity function, and determine whether lexicographic fairness
is appropriate.

We use a utility function to identify outcomes that satisfy
either a lexicographic or utilitarian objective. Equation (3)
shows one option for such a utility function, which assigns
strict lexicographic utility (α = 1) according to Equation (2)
in the fair region, and utilitarian utility otherwise.

uΔ1(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(X) + u2(X) if |u1(X)− u2(X)| ≤ Δ

and u1(X) = max
X′∈X

(u1(X
′))

u1(X) + u2(X) if |u1(X)− u2(X)| > Δ

0 otherwise.
(3)

where X is the set of all possible outcomes. Figure 2(b)
shows the contours uΔ1. This utility function is clearly too
harsh—it assigns zero utility to outcomes in the fair region
that do not maximize u1, and its optimal outcomes are not
always Pareto efficient. Consider outcomes XF and XL in
Figure 2(b). XF is in the fair region but does not maximize
u1, so uΔ1(XF ) = 0; XL is in the utilitarian region but is
less efficient, so uΔ1(XL) = u(XL). Under utility function
uΔ1, the less-efficient outcome XL is chosen over XF .

To address this problem we introduce uΔ in Equation (4),
which relaxes uΔ1. For outcomes in the fair region (that is,
with |u1 − u2| ≤ Δ), utility is assigned proportional to u1.
As shown in Figure 2(c), the contours of uΔ are continuous.

uΔ(X) =

⎧⎪⎨
⎪⎩
u1(X) + u2(X)−Δ if u2(X)− u1(X) > Δ

2u1(X) if |u1(X)− u2(X)| ≤ Δ

u1(X) + u2(X) + Δ if u1(X)− u2(X) > Δ

(4)

Let XOPT be the set of outcomes that maximize uΔ. If
any outcomes in XOPT are in the utilitarian region , then
any utilitarian-optimal outcome is selected. However, if any
outcomes in XOPT are in the fair region, then Step 2 must
be used. This process is described below, and formalized in
Algorithm 1.

Step 2: If any solution in XOPT is in the fair region, se-
lect the lexicographic-optimal solution in the fair region.

The utility function uΔ assigns the same utility to all so-
lutions in the fair region with the same u1(X), no matter
the value of u2(X). However, if there exist two outcomes
XA and XB such that u1(XA) = u1(XB) and u2(XA) >
u2(XB), then XA is lexicographically preferred to XB .

Algorithm 1 FairMatching
Input: Threshold Δ, matchings M
Output: Fair matching M∗

MOPT ← argmaxM∈M uΔ(M)
if |MOPT | > 1 then

Select a matching M ∈ MOPT

if M is in the utilitarian region then
M∗ ← M

else
M1 ← {M ′ ∈ MOPT | u1(M

′) = u1(M)}
M∗ ← argmaxM ′∈M1

u2(M
′)

else
M∗ ← MOPT

4.3 Hybrid Rule for Several Classes

We now generalize the hybrid-lexicographic fairness rule
to more than two classes. Consider a set P of classes gi,
i = 1, . . . , |P|. Let there be an ordering � over gi, where
ga � gb indicates that ga should receive higher prior-
ity over gb. WLOG, let the preference ordering over gi be
g1 � g2 � · · · � gP . Let ui(X) be the utility received by
group i under outcome X . As in the previous section, we
1) use a utility function to determine whether lexicographic
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fairness is appropriate, then 2) select either a lexicographic-
or utilitarian-optimal outcome.

Step 1: To define a utility function, we observe that in
Equation (4), in the utilitarian region a positive offset Δ is
added if u1(X) > u2(X), and a negative offset is added
otherwise. With |P| classes, each solution in the utilitarian
region receives a utility offset of +Δ if u1(X) > ui(X),
and −Δ otherwise, for each class i = 2, 3, . . . , |P|. As in
the previous section, these offsets ensure continuity in the
utility function, and ensure that at least one of the maximiz-
ing outcomes will be Pareto optimal.

uΔ(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|P| · u1(X)

if maxi(ui(X))−mini(ui(X)) ≤ Δ,

u1(X) +
|P|∑
i=2

(ui(X) + sgn(u1(X)− ui(X))Δ)

otherwise
(5)

Step 2: Let XOPT be the set of solutions that maximize
uΔ. If all optimal solutions are in the utilitarian region, any
utilitarian-optimal solution is selected. If any optimal solu-
tion is in the fair region, then the lexicographic-optimal so-
lution in the fair region must be selected, subject to the pref-
erence ordering g1 � g2 � · · · � g|P|.

Algorithm 2 FairMatching for |P| ≥ 2 classes
Input: Threshold Δ, matchings M
Output: Fair matching M∗

MOPT ← argmaxM∈M uΔ(M)
if |MOPT | > 1 then

Select a matching M ∈ MOPT

if M in utilitarian region then
M∗ ← M

else
M1 ← {M ′ ∈ MOPT | u1(M

′) = u1(M)}
for i = 2, . . . , |P| do

Mi ← argmaxM ′∈Mi−1
ui(M

′)
M∗ ← any matching in M|P|

else
M∗ ← MOPT

4.4 Price of Fairness for the Hybrid Rule

Theorem 9 gives a bound on the price of fairness for the
hybrid-lexicographic rule; its proof is given in Appendix B.
Theorem 9. Assume the optimal utilitarian outcome XE re-
ceives utility u(XE) = uE , with most prioritized class g1 ∈
P receiving utility u1, and Z other classes gi ∈ P such that
u1(XE) > ui(XE). Then, POF(M, uΔ) ≤ 2((|P|−1)−Z)Δ

uE
.

4.5 Hybrid Fairness in Kidney Exchange

The hybrid-lexicographic fairness rule in Equation (4) is
easily applied to kidney exchange, with uH and uL the to-
tal utility received by highly-sensitized and lowly-sensitized
patients, respectively,

uΔ(M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uL(M) + uH(M)−Δ

if uL(M)− uH(M) > Δ

2uH(M) if |uL(M)− uH(M)| ≤ Δ

uL(M) + uH(M) + Δ

if uH(M)− uL(M) > Δ

(6)

In the following section, we demonstrate the practical ef-
fectiveness of the hybrid-lexicographic rule by testing it on
real kidney exchange data.

5 Experiments

In this section, we compare the behavior of α-lexicographic,
weighted, and hybrid-lexicographic fairness. Code for these
experiemnts is available on GitHub.4 We use each rule to
find the optimal fair outcomes for 314 real kidney exchanges
from the United Network for Organ Sharing (UNOS), col-
lected between 2010 and 2016. To solve the kidney ex-
change clearing problem (KEP) we use the PICEF formula-
tion of Dickerson et al. (2016), with cycle cap 3 and various
chain caps. In real exchanges, not all recommended edges
in a matching result in successful transplants. To reflect this
uncertainty, we use the concept of failure-aware kidney ex-
change introduced in (Dickerson, Procaccia, and Sandholm
2013): all edges in the exchange can fail with probability
(1−p); the matching algorithm maximizes expected match-
ing weight, considering edge success probability p.

5.1 Procedure

For each UNOS exchange graph G, we use the following
procedure to implement each fairness rule. We repeat the
following procedure for chain caps 0, 3, 10, and 20, and for
edge success probabilities p = 0.1n, with n = 1, 2, . . . , 10.

1. Find the efficient matching ME by solving the to optimal-
ity the NP-hard kidney exchange problem (KEP) on G.

2. Find the fair matching MF by solving the KEP on G′ =
(V,E′), where each edge e ∈ E′ has weight 1 if e ends in
VH and 0 otherwise.

3. Weighted Fairness: Find the γ-fair matching Mγ by
solving the KEP on Gγ = (V,Eγ), where each edge
e ∈ Eγ has weight 1 + γ if e ends in VH and 1 other-
wise. After finding Mγ , the reported utilities are calcu-
lated using edge weights of E and not E′. We use weight
parameters γ = 2n, with n = 0, 1, 2, . . . , 10.

4. α-Lexicographic Fairness: Find the α-fair matching Mα

by solving the KEP on G, with the additional constraint
uH(Mα) ≥ αuH(ME). We use parameters α = 0.1n,
with n = 0, 1, 2, . . . , 10.

5. Hybrid-Lexicographic Fairness: Find the Δ-fair match-
ing MΔ using the α-fair matchings Mα, and Algorithm 1.
That is, MΔ = FairMatching(Δ,Mα). We use parame-
ters Δ = 0.1n · u(ME), with n = 0, 1, 2, . . . , 10.

4
https://github.com/duncanmcelfresh/FairKidneyExchange
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Figure 3: Worst-case price of fairness and %F for various edge success probabilities, and fairness parameters α = 0.1, γ = 0.1,
Δ = 0.1u(ME).

Throughout this procedure, we calculate the utility of the
efficient matching (uE) and the fair matching (uF ) for each
UNOS graph, and for each fairness rule—with parameters
α ∈ [0, 1], γ ∈ [0, 20], and Δ ∈ [0, u(ME)].

There are two important outcomes of each fairness rule:
Price of Fairness (PoF), and fraction of the fair score (%F ).
To calculate PoF we use the definition in Equation (1), using
uE and uF . We define %F as the fraction of the maximum
highly sensitized utility, achieved by M{α,γ,Δ}, defined as

%F (M{α,γ,Δ},MF ) = uH(M{α,γ,Δ})/uH(MF ).

PoF and %F indicate the efficiency loss and the fairness of
each rule, respectively.

5.2 Results and Discussion

Each fairness rule offers a parameter that balances efficiency
and fairness. Two of these rules guarantee a certain outcome:
α-lexicographic guarantees fairness, but allows high effi-
ciency loss, while hybrid-lexicographic bounds overall ef-
ficiency loss. Weighted fairness makes no guarantees.

The price of fairness can be high in real exchanges, espe-
cially when edge success probability p is small. In failure-
aware kidney exchange, cycles and chains of length k re-
ceive utility proportional to pk. Fair matchings often use
longer cycles and chains than the efficient matching, in order
to reach highly sensitized patients; this leads to a high price
of fairness when p is small.

Even when α and γ are small, there are cases when both
α-lexicographic and weighted fairness allow for a high PoF.
This becomes worse with lower edge probability. Figure 3
shows the worst-case PoF and %F for each rule, for the
smallest parameters tested, for a range of edge success prob-
abilities; results for all parameter values are in Appendix C.

Hybrid-lexicographic fairness limits PoF within the guar-
anteed bound of 0.2; this comes at the cost of a low
%F—when edge success probability is small, hybrid-
lexicographic fairness awards zero fair utility in the worst
case. α-lexicographic fairness produces the opposite behav-
ior: %F is always larger than the guaranteed bound of 0.1,

but the worst-case price of fairness grows steadily as edge
probability decreases.

Theory suggests that the price of fairness is small on
denser random graphs (see Section 2). We empirically con-
firm this theoretical finding by calculating the worst-case
price of fairness and %F for random graphs of various sizes
generated from real data; these results are given in Appendix
C. In this case—when the price of fairness is small—α-
lexicographic fairness may be appropriate, as overall effi-
ciency loss is not severe.

Both α-lexicographic and hybrid-lexicographic fairness
are useful, depending on the desired outcome. Policymak-
ers may choose between these rules, and set the parameters
α and Δ to guarantee either a minimum %F or a maximum
price of fairness.

6 Conclusion

We addressed the classical problem of balancing fair-
ness and efficiency in resource allocation, with a spe-
cific focus on kidney exchange. Extending work by Ash-
lagi and Roth (2014) and Dickerson, Procaccia, and Sand-
holm (2014), we show that the theoretical price of fairness
is small on a random graph model of kidney exchange, when
both cycles and chains are used. However this model is too
optimistic—real kidney exchanges are less certain and more
sparse, and in reality the price of fairness can be unaccept-
ably high.

Drawing on work by Hooker and Williams (2012), which
is not applicable to kidney exchange, we provided the first
approach to incorporating fairness into kidney exchange in
a way that prioritizes marginalized participants, but also
comes with acceptable worst-case guarantees on overall effi-
ciency loss. Furthermore, our method is easily applied as an
objective in the mathematical-programming-based clearing
methods used in today’s fielded exchanges. Using data from
a large fielded kidney exchange, we showed that our method
bounds efficiency loss while also prioritizing marginalized
participants when possible.
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Moving forward, it would be of theoretical and practi-
cal interest to address fairness in a realistic dynamic model
of a matching market like kidney exchange (Anshelevich et
al. 2013; Akbarpour, Li, and Gharan 2014; Anderson et al.
2015; Dickerson and Sandholm 2015). For example, how
does prioritizing a class of patients in the present affect their,
or other groups’, long-term welfare? Similarly, exploring the
effect on long-term efficiency of the single-shot Δ we use in
this paper would be of practical importance; to start, Δ can
be viewed as a hyperparameter to be tuned (Thornton et al.
2013).
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Roth, A.; Sönmez, T.; and Ünver, U. 2005b. Pairwise kidney ex-
change. Journal of Economic Theory 125(2):151–188.
Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2013.
Auto-WEKA: Combined selection and hyperparameter optimiza-
tion of classification algorithms. In International Conference on
Knowledge Discovery and Data Mining (KDD), 847–855. ACM.
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