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Abstract

We propose a simple model of interaction for resource-
conscious agents. The resources involved are expressed in
fragments of Linear Logic. We investigate a few problems rel-
evant to cooperative games, such as deciding whether a group
of agents can form a coalition and act together in a way that
satisfies all of them. In terms of solution concepts, we study
the computational aspects of the core of a game. The main
contributions are a formal link with the existing literature, and
complexity results for several classes of models.

Introduction

One crucial theme in multi-agent systems is the one
of resource-conscious agents. As the research in multi-
agent systems is advancing and one can predict its fu-
ture widespread implementation in real-world systems, one
needs to acknowledge that the agents evolving in the real
world have limited access to resources. They have to seek
after resource objectives and compete for those resources.
When unable to attain a resource alone, they might have to
form coalitions.

In their abstract definition, coalitional games are pre-
sented as a tuple (Ag , VAL), where Ag is a set of agents,
and VAL : 2Ag −→ R is a coalition collective value. Typ-
ically, we assume that VAL(∅) = 0. We call simple game
a coalitional game such that for every coalition C ⊆ N ,
we have VAL(C) = 0 or VAL(C) = 1. Where these utilities
come from however is not part of the description. Here, each
player i of a game is endowed with a multiset of resources
eni. An action for Player i consists in contributing a subset
of eni. Then, each player i has a set of goals Gi, which is a
set of resources, represented by formulas of some resource-
sensitive logic LOG. In the resulting coalition games, the
valuation function will depend of these individual endow-
ments and goals.
Example 1. Consider the following setting that will be fully
formalised later. Player 1 is happy with bacon, Player 2 is
happy with either bacon or an egg, and Player 3 is happy
with an omelet. Player 1 is endowed with one egg and the
capacity of using an egg to make an omelet. Player 2 is en-
dowed with bacon. Player 3 is endowed with one egg.
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Player 2 is self-reliant as she can eat her bacon and be
happy. To make Player 1 happy as well, this bacon must be
used towards the happiness of Player 1. In this case, it is
Player 1’s egg that will be used towards Player 2’s happi-
ness. To add Player 3 into the happy team, Player 3 can pro-
vide his egg, which can be transformed into an omelet using
Player 1’s still uncommitted capacity of transforming and
egg into an omelet. The value of the coalitions {2}, {1, 2},
and {1, 2, 3} is thus 1.

In this paper, we propose simple models of interaction ca-
pable of representing and reasoning about scenarios such as
Example 1, where resources can be intricately consumed,
transformed, and produced by agents. They are compact
coalitional games reminiscent of (Wooldridge and Dunne
2006) and (Bachrach and Rosenschein 2008). We propose
what is effectively an extension of coalitional resource
games (Wooldridge and Dunne 2006) that takes advantage
of resource-sensitive logics. The exact resource-sensitive
logic will be a parameter LOG, which can be instantiated
with any variant and fragment of Linear Logic (Girard
1987), Bunched Logic (O’Hearn and Pym 1999), etc.

We briefly present the Linear Logic formalism in the next
section. The results of this paper will be applicable to every
fragment and variant of Linear Logic mentioned there.

In Linear Logic, a formula can be interpreted as a re-
source. It has been used before in social choice and game
theory, e.g., (Porello and Endriss 2010a; 2010b; DeYoung
and Schürmann 2012; Troquard 2016). The propositional
language of Linear Logic can distinguish simultaneous
availability of resources (A⊗B), deterministic (A&B) and
non-deterministic (A ⊕ B) choices between resources, re-
source transformations (A � B), and anti-resources (∼A).
For instance, $1 � ($1⊗$1)⊕1 captures a capacity of gam-
bling, where if an agent gives $1, they receive $2 or nothing
(the vacuous resource 1), and do not get to choose. On the
other hand, $10 � fish & meat captures a capacity of buy-
ing a meal, where if an agent gives $10, they receive a meal
of fish or a meal of meat, and they choose which one. More-
over, the resource-consciousness is a built-in feature of the
entailment of these logics. For instance, it is not the case that
$1 � $1⊗ $1, unlike its classical counterpart $1 � $1 ∧ $1.

Having resources and goals represented in the same way
has important consequences. The language of Linear Logic
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allows us to represent at the same level of abstraction, si-
multaneous resources, two kinds of disjunctions, and cru-
cially, resource-transforming capacities (e.g., transforming
one egg into an omelet). This becomes all the more signif-
icant when the resources are subject to a series of trans-
forming activities. In contrast, in the coalitional resource
games from (Wooldridge and Dunne 2006), resources be-
come goals, and ‘game over’.

Furthermore, using Linear Logic, we can exploit the exist-
ing research in logic proofs and automated proofs. Through
the Curry-Howard correspondence between proofs and pro-
grams (see, e.g., (Gabbay and de Queiroz 1992)), an exciting
perspective is the possibility to interpret the logical proofs as
rigorous programs to be executed by the coalitions. Hence,
one goal of this research is the automated generation of co-
operative plans, where the resources can be subjected to a
series of transforming activities by the agents.

We first provide a brief summary of the formal aspects
of Linear Logic that we use in this paper. We present the
coalitional resource games (CRG) from (Wooldridge and
Dunne 2006) and we introduce the class of rich coalitional
resource games (RCRG). We then propose a translation of
CRGs into RCRGs that preserves the set of goals that are
feasible for the coalitions. Next, we study a few decision
problems: deciding whether a coalition is winning, decid-
ing whether a player is a veto player, deciding whether a
player is a dummy player, and deciding whether the core of
a game is non-empty. A formalization of Example 1 is then
presented before the conclusion.

Linear Logic

A good introduction to Linear Logic and its variants
is (Troelstra 1992).

MLL is the multiplicative fragment of Linear Logic:
A ::= 1|⊥|p| ∼A|A ` A|A ⊗ A|A � A, where p is an
atomic formula. MALL is the fragment with both additive
and multiplicative operators: A ::= �|0|1|⊥|p| ∼A|A `
A|A ⊗ A|A � A|A & A|A ⊕ A. We say that the logic is
affine when it admits the structural rule of weakening (W ).

We only present the sequent rules for affine MALL that
are used in this paper. See (Troelstra 1992) for the complete
sequent calculus. A, and B are formulas. Γ, Γ′, Δ, and Δ′
are sequences of zero or more formulas.

ax
A � A

1R� 1
Γ, A,B,Γ′ � Δ

E
Γ, B,A,Γ′ � Δ

Γ � Δ W
Γ, A � Δ

Γ � A,Δ Γ′ � B,Δ′
⊗R

Γ,Γ′ � A⊗B,Δ,Δ′
Γ, A,B � Δ ⊗L
Γ, A⊗B � Δ

Γ � A,Δ ⊕R
Γ � B ⊕A,Δ

Γ � A,Δ Γ′, B � Δ′
�L

Γ,Γ′, A � B,Δ � Δ′
Γ � A,Δ ∼L
Γ,∼A � Δ

Γ, A � Δ ∼R
Γ � ∼A,Δ

Affine MLL is obtained by removing the rules involving
&,⊕,� and 0. MALL is the logic obtained by removing the
rules (W ) (of which only one is used here). MLL is obtained
by removing the rules (W ) and the rules involving &, ⊕, �
and 0 (of which only one is used here).

We quickly summarize the complexity of some frag-
ments and variants of Linear Logic. MALL is PSPACE-
complete; MLL is NP-complete; Affine MLL is NP-
complete; Affine MALL is PSPACE-complete; Intuition-

istic MALL is PSPACE-complete; Intuitionisitc MLL is
NP-complete. First-Order MLL is NP-complete and First-
Order MALL is NEXPTIME-complete. Something particu-
larly interesting is that these fragments of Linear Logic be-
have well computationally also in the first-order case. It is
in contrast with First-Order classical logic which is unde-
cidable. First-Order MLL is NP-complete and First-Order
MALL is NEXPTIME-complete. See (Lincoln et al. 1992;
Kanovich 1994).

Coalitional Games

We first present the coalitional resource games
from (Wooldridge and Dunne 2006). Then we intro-
duce a variant that makes use of Linear Logic to represent
rich resources.

Coalitional Resource Games

Coalitional resource games were introduced in (Wooldridge
and Dunne 2006).

Definition 2. A coalitional resource game (CRG) is a tuple
Γ = (Ag , G, (Gi)i∈Ag , R, en, req) where:

• Ag = {a1, . . . , an} is a set of agents;
• G = {g1, . . . , gm} is a set of possible goals;
• R = {r1, . . . , rt} is a set of resources;
• for each agent i ∈ Ag , the set Gi ⊆ G collects the goals

agent i would be satisfied with;
• en : Ag ×R −→ N is an endowment function;
• req : G×R −→ N is a requirement function.

In addition, we assume ∀g ∈ G, ∃r ∈ R : req(g, r) > 0.

Endowment and requirement functions are naturally
extended. We define: en(C, r) =

∑
i∈C en(i, r) and

req(H, r) =
∑

g∈H req(g, r). We say that a set of goals
H satisfies agent i if H ∩ Gi �= ∅; it satisfies a coalition
C if it satisfies all its members. We define the set of sets of
goals that satisfy coalition C as satΓ(C) = {H ⊆ G | ∀i ∈
C,H ∩ Gi �= ∅}. We say that a set of goals H is feasible
for a coalition when the coalition is endowed with enough
resources to achieve all the goals in H . We define the set of
feasible sets of goals of coalition C as feasΓ(C) = {H ⊆
G | ∀r ∈ R, req(H, r) ≤ en(C, r)}. Finally, we denote
the set of sets of goals that are feasible by coalition C and
satisfy coalition C with sf Γ(C) = satΓ(C) ∩ feasΓ(C).

Rich Coalitional Resource Games

We propose a variant of coalitional resource games that
makes use of resource-sensitive logics. The exact resource-
sensitive logic is a parameter LOG, which can be instanti-
ated with any variant and fragment of Linear Logic (Girard
1987). We assume that the language of LOG is at least the
one of MLL.

In RCRGs, resources and goals are the same type of ob-
jects: LOG formulas. Resources can then be combined and
transformed following the rules of LOG so as to yield goals.
As the translation from CRGs to RCRGs will make clear in
the next section, the requirement function of CRGs can be
built in the very formulas that represent endowed resources.
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Definition 3. A rich coalitional resource game (RCRG) is a
tuple Γ = (Ag , G, (Gi)i∈Ag , en) where:
• Ag = {a1, . . . , an} is a finite set of agents;
• for each agent i ∈ Ag , the finite non-empty set Gi ⊆ LOG

collects the goals agent i would be satisfied with;
• G is a finite multiset of possible goals. We assume⊎

i∈Ag Gi ⊆ G;
• for every i ∈ Ag , the finite multiset eni ⊆ LOG is

agent i’s endowment.
Endowments are naturally extended to coalitions. We de-

fine: enC =
⊎

i∈C eni. We say that a multiset of goals
H ⊆ G satisfies coalition C ⊆ Ag if there is (g1, . . . , gn) ∈∏

i∈Ag Gi such that
⊎

i∈C{gi} ⊆ H . We define the set of
multisets of goals that satisfy coalition C as satΓ(C) =
{H ⊆ G | H satisfies C}. We say that a multiset of goals
H ⊆ G is feasible for a coalition C when there is E ⊆ enC

such that E �⊗
H . We define the set of multisets of goals

for which the coalition C is feasible as follows: feasΓ(C) =
{H ⊆ G | H is feasible for C}. The set of multisets of
goals that are feasible by coalition C and satisfy coalition
C is defined as before with sf Γ(C) = satΓ(C)∩ feasΓ(C).

Restricted classes of RCRG. We will successively fo-
cus our attention on some variants of RCRG. There will be
three varying dimensions. (i) Affine RCRGs add to the de-
ductive power of the underlying logic LOG. (ii) MLL and
MALL RCRGs modify the expressivity of the underlying
logic LOG. (iii) One-goal RCRGs adds constraints on the
number of goals of each player.

Weakening, rule (W ), is a structural rule that accounts for
the monotonicity of the entailment of a logic. Linear Logic
does not admit the weakening rule, but affine logic does.1
However, it has generally no effect on the complexity of the
problem of sequent validity. Sequent validity in MLL is NP-
complete with or without weakening and sequent validity in
MALL is PSPACE-complete with or without weakening. On
the other hand, whether LOG admits weakening or not will
have dramatic consequences for the algorithmic solutions to
the decision problems in RCRG.
Definition 4. An affine RCRG is an RCRG instantiated with
LOG admitting weakening (rule (W )).

The exact syntactic variant chosen for LOG will of course
have an effect on the complexity results.
Definition 5. A MLL RCRG is an RCRG instantiated with
LOG being MLL. A MALL RCRG is an RCRG instantiated
with LOG being MALL.

Finally, we propose a variant that imposes a restriction on
the number of goals for each player.
Definition 6. A one-goal RCRG is an RCRG Γ =
(Ag , G, (Gi)i∈Ag , en) where |Gi| = 1.
Remark 7. One-goal RCRGs, and MALL RCRGs in par-
ticular, are often “enough”. In CRGs, multi-goals are es-
sentially disjunctive goals: a player is happy when one of

1When a logic is affine we have A⊗B � A, while it is not the
case in Linear Logic in general. In other words, extra resources can
be disposed of.

her goals is satisfied. With the Linear Logic language of
resources, we can satisfyingly capture disjunctive goals in
one-goal RCRGs. We can even decide which kind of non-
deterministic goal to use! We can use the connective ⊕, e.g.,
egg ⊕ bacon, to indicate that the player wants either egg or
bacon. (We will use this goal in the formalisation of Exam-
ple 1 later.) We can use the connective &, e.g., egg&bacon to
emphasize that the player wants to retain the choice between
egg and bacon.

From CRGs to MLL RCRGs
Let Γ = (Ag , G,R, (Gi)i∈Ag , en, req) be a CRG. For every
goal g ∈ G, we reserve an atomic proposition pg in LOG.
For every resource r ∈ R, we reserve an atomic proposition
pr in LOG. For every goal g ∈ G, we write

ρg =
⊗
r∈R

⎛
⎜⎝pr ⊗ . . .⊗ pr︸ ︷︷ ︸

req(g,r) times

⎞
⎟⎠ .

It is a formula of LOG that characterises the requirement in
terms of resources of the goal g. We build the RCRG ΓR =
(AgR, GR, (GR

i )i∈AgR , enR) as follows:

• AgR = Ag ;
• GR =

⊎
g∈G{pg, . . . , pg︸ ︷︷ ︸

|AgR| times

};

• GR
i = {pg | g ∈ Gi};

• enR
i is a multiset of formulas in LOG containing en(i, r)

instances of the atomic proposition pr for every resource
r ∈ R and one instance of the formula ρg � pg for every
goal g ∈ G:

enR
i =

⎛
⎜⎝⊎

r∈R

{pr, . . . , pr︸ ︷︷ ︸
en(i,r)

}

⎞
⎟⎠ �

⎛
⎝⊎

g∈G

{ρg � pg}
⎞
⎠ .

Observe that we do not use any additive operator. It is
enough to define the constructed ΓR to be an MLL RCRG.
Remark 8. This translation from CRGs to RCRGs is meant
as a rigorous and formal comparison of RCRGs with the
existing literature. This translation, however, is not meant
to suggest that CRGs problems should be solved within
the framework of RCRGs. Indeed, the proposed translation
from CRGs to RCRGs obviously causes a blowup when the
numbers in the CRG are encoded in binary. Interestingly,
in (Wooldridge and Dunne 2006), the complexity results for
CRGs are “strong”: the problems stay in the same class
when one uses very inefficient number representations.

The next example illustrates the construction.
Example 9. Let Γ1 be the CRG defined in (Wooldridge and
Dunne 2006, Example 1) where Ag = {a1, a2, a3}, G =
{g1, g2}, R = {r1, r2}, the goals are given by

Ga1
= {g1} Ga2

= {g2} Ga3
= {g1, g2} ,

the endowment function is
en(a1, r1) = 2 en(a1, r2) = 0
en(a2, r1) = 0 en(a2, r2) = 1
en(a3, r1) = 1 en(a3, r2) = 2 ,
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and the requirement function is

req(g1, r1) = 3 req(g1, r2) = 2
req(g2, r1) = 2 req(g2, r2) = 1 .

The RCRG ΓR
1 is thus defined with AgR = {a1, a2, a3},

GR = {pg1 , pg1 , pg1 , pg2 , pg2 , pg2} with individual goals
GR

a1
= {pg1}, GR

a2
= {pg2}, and GR

a3
= {pg1 , pg2}, and

the endowment function is:

enR
a1

= {pr1 , pr1} � {ρg1 � pg1 , ρg2 � pg2}
enR

a2
= {pr2} � {ρg1 � pg1 , ρg2 � pg2}

enR
a3

= {pr1 , pr2 , pr2} � {ρg1 � pg1 , ρg2 � pg2} ,

where ρg1 = pr1 ⊗ pr1 ⊗ pr1 ⊗ pr2 ⊗ pr2 and ρg2 = pr1 ⊗
pr1 ⊗ pr2 .

In (Wooldridge and Dunne 2006), the authors study the re-
lationship between CRG and Qualitative Coalitional Games
(QCG) from (Wooldridge and Dunne 2004). A CRG and a
QCG are said to be equivalent if the agents and the goals cor-
respond, and there is a correspondence between the feasible
sets of goals. We use the point of comparison here. We show
that for every CRG Γ, there is a correspondence between the
feasible sets of goals in Γ and in the RCRG ΓR obtained by
the previous construction.
Proposition 10. Let Γ = (Ag , G,R, (Gi)i∈Ag , en, req) be
a CRG. For every coalition C ⊆ Ag and every set of goals
H ⊆ G, we have

H ∈ feasΓ(C) iff
⊎
g∈H

{pg} ∈ feasΓR(C) .

Proof. (sketch) We omit the proof of the right to left di-
rection. From left to right. We build the RCRG ΓR =
(AgR, GR, (GR

i )i∈AgR , enR). Let C = {c1, . . . , cC}. Sup-
pose H ∈ feasΓ(C). It means that ∀r ∈ R, req(H, r) ≤
en(C, r). To achieve H , the contribution of agent i ∈ C
in terms of the resource r ∈ R is the natural number
κH(i, r) ≤ en(i, r). W.l.o.g., we assume that these con-
tributions are ‘optimal’ in the sense that for every resource
r ∈ R, we have

∑
i∈C κH(i, r) = req(H, r).2

We must show that ∃Ec1 ⊆ enR
c1 , . . . , ∃EcC ⊆ enR

cC such
that Ec1 , . . . , EcC � ⊗

H . When i ∈ C and i �= cC , we
define:

Ei =
⊎
r∈R

{pr, . . . , pr︸ ︷︷ ︸
κH(i,r)

} .

We also define:

EcC =

⎛
⎜⎝⊎

r∈R

{pr, . . . , pr︸ ︷︷ ︸
κH(cC ,r)

}

⎞
⎟⎠ �

⎛
⎝ ⊎

g∈H

{ρg � pg}
⎞
⎠ .

It is routine to check that the conditions are met. For every
i ∈ C, we have indeed that Ei ⊆ enR

i . We can always build
a formal proof of Ec1 , . . . , EcC �

⊗
H , which uses exclu-

sively the rules (ax), (⊗R), (�L), and (E). (Example 11
presents such a proof on a specific case.)

2This assumption is necessary only if LOG is not affine. Other-
wise, we can take care of the extra resources provided by agents by
applying weakening.

Example 11. In the CRG Γ1 defined in Example 9, we have
{g2} ∈ feasΓ1

({a1, a2}). By Prop. 10, it must be that in the
RCRG ΓR

1 , we have {pg2} ∈ feasΓR({a1, a2}). We show
that it is indeed the case. Let Ea1 = {pr1 , pr1} ⊆ enR

a1
and

Ea2
= {pr2 , (pr1 ⊗ pr1 ⊗ pr2) � pg2} ⊆ enR

a2
. We can

formally demonstrate that Ea1
, Ea2

� pg2 .

ax
pr1 � pr1

ax
pr1 � pr1

ax
pr2 � pr2 ⊗R

pr1 , pr2 � pr1 ⊗ pr2 ⊗R
pr1 , pr1 , pr2 � pr1 ⊗ pr1 ⊗ pr2

ax
pg2 � pg2 �L

pr1 , pr1 , pr2 , (pr1 ⊗ pr1 ⊗ pr2) � pg2 � pg2

Winning coalitions

Let Γ be an RCRG, and C a non-empty coalition. We say
C is winning when sf Γ(C) �= ∅, and that it is losing oth-
erwise. We assume that the empty coalition is losing. When
C is winning in Γ, we also say that the value of coalition
C is 1, written VALΓ(C) = 1. When C is losing, we say
that the value of coalition C is 0, written VALΓ(C) = 0. An
RCRG Γ associated with the valuation function VALΓ is thus
effectively a simple game.

Example 12. Let Γ be the RCRG ({1, 2, 3}, {A,A ⊗
A}, G1 = {A}, G2 = {A ⊗ A}, G3 = {A}, en1 =
{A}, en2 = {A}, en3 = {A,A}). (Assume that A, and
A⊗A are not provably equivalent to the vacuous resource 1,
in which case all non-empty coalitions are winning.)

C ⊆ {1, 2, 3} VALΓ(C)

∅ 0
{1} 1
{2} 0
{3} 1
{1, 2} 0
{1, 3} 1
{2, 3} 1
{1, 2, 3} 1

It is indeed a simple example, and it admits simple proofs
involving only the rules (ax) and (⊗R). We see that
VALΓ({2, 3}) = 1. So {2, 3} is a winning coalition. To see
it, take E2 = en2 = {A}, and E3 = en3 = {A,A}. We can
prove that E2, E3 � (A⊗A)⊗A, as follows:

ax
A � A

ax
A � A ⊗R

A,A � A⊗A
ax

A � A ⊗R
A,A,A � (A⊗A)⊗A

Remark 13. RCRGs are in general neither monotonic nor
superadditive. The former may be unusual, while the lat-
ter is particularly expected for a class of simple games.
In general, RCRGs are not monotonic. In Example 12 we
can see that VALΓ({1}) = 1, but VALΓ({1, 2}) = 0. In
general, RCRGs are not superadditive. In Example 12 we
can see that VALΓ({1}) = 1 and VALΓ({3}) = 1, but
VALΓ({1, 3}) = 1 < VALΓ({1}) + VALΓ({3}).

The problem WIN is defined as follows.

Definition 14. Let Γ be an RCRG. WIN: Given a coalition
C ⊆ Ag , answer to the question “VALΓ(C) = 1?”.
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In (Wooldridge and Dunne 2004), it is shown that
WIN (called SUCCESSFUL COALITION there) is NP-
complete for CRGs. In this section, we prove the results
summarized in Table 1

The correctness of Algorithm 1 for WIN is immediate
from the definitions. The complexity follows from a simple

Algorithm 1 Non deterministic algorithm for WIN
IN: an RCRG Γ = (Ag , G, (Gi)i∈Ag , en), a coalition
C = {c1, . . . , cC} ⊆ Ag
OUT: true if C is winning, false otherwise

1: non-deterministically guess (H,E, gc1 , . . . , gcC ) ⊆
G× enC ×Gc1 × . . .×GcC .

2: return (
⊎

i∈C{gi} ⊆ H) and (E �⊗
H).

analysis and the fact that the line 2 can be evaluated in poly-
nomial space when LOG is MALL and in non-deterministic
polynomial time when LOG is MLL (Lincoln et al. 1992).
Since NPNP = Σp

2 and NPPSPACE = PSPACE, we obtain:

Proposition 15. WIN is in Σp
2 for MLL RCRGs, and in

PSPACE for MALL RCRGs.

Finally, we consider the case of affine RCRGs, for which
we are able to provide tight complexity results for the WIN
problem. There is a polynomial-time many-one reduction
from instances of the problem of sequent validity for affine
LOG, into instances of the problem of WIN for affine RCRG.

Proposition 16. WIN for affine RCRGs is as hard as se-
quent validity in the underlying logic LOG.

Proof. By applying the rules (∼L) and (∼R), A1, . . . , An �
B1, . . . , Bm iff A1, . . . , An,∼B2, . . . ,∼Bm � B1 is im-
mediate. Thus, w.l.o.g., we can restrict our attention to intu-
itionistic sequents, of the form A1, . . . , An � B. From such
a sequent, we construct the (one-goal) affine RCRG Γ =
(Ag , G, (Gi)i∈Ag , en) as follows. Ag = {a}; G = {B};
Ga = {B}; ena = {A1, . . . , An}. We want to show that
A1, . . . , An � B is valid iff sf Γ({a}) �= ∅.

From left to right. Let H = {B} ⊆ G. Clearly B ∈
Ga and {B} ⊆ H . So, H ∈ satΓ({a}). Now, sup-
pose A1, . . . , An � B. Since {A1, . . . , An} ⊆ ena, we
clearly have that H ∈ feasΓ({a}). So H ∈ satΓ({a}) ∩
feasΓ({a}), and sf Γ({a}) �= ∅.

From right to left. Suppose sf Γ({a}) �= ∅. It means that
∃H ∈ satΓ({a}) ∩ feasΓ({a}). By definition of satΓ and
Ga, necessarily H = {B}. By definition of feasΓ, ∃Ea ⊆
{A1, . . . , An} such that Ea � B. Since Γ is affine, by
rule (W ), we can add to the left of the sequent every formula
in {A1, . . . , An}\Ea, and obtain that A1, . . . , An � B.

For one-goal affine RCRGs, we can reduce the problem of
WIN for one-goal affine RCRGs to the problem of sequent
validity in the affine LOG. This is stated by the following
lemma.

Lemma 17. Let Γ = (Ag , G, ({gi})i∈Ag , en) be a one-goal
affine RCRG, and let C ⊆ Ag be a coalition. sf Γ(C) �= ∅ iff
enC �

⊗
i∈C gi.

Proof. Right to left is immediate. For left to right, suppose
sf Γ(C) �= ∅. Since the RCRG is one-goal, there is only one
way to satisfy the goals of all the players: H ∈ satΓ(C) only
if gi ∈ H for all players i ∈ C. So ∃E ⊆ enC such that E �⊗

i∈C gi. Since the RCRG is affine, we can use rule (W ).
We apply it by adding successively to the left of the sequent
every formula in enC \E (respecting the multiplicities). We
finally obtain enC �

⊗
i∈C gi by applying rule (E) enough

times.

From Lemma 17 and Proposition 16, we obtain the fol-
lowing result.
Proposition 18. WIN is NP-complete for one-goal affine
MLL RCRGs and PSPACE-complete for one-goal affine
MALL RCRGs.

The problem WIN is central, and instrumental for other
problems, some of which we study the next section.

The core of one-goal affine RCRGs
When studying the powers of coalitions, there are at least
two remarkable types of players: dummy and veto. RCRG
are simple games, and in simple games, Player i is a veto
player when there is no winning coalition without Player i’s
contribution. Let Γ = (Ag , G, (Gi)i∈Ag , en) be an RCRG.
Player i is a veto player iff for every coalition C ⊆ Ag ,
if C is a winning coalition, then i ∈ C. On the other hand,
Player i is a dummy player when its presence or absence in a
coalition does not change the value; it has neither a positive
nor a negative impact. Player i is a dummy player iff for ev-
ery coalition C ⊆ Ag we have VALΓ(C ∪ {i}) = VALΓ(C).

A payoff vector specifies how the gains of the grand coali-
tion are distributed among the players. A payoff vector is
a tuple p = (p1, . . . , pn) ∈ R

n
≥0 such that

∑
i∈Ag pi =

VALΓ(Ag). The value pi denotes the payoff of agent i. The
payoff of coalition C ⊆ Ag is defined as pC =

∑
i∈C pi. If

the value of a coalition is strictly greater than its payoff from
p, its members have an incentive to break from the grand
coalition and work together to achieve its actual value; we
say the coalition blocks p. The coalition C blocks the pay-
off vector p iff pC < VALΓ(C). The core of a game is an
important solution concept.
Definition 19. Let Γ = (Ag , G, (Gi)i∈Ag , en) be an RCRG.
The core is the set of payoff vectors that are not blocked by
any coalition.

In this section, we study the following problems.
Definition 20. Let Γ = (Ag , G, (Gi)i∈Ag , en) be an RCRG.
VETO: Given a player i ∈ Ag , answer the question “is i a
veto player?”. DUMMY: Given a player i ∈ Ag , answer the
question “is i a dummy player?”. CNE: Answer the ques-
tion “is the core non-empty?”.

From now on, we shall concentrate on one-goal affine
RCRGs. We prove the results summarized in Table 2 and
Table 3.

VETO
Given an RCRG Γ, and a player i, deciding VETO is done
by checking that Player i is a member of all winning coali-
tions: ∀C ⊆ Ag , if VALΓ(C) = 1 then i ∈ C.
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Class of RCRG WIN

MLL in Σp
2 (Prop. 15)

MALL in PSPACE (Prop. 15)
Affine MALL PSPACE-complete (Prop. 15, Prop. 16)
One-goal affine MLL NP-complete (Prop. 18)
One-goal affine MALL PSPACE-complete (Prop. 18)

Table 1: Complexity of WIN

Class of RCRG VETO DUMMY CNE

One-goal affine MLL in Πp
2 (Prop. 21) in Πp

2 (Prop. 23) in Δp
3 (Prop. 28)

One-goal affine MALL in PSPACE (Prop. 21) in PSPACE (Prop. 23) in PSPACE (Prop. 28)

Table 2: Complexity upper-bounds of VETO, DUMMY, and CNE in one-goal affine RCRGs

Algorithm 2 Non deterministic algorithm for coVETO
IN: an RCRG Γ = (Ag , G, (Gi), en), a player i ∈ Ag
OUT: true if i is not a veto player in Γ, false otherwise

1: non-deterministically guess C ⊆ Ag \ {i}.
2: return “C is winning?”.

The complexity membership of VETO follows from a
simple analysis of Algorithm 2, together with Proposi-
tion 18.
Proposition 21. In one-goal RCRGs, VETO is in Πp

2 when
LOG is affine MLL, and in PSPACE when LOG is affine
MALL.

We show that deciding VETO for a class C of RCRG is as
hard as deciding coWIN in one-goal C.
Proposition 22. In one-goal RCRGs, VETO is coWIN-
hard.

Proof. (sketch) Let Γ = (Ag , G, (Gi)i∈Ag , en)
be a one-goal RCRG and let C ⊆ Ag be a
coalition. We build the 2-player one-goal RCRG
Γ′ = ({a, b}, {ga, gb}, (ga, gb), (ena, enb)) where
ga = 1, ena = ∅, gb =

⊗
i∈C gi, enb = enC .

We can show that C is winning in Γ iff Player a is not a
veto player in Γ′.

DUMMY

Algorithm 3 Non deterministic algorithm for coDUMMY
IN: an RCRG Γ = (Ag , G, (Gi), en), a player i ∈ Ag
OUT: true if i is not a veto player, false otherwise

1: non-deterministically guess C ⊆ Ag .
2: winC := “C is winning?”
3: winC\i := “C \ {i} is winning?”
4: return “(winC and not winC\i) or (not winC and

winC\i)”.

We can employ Algorithm 3. Together with Proposi-
tion 18, its analysis yields the following result.

Proposition 23. In one-goal RCRGs, DUMMY is in Πp
2

when LOG is affine MLL, and in PSPACE when LOG is
affine MALL.

We show that deciding DUMMY for a class C of RCRG
is as hard as deciding coWIN in one-goal C.

Proposition 24. In one-goal RCRGs, DUMMY is coWIN-
hard.

Proof. (sketch) Let Γ = (Ag , G, (Gi)i∈Ag , en) be a one-
goal RCRG and let C ⊆ Ag be a coalition. We build the 1-
player one-goal RCRG Γ′ = ({a}, {ga}, (ga), (ena)) where
ga =

⊗
i∈C gi, and ena = enC . We can show that C is

winning in Γ iff Player a is not a dummy player in Γ′.

CNE
We characterise the existence of an imputation in the core
through three lemmas. When the grand coalition Ag is win-
ning, CNE depends on the existence of a veto player.

Lemma 25. If the grand coalition is winning, then the core
of an RCRG is non-empty iff there is a veto player.

Proof. (sketch) Assume VALΓ(Ag) = 1. We only show the
left to right direction. Let p = (p1, . . . , pn) be a payoff vec-
tor in the core. By definition, it is not blocked by any coali-
tion: for all C ⊆ Ag , we have pC =

∑
i∈C pi ≥ VALΓ(C).

Now pick v ∈ Ag , such that pv > 0 (such a player exists
because Ag is winning and pAg = VALΓ(Ag) = 1). We
show that v is a veto player. Let C be an arbitrary coali-
tion such that v �∈ C. Since v �∈ C and pv > 0, we
have pC < pAg = v(Ag) = 1. Moreover, like all coali-
tions, C does not block p, so VALΓ(C) ≤ pC . We thus have
v(C) < 1, and since RCRG are simple games, v(C) = 0.

When the grand coalition Ag is losing, CNE depends on
the absence of a winning coalition.

Lemma 26. If the grand coalition is losing, then the core of
an RCRG is non-empty iff there is no winning coalition.
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VETO DUMMY CNE

coWIN-hard (Prop. 22) coWIN-hard (Prop. 24) coWIN-hard (Prop. 29)

Table 3: Complexity lower-bounds of VETO, DUMMY, and CNE in every class of one-goal RCRGs

Proof. Assume VALΓ(Ag) = 0. Left to right. Let
p = (p1, . . . , pn) be a payoff vector in the core. Since
VALΓ(Ag) = 0 (Ag is losing), also pAg = 0. Since p is in
the core, it is not blocked by any coalition. For any coalition
C, we have pC ≤ pAg = 0. So pC = 0. It means that for all
C ⊆ Ag , we have 0 ≥ VALΓ(C). That is, VALΓ(C) = 0 for
all coalitions C. Right to left. Suppose there are no winning
coalitions. Let p be the payoff vector such that pi = 0 for all
i ∈ Ag . We have pC = 0 = VALΓ(C) for every coalition C.
So p is not blocked by any coalition and it is in the core.

This would be enough to propose a working algorithm.
But we can aim for an arguably cleaner algorithm, justified
by the following simple lemma.

Lemma 27. If the grand coalition is losing, then there is no
winning coalition iff all players are dummies.

Proof. Assume VALΓ(Ag) = 0. Left to right. Suppose
VALΓ(C) = 0 for all C ⊆ Ag . So obviously, for every
i ∈ Ag and for every C ⊆ Ag , we have VALΓ(C ∪ {i}) =
VALΓ(C). So all players are dummy. Right to left. Sup-
pose that for every i ∈ Ag and for every C ⊆ Ag , we
have VALΓ(C ∪ {i}) = VALΓ(C). Now, let I ⊆ Ag be
an arbitrary coalition. We can show that I is losing. Let
J = Ag \ I = {j1, . . . , jk}. A series of equalities follows:
VALΓ(Ag) = VALΓ(Ag \ {j1}) = VALΓ(Ag \ {j1, j2}) =
. . . = VALΓ(Ag \ {j1, j2, . . . , jk}) = VALΓ(I). By hypoth-
esis VALΓ(Ag) = 0. We conclude that VALΓ(I) = 0.

Lemma 25, and Lemma 26 together with Lemma 27 en-
sure the correctness of Algorithm 4 to decide CNE. A con-

Algorithm 4 Algorithm for CNE
IN: an RCRG Γ = (Ag , G, (Gi)i∈Ag , en)
OUT: true if the core of Γ is non-empty, false otherwise

1: if (Ag is winning):
2: for (i ∈ Ag):
3: if (i is a veto player):
4: return true.
5: return false.
6: else:
7: for (i ∈ Ag):
8: if (i is not a dummy player):
9: return false.

10: return true.

taining class of complexity for the problem CNE can be
established by a simple analysis of the algorithm, together
with the complexity of WIN (Prop. 18), VETO (Prop. 21),
and DUMMY (Prop. 23).

Proposition 28. In one-goal RCRGs, CNE is in Δp
3 when

LOG is affine MLL, and in PSPACE when LOG is affine
MALL.

We show that deciding CNE for a class C of RCRG is as
hard as deciding coWIN in one-goal C.

Proposition 29. In one-goal RCRGs, CNE is coWIN-hard.

Proof. (sketch) Let Γ = (Ag , G, (Gi)i∈Ag , en)
be a one-goal RCRG and let C ⊆ Ag be a
coalition. We build the 2-player one-goal RCRG
Γ′ = ({a}, {ga, gb}, (ga, gb), (ena, enb)) where
ga =

⊗
i∈C gi, gb = X, ena = enC , enb = ∅, and

X is a fresh atomic proposition (not provably equivalent to
1). We can show that C is not winning in Γ iff the core of Γ′
is non-empty.

Formalization of Example 1

We formalise Example 1: b stands for bacon, e for one egg,
and o for an omelet. Player 1 is happy with b, Player 2
is happy with either b or e (i.e., b ⊕ e), and Player 3 is
happy with o. Player 1 is endowed with one token of e
and the consumable capacity of transforming an e into a o
(i.e., e � o). Player 2 is endowed with one token of b.
Player 3 is endowed with one token of e. To formalise it,
let Γ = (Ag , G, (Gi)i∈Ag , en) be the RCRG, where:
• Ag = {1, 2, 3}
• G = {b, b ⊕ e, o}
• G1 = {b} G2 = {b ⊕ e} G3 = {o}
• en1 = {e, e � o} en2 = {b} en3 = {e}

The winning coalitions are {2}, {1, 2}, and {1, 2, 3}. The
coalition {2} is winning because b � b ⊕ e and {b} ⊆ en2.
The coalition {1, 2} is winning because e, b � b ⊗ (b ⊕ e),
{e} ⊆ en1, and {b} ⊆ en2. We show in more de-
tails that {1, 2, 3} is a winning coalition, and that they
can win by using all their endowed resources. Specifically,
en1, en2, en3 � b⊗ (b⊕ e)⊗ o.

ax
b � b

ax
e � e ⊕R

e � b⊕ e

ax
e � e

ax
o � o �L

e � o, e � o ⊗R
e, e � o, e � (b⊕ e)⊗ o ⊗R

b, e, e � o, e � b⊗ (b⊕ e)⊗ o
def

en1, en2, en3 � b⊗ (b⊕ e)⊗ o

Since we have identified all the winning coalitions in Γ,
we can easily determine the veto players. Player 2 is the only
veto player of the game. Player 1 and Player 3 are not, as
witnessed by {2} being a winning coalition.

Player 3 is the only dummy player of the game Γ.
Player 1 is not a dummy because VALΓ({1, 2, 3}) = 1
and VALΓ({2, 3}) = 0. Player 2 is not a dummy because
VALΓ(∅) = 0 and VALΓ({2}) = 1.
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Let p = (0, 1, 0) be a payoff vector. It is in the core of the
game. An analysis of the (left to right) proof of Lemma 25
indicates that it is the only one.

Discussion

We have presented a simple, compact, and rich model of
interaction for resource-conscious agents. In RCRGs, re-
sources and goals are the same type of objects: LOG formu-
las. Resources can then be combined and transformed fol-
lowing the rules of LOG so as to yield goals. We proved
with Prop. 10 that RCRGs generalise the CRGs presented
in (Wooldridge and Dunne 2006), the same way that Qual-
itative Coalitional Games (QCG) (Wooldridge and Dunne
2004) generalise CRGs. QCGs and RCRGs on the other
hand, seem to be incomparable. At least, they do not seem to
have a natural formal relationship. QCGs are not compact,
and rely on a characteristic function to represent the choices
of the players. We could modify (extend) the RCRGs by
adding such a characteristic function which would thus be
an explicit representation of the choices (subsets of formu-
las) available to the players. Using classical logic in place of
LOG, this would be sufficient to embed QCGs.

The problem WIN for CRG is NP-complete (Wooldridge
and Dunne 2006). We have proved that WIN is in Σp

2 for
MLL RCRGs (Prop. 15), but only have shown it to be NP-
hard (Prop. 16) when the logic is affine. When we restrict
our attention to the class of one-goal affine MLL RCRGs,
the problem is NP-complete (Prop. 18). It will be interesting
to determine whether WIN is in NP for MLL RCRGs.

The problem WIN is central, and instrumental for other
problems. We have studied VETO, DUMMY, and CNE. The
core of CRGs was also studied in (Dunne et al. 2010) but
by considering CRGs as non-transferable utility games. We
instead, as in Coalitional Skill Games (CSGs) (Bachrach
and Rosenschein 2008), considered RCRGs as transfer-
able utility games. In CSGs, the problem CNE is in P
for all the variants for which complexity results have been
obtained (Bachrach and Rosenschein 2008). For one-goal
MLL RCRGs, we proved that CNE is in Δp

3 (Prop. 28)
capitalizing on auxiliary algorithms for WIN, VETO, and
DUMMY. We only showed, however, that the problem is
coNP-hard (coWIN-hard) in Prop. 29. More work is needed
in this direction.

We also have tight complexity results. Combining the re-
sults obtained in this paper, we have that:

Theorem 30. In one-goal affine MALL RCRG, VETO,
DUMMY, and CNE are PSPACE-complete problems.

We have concentrated on one-goal affine RCRG for the
algorithmic analysis of the core. Lemma 17 and Proposi-
tion 16 indicate that in the case of one-goal affine RCRGs,
the problem WIN and the problem of sequent validity are
inter-reducible. Our examples demonstrate that the class is
already capable of representing intricate scenarios. In fact,
multi-goals can be captured in one-goal MALL RCRGs us-
ing the operands ⊕ and &: see Remark 7 and our formaliza-
tion of Example 1.

For non affine RCRGs, we can provide some results, but
of questionable significance. We know that WIN is in Σp

2

for (arbitrary) MLL RCRGs (Prop. 15). Plugging it into the
algorithms that we have provided, all we can say for now is
that for arbitrary MLL RCRGs, VETO and DUMMY are in
Πp

3 and CNE is in Δp
4. No hardness results were attained.
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