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Abstract

We show that the problem of finding an approximate Nash
equilibrium with a polynomial precision is PPAD-hard even
for two-player sparse win-lose games (i.e., games with
{0, 1}-entries such that each row and column of the two n×n
payoff matrices have at most O(log n) many ones). The proof
is mainly based on a new class of prototype games called
Chasing Games, which we think is of independent interest
in understanding the complexity of Nash equilibrium.

Introduction

Game theory is a field that studies the conflict and coopera-
tion between rational agents. For non-cooperative games, the
concept of Nash equilibria (Nash 1951; 1950) captures the
stable state of complex interactions between agents and has
been used as a highly influential tool to analyze the behavior
of selfish and rational players. Once each player plays ac-
cording to a Nash equilibrium, one cannot change her strat-
egy even if she knows strategies from others; in other words,
no single player can gain a strictly higher payoff by deviat-
ing from a Nash equilibrium.

Nash equilibrium has attracted great attention from dif-
ferent communities including researchers from economics,
biology and computer science due to its fundamental appli-
cations on various fields and its beautiful, deep mathemati-
cal structure. But given a game, how can we find one such
equilibrium? Much effort has been devoted to the design of
efficient algorithms for computing a Nash equilibrium based
on mathematical programming and other methods (Garcia,
Lemke, and Luethi 1973; Kuhn 1961; Lemke and J. T. How-
son 1964; McKelvey and McLennan 1996; Shapley 1974;
Wilson 1971). However, no polynomial-time algorithm is
known after more than sixty years since Nash’s first paper.

In the theoretical computer science community, the com-
putational complexity of Nash equilibria has been studied
intensively during the past decade. (Daskalakis, Goldberg,
and Papadimitriou 2006) first showed that finding a Nash
equilibrium in four-player game (4-Nash) is PPAD-hard,
where PPAD is a complexity class introduced by (Papadim-
itriou 1994) to characterized total search problems based
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on the parity argument such as Brouwer’s fixed point theo-
rem. Using the DGP framework, (Chen and Deng 2006) later
showed that finding a Nash equilibrium remains PPAD-hard
even in two-player games (or bimatrix games).

With significant progress on the complexity of Nash equi-
libria, people continued to distill the hard core of the hard-
ness, and more complexity results were proved for two-
player games with specific restrictions — What if most of
the entries in payoff matrices are zeros? What if every entry
is as simple as win-lose (0 or 1)? What if the precision is
lower? (Chen, Teng, and Valiant 2007) proved that finding
a Nash equilibrium in a win-lose game, where each entry of
the two payoff matrices is either 0 or 1, is still PPAD-hard.
Another result by (Chen, Deng, and Teng 2006) showed that
in sparse games, in which each row and column contain at
most 10 non-zero entries, approximating a Nash equilibrium
is also PPAD-hard. Recently (Rubinstein 2016) proved that
approximating a Nash equilibrium of two-player games with
even constant precision needs nlog1−o(1) n time, assuming
some convinced hypothesis.

Since the first two results are both PPAD-hard, which is
believed to be more difficult than the third one. However, we
still cannot understand what the complexity of a sparse game
or a win-lose game is. For sparse games, entries in the pay-
off matrices could be very complicated; for win-lose games,
there are so many possible ways to construct one row in the
matrices. One natural question arises from (Chen, Teng, and
Valiant 2007) and (Chen, Deng, and Teng 2006): what is the
complexity of finding a Nash equilibrium in a two-player
game that is both sparse and simple? In this paper, we study
this simple class of two-player games, showing that these
two kinds of game have their own difficulties separatively.

Our results

We continue to explore the hard-core of the hardness of Nash
equilibria in two-player games, by showing that the follow-
ing problem is also PPAD-hard: Given a pair of n×n payoff
matrices in which every entry is either 0 or 1 and each row
and column contain at most O(log n) ones, we are asked to
find an ε-approximate Nash equilibrium with a precision ε
polynomially small in n, that is, correctly compute the equi-
librium strategies of two players with a logarithmic number
of 0-1bits. Note that for any k-sparse two-player game, a
pair of the uniform distributions over all strategies gives us
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a (k/n)-approximate Nash equilibrium. It is unlikely to use
the base game used by previous work (Chen and Deng 2006;
Chen, Deng, and Teng 2006; Daskalakis, Goldberg, and Pa-
padimitriou 2006; Goldberg and Papadimitriou 2006) if we
want to prove the hardness result for such a simple class
of games. For this purpose we introduce a new class of
games, named Chasing Games, which enables us to lever-
age the techniques used in (Chen, Teng, and Valiant 2007;
Chen, Deng, and Teng 2006). Using such games, we also
improve the result of (Chen, Deng, and Teng 2006) to the
case where no entry is negative.

Related Work

Starting from the seminal paper (Daskalakis, Goldberg,
and Papadimitriou 2006), the complexity of Nash equi-
librium has be widely studied. Lots of works have been
done using the similar framework (Chen and Deng 2005;
Daskalakis and Papadimitriou 2005; Chen, Deng, and Teng
2009).

Our problem is closely related to the following two prob-
lems: complexity of Nash equilibria in sparse games (Chen,
Deng, and Teng 2006) and win-lose games (Abbott, Kane,
and Valiant 2005; Chen, Teng, and Valiant 2007). Sparse
games consider the case where each row and column of
the two payoff matrices contain at most 10 non-zero entries.
(Chen, Deng, and Teng 2006) proved that polynomially ap-
proximating a Nash equilibrium in sparse games is PPAD-
hard. They redesigned several gadgets used in (Chen, Deng,
and Teng 2009) which proved that general two-player games
are hard, such that they can go through all the argument
and make the resulted game sparse simultaneously. In their
work, each non-zero entry can be either negative or positive.
It seems unlikely for us to encode the negative entry (i.e.,
representing a negative entry with several 0-1 payoff entries
in our reduction). Note that we cannot shift the entries ad-
ditively to make them positive, since this would result in a
very dense matrix.

Each entry in the Win-lose games is either 0 or 1. (Chen,
Teng, and Valiant 2007) showed that such simple games are
also as hard as the general two-player games. The reduction
heavily relies on that they can add as many ones as they
want, which cannot guarantee the sparsity of the games.

For the algorithmic aspect, (Codenotti, Leoncini, and
Resta 2006) and (Chen, Deng, and Teng 2006) gave
polynomial-time algorithms to find a Nash equilibrium in
win-lose games with at most two ones in each row and col-
umn. Extending their results to win-lose game with more
ones in each row and column is a challenging problem. (Her-
melin et al. 2013) gave an lO(kl) · nO(1)-time algorithm for
l-sparse game where the support size of Nash equilibrium is
bounded by k. Note that if k = O(n), this algorithm still
requires exponential time.

Preliminaries

In this section, we will introduce the notations and necessary
definitions.

Let Δn denote the set of all probability vectors in R
n,

that is, Δn := {x ∈ R
n |

∑n
i=1 xi = 1, xi ≥ 0, ∀1 ≥

i ≥ n}. For a matrix A ∈ R
m×n, let Ai denote the ith

row of A, Aj denote the jth column of A. When we do
some operation between a scalar a with vector (matrix) x,
we mean we operate the scalar a with each entry in x, e.g.,
(ax)i = axi, ∀i ∈ [n], where a ∈ R,x ∈ R

n.
Given an integer K > 0, we say a matrix A ∈ R

m×n

is K-weak-scaled if each entry in A can be represented as
r/K where r is between 0 and K, and each column of A
has one entry at least 1/6. 1

We begin with the definition of a bimatrix game.
Definition 1 (Bimatrix Game). A bimatrix game G is defined
by two matrices A,B ∈ R

m×n, such that these two play-
ers have m and n actions to choose, respectively. If the first
player chooses the ith action and the second player chooses
the jth action, then their payoffs are Ai,j and Bi,j , respec-
tively.

A mixed strategy of a player is a distribution over her
choices. Given any x ∈ Δm,y ∈ Δn, a pair of mixed
strategies (x,y) for a bimatrix game G = (A,B), we define
their expected payoffs are xTAy and xTBy, respectively. A
Nash Equilibrium is a pair of mixed strategies (x∗,y∗) such
that no single player can gain a strictly higher payoff by de-
viating from it. Formally, for any x ∈ Δm and y ∈ Δn, we
always have

xTAy∗ ≤ (x∗)TAy∗, (x∗)TBy ≤ (x∗)TBy∗.

The celebrated theorem of Nash (Nash 1950; 1951) shows
the existence of Nash Equilibrium for any bimatrix game.

In this paper, we focus on the approximate Nash Equilib-
rium. We are interested in the following two kinds of ap-
proximations.
Definition 2 (ε-approximate Nash equilibrium). Given ε >
0, we say a pair of mixed strategy (x∗,y∗) for game G =
(A,B) is ε-approximate Nash equilibrium if for any mixed
strategies x ∈ Δm and y ∈ Δn, we have

xTAy∗ ≤ (x∗)TAy∗ + ε,

(x∗)TBy ≤ (x∗)TBy∗ + ε.

Definition 3 (ε-well-supported Nash equilibrium). We say
a pair of mixed strategy (x∗,y∗) for game G = (A,B) is
ε-well-supported Nash equilibrium if for any i, j, we have

(x∗)TBi > (x∗)TBj + ε ⇒ y∗
j = 0,

Aiy
∗ > Ajy

∗ + ε ⇒ x∗
j = 0.

The first concept is the most common-used one, while
the other is more convenient in the reductions since we can
focus on the comparisons between any two pure strategy.
(Chen, Deng, and Teng 2009) proved that these two defini-
tion is equivalent up to polynomial factors.
Lemma 1. Given a bimatrix game (A,B) where A,B ∈
[0, 1]n×n, and 0 ≤ ε ≤ 1,
• each ε-well-supported Nash equilibrium is also an ε-

approximate Nash equilibrium; and
1In (Chen, Teng, and Valiant 2007), they defined the notion K-

well-scaled for a matrix if each entry is r/K for r should be be-
tween K/2 and K.
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• from any ε2/8-approximate Nash equilibrium (u,v), we
can convert it to an ε-well-supported Nash equilibrium
(x,y).

Next we define the simple class of games we consider in
this work, we call it Sparse Win-Lose games.

Definition 4. Given a bimatrix game G = (A,B), where
A,B ∈ {0, 1}n×n. We call G is sparse win-lose if every
column and row of these two matrices have at most O(log n)
ones.

Review of the Former Reductions

Since the whole proof is a long and involved reduction
based on previous work and mature framework, we decide
to review two reduction related to our work in this sec-
tion. The first one is the reduction in (Chen, Deng, and
Teng 2006), from BROUWERf to the problem of comput-
ing an n−6-well-supported Nash equilibrium in a constant-
sparse game, where BROUWERf is a problem whose solu-
tion is proved to be existed by the fixed point theorem named
Brouwer (Brouwer 1912), and it is known to be PPAD-
complete (Chen and Deng 2009). The main idea is to make
the circuit, the input of BROUWERf sparse, that is, each
node in the circuit can be used by at most two gates. Then
they redesigned some of the gadgets in (Chen, Deng, and
Teng 2009), such that they can show the same proofs and
keep the resulting game sparse simultaneously.

Let U = (C, 03n) be an input instance of BROUWERf ,
where C is a circuit. Let m be the smallest integer such that
2m > size[C] > n, where size[C] is the number of gates
plus the number of input and output variables in C. Given
U , a bimatrix game GU = (AU ,BU ) can be constructed in
polynomial time, where AU and BU are N × N matrices,
and N = 26m+1 = 2K. The bimatrix game GU has the
following properties:

P0: Each row (column) of matrices AU and BU has at most
10 non-zero entries;

P1: |aUi,j |, |bUi,j | ≤ N3 for each i, j: 1 ≤ i, j ≤ N ;

P2: From every ε-well-supported Nash equilibrium (x,y)
of GU , where ε = 1/K3, we can use (x,y) to find a
panchromatic simplex of circuit C in polynomial time,
i.e., a solution of the problem BROUWERf .

Since the notion of ε-approximate Nash equilibria will be
confused2 when scaling the matrices A and B, one can nor-
malize these two matrices to GU = (AU ,BU ) where AU =

AU/N3 and BU = BU/N3 such that |aUi,j |, |bUi,j | ≤ 1 for
each i, j : 1 ≤ i, j ≤ N . By P2, the problem of finding an
n−6-well supported Nash equilibrium in a constant-sparse
game is PPAD-hard.

The construction of GU begins with a prototype game
G∗ = (A∗,B∗) called Generalized Matching Pennies
games. The matrix A∗ is a K × K block-diagonal matrix,
where each block is a 2× 2 matrix of all M ’s, M = 2K3 =

2Given c > 0, an ε-approximate Nash equilibria (x,y) of game
A,B, it will be (cε)-approximate Nash equilibria for the game
(cA, cB).

218m+1, and B∗ = −A∗. Chen et al. (Chen, Deng, and Teng
2009) showed that this simple game G∗ has nice properties.

Lemma 2. Let (A,B) be a game with 0 ≤ A − A∗,B −
B∗ ≤ 1. Let (x,y) be a 1-well-supported Nash equilibrium
of (A,B), then for each k ∈ [K], it satisfies the following
constraint R:

1/K − ε ≤ x[2k − 1] + x[2k] ≤ 1/K + ε;

1/K − ε ≤ y[2k − 1] + y[2k] ≤ 1/K + ε.

The game GU = (AU ,BU ) is constructed by adding sev-
eral carefully designed “gadget” games to G∗, such that they
can implement kinds of arithmetic and logic operations ap-
proximately, finally GU can simulate the instance U of the
problem BROUWERf . Each gadget is defined by a 7-tuple
(G, v1, v2, v3, v, c, w), where G is the gadget type, and oth-
ers are the nodes specified by the circuit C of BROUWERf ,
let’s use a mapping C to label these nodes. For each gad-
get T , they define the “gadget” game (M[T ],N[T ]) as Fig-
ure 1.3 Each gadget game satisfies some kind of constraint
R[T ], e.g., for T = (G+, v1, v2, v3, v, c, w), the constraint
is R[T ] := [x[v] = min(x[C(v1)] + x[C(v2)],x[C(v)] +
x[C(v)+1])±ε], one can see the full constraint set in (Chen,
Deng, and Teng 2006; 2009). Then they constructed a col-
lection of gadgets T of size at most K to build GU =
(AU ,BU ) := BUILDGAME(U,G∗, T ):

AU = A∗ +
∑
T∈T

M[T ] and BU = B∗ +
∑
T∈T

N[T ],

such that for each pair of gadgets T =
(G, v1, v2, v3, v, c, w), T

′ = (G′, v′1, v
′
2, v

′
3, v

′, c′, w′) ∈ T ,
we have v �= v′, w �= w′, we say such a collection of
gadgets is valid. Chen et al. (Chen, Deng, and Teng 2009)
proved the following lemma.

Lemma 3. Given a valid set of gadgets T , we have, for
each gadget T ∈ T , any ε-well-supported Nash equilibrium
(x,y) of GU = BUILDGAME(U,G∗, T ) satisfies the con-
straint R[T ].

Besides, the game GU = (AU ,BU ) satisfies the condi-
tion in Lemma 2, and by Lemma 3, we can prove that each
ε-well-supported Nash equilibrium of GU satisfies the fol-
lowing |T | + 1 constraints {R,R1, . . . ,R|T |}, with more
technical argument, one can check GU satisfies the property
P2, hence the reduction works.

The second reduction we want to mention is due to (Chen,
Teng, and Valiant 2007). They gave a construction which
can transform the family of hard bimatrix games constructed
by (Chen, Deng, and Teng 2009) to win-lose games, i.e.,
two-player games with {0, 1} entries. The main idea is
to encode any non-negative integer between 0 and n us-
ing O(log n) bit in payoff matrices. We need the following
lemma, whose proof is similar with Lemma 5.8 in (Chen,
Teng, and Valiant 2007).

3For G∗
∧, we modify two terms to 3/8 (1/3 in the original pa-

per) to make our proof more convenient while every result still
holds.
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Set M[T ] = (Mi,j) = N[T ] = (Ni,j) = 0,k = C(v), k1 =
C(v1), k2 = C(v2), k3 = C(v3) and t = C(w)

G+ :

{
M2k−1,2t−1 = M2k,2t = 1

N2k1−1,2t−1 = N2k2−1,2t−1 = N2k−1,2t = 1

G− :

{
M2k−1,2t−1 = M2k,2t = 1

N2k1−1,2t−1 = N2k2−1,2t = N2k−1,2t = 1

G= :

{
M2k−1,2t−1 = M2k,2t = 1

N2k1−1,2t−1 = N2k−1,2t = 1

G< :

{
M2k−1,2t = M2k,2t−1 = 1

N2k1−1,2t−1 = N2k2−1,2t = 1

G×ζ :

{
M2k−1,2t−1 = M2k,2t = 1

N2k−1,2t = 1, N2k1−1,2t−1 = c

G¬ :

{
M2k−1,2t = M2k,2t−1 = 1

N2k1−1,2t−1 = N2k1,2t = 1

G∗
ζ :

{
M2k−1,2t = M2k,2t−1 = 1

N2k−1,2t−1 = 1/2, N2k3−1,2t = Kc

G∗
∧ :

{
M2k−1,2t−1 = M2k,2t = N2k3−1,2t = 1

N2k1−1,2t−1 = N2k2−1,2t−1 = 3/8

G∗
∨ :

{
M2k−1,2t−1 = M2k,2t = 1

N2k1−1,2t−1 = N2k2−1,2t−1 = N2k3−1,2t = 1

GB= :

{
M2k−1,2t−1 = M2k,2t = 1

N2k1−1,2t−1 = N2k1,2t = 1

GH :

{
M2k−1,2t = M2k,2t−1 = 1

N2k−1,2t−1 = N2k,2t = 1

Figure 1: Construction of “Gadget” game (M[T ], N [T ])
, where T = (G, v1, v2, v3, v, c, w)

Lemma 4. Let H = (A,B) be a normalized bimatrix game
and A and B are both n× n matrices. Both A and BT are
K-weak-scaled, where K = 3(2k − 1) ≤ n19. We construct
H ′ = (A′,B′) as follows:

A′ =

(
S I
R 0

)
,B′ =

(
1− S 0
0 B

)
,

where
• S is an n× n block-diagonal matrix, in which each block

is a 3k×3k 0-1 matrix, denoted by Sk, defined as follows:

U =

(
1 0 0
0 1 0
0 0 1

)
,V =

(
1 1 0
0 1 1
1 0 1

)
,

Sk =

⎛
⎜⎜⎜⎜⎝
U U · · · U V
U U · · · V 0
...

...
. . .

...
...

U V · · · 0 0
V 0 · · · 0 0

⎞
⎟⎟⎟⎟⎠ ;

1 − S is also an n × n block-diagonal matrix, in which
each block is a 3k × 3k 0-1 matrix, denoted by 1 − Sk.
The game Gk = (Sk, 1 − Sk) is called generator game

in (Abbott, Kane, and Valiant 2005), which has a unique
Nash equilibrium (r, c) where

r = c =

(
2k−1, 2k−1, 2k−1, . . . , 4, 4, 4, 2, 2, 2, 1, 1, 1

)T
3(2k − 1)

;

• R is a n × n block matrix, each block is a row vector of
length 3k, such that Ri,j · r = Ai,j;

• I is a n × n block-diagonal matrix, each block is an all-
one column vector of length 3k.

such that

1. the matrices A′ and B′ are n(3k + 1) × n(3k + 1) ma-
trices;

2. A′ is a 0-1 matrix and each column has a non-zero entry;
3. B′ has entries either 0, 1 or from B.

From any ε/n43-well-supported Nash equilibrium (x′,y′) of
H ′, we can get an ε-well-supported Nash equilibrium (x,y)
of H .

Main Result

In this section, we first introduce a new class of prototype
games named Chasing Games, and then use this kind of
games to prove that approximating any Nash equilibrium
with polynomial precision in sparse win-lose games is also
PPAD-hard.

Chasing Games

Due to the simple structure and nice property, the GMP
(Generalized Matching Pennies) games are widely used
to prove PPAD-hardness results of Nash equilibria (Gold-
berg and Papadimitriou 2006; Chen, Deng, and Teng 2009;
Daskalakis, Goldberg, and Papadimitriou 2006; Chen, Deng,
and Teng 2006). However, we consider the sparse case, it
seems impossible to use GMP game as the base game in our
reduction again. Even though GMP games are sparse, the
matrix B is negative, we don’t know how to encode nega-
tive number using Lemma 4. We can also shift the entries
in B to be positive to avoid the above issue, but it makes B
so dense. We need a class of games which has the similar
property as GMP but has no negative entry. We define our
Chasing game as follows.

Definition 5 (Chasing Game). Given an integer n >
0, chasing game J is defined by two matrices A,B ∈
R

2K×2K:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

M M 0 0 · · · 0 0
M M 0 0 · · · 0 0
0 0 M M · · · 0 0
0 0 M M · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · M M
0 0 0 0 · · · M M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =
(
A

2K−1,A2K ,A1,A2, . . . ,A2K−3,A2K−2
)
,

where M = 2K3 = 218m+1 and m is the smallest integer
such that 2m > n.
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First, let’s prove the same statement as Lemma 2 for Chas-
ing game, i.e., every approximate Nash equilibrium of Chas-
ing games is almost uniform over all strategies.
Lemma 5. Let (A,B) be a game with 0 ≤ A−A,B−B ≤
1. If (x,y) is a 1-well-supported Nash equilibrium of A,B,
for any k ∈ [K], we have

1/K − 1/K3 ≤ x[2k − 1] + x[2k] ≤ 1/K + 1/K3;

1/K − 1/K3 ≤ y[2k − 1] + y[2k] ≤ 1/K + 1/K3.

Proof. Here we just prove the first inequality, the second
one holds with the similar argument. Let’s denote x[k]+ :=
x[2k − 1] + x[2k], where k ∈ [K], the similar with y[k]+.

Now we prove that |x[k]+ − 1/K| ≤ 1/K3 for any k ∈
[K]. Assuming that the statement is not true, that is, there
exists some i ∈ [K], such that |x[i]+ − 1/K| > 1/K3.
Without the loss of generality, we assume that x[i]+ >

1/K+1/K3. Since
∑K

k=1 x[k]
+ = 1, there must exist some

j ∈ [K], such that x[j]+ < 1/K, then we have
x[i]+ − x[j]+ > 1/K3. (1)

By definition, for any k ∈ [K], the 2k − 1st and 2kth
entries on the rows A2k−1 and A2k are in [M,M+1], while
others are in [0, 1]. So we have

My[k]+ ≤ A2k−1y,A2ky ≤ My[k]+ + 1, ∀y ∈ Δ2K .
(2)

Similarly, for any k ∈ [K], the 2k − 1st and 2kth entries on
the columns B2k+1 and B2k+2 are in [M,M+1] (if k = K,
the columns are the B1 and B2), while others are in [0, 1],
we have

Mx[k]+ ≤ xTB2k+1,xTB2k+2 ≤ Mx[k]+ + 1, ∀x ∈ Δ2K .
(3)

Combining these three equations, we will prove that the
mixed strategy y is a zero vector, hence our assumption is
wrong and the lemma holds.

By Equation 3, we consider the difference of expected
payoff between columns B2i+1 and B2j+1,B2j+2:

xTB2i+1 −max{xTB2j+1,xTB2j+2}
≥ Mx[i]+ − (Mx[j]+ + 1) > M/K3 − 1 > 1.

Since x,y is 1-well-supported Nash equilibrium, we have
y[j + 1]+ = 0, and there exists j′ ∈ [K] such that y[j′]+ >
1/K. By Equation 2 and the similar argument, we have

A2j′−1y −max{A2j+1y,A2j+2y}
≥ My[j′]+ − (My[j + 1]+ + 1) > M/K − 1 � 1.

Hence we have x[j + 1]+ = 0. Repeat the proof above, we
can see that x and y are both zero vectors, a contradiction.

For a valid collection of gadgets, by the definition of
valid gadgets, each gadget game modifies different rows or
columns in the base game, and it doesn’t care about what
base game you use. Hence the proof of following lemma for
Chasing games is similar with Lemma 3.
Lemma 6. Given a valid set of gadgets T , we have, for
each gadget T ∈ T , any ε-well-supported Nash equilibrium
(x,y) of GU = BUILDGAME(U,J , T ) satisfies the con-
straint R[T ].

Reduction and its correctness

In this section, we will prove the main result of our pa-
per, approximating a Nash equilibrium in sparse win-lose
game is PPAD-hard. Firstly, we improve the result in (Chen,
Deng, and Teng 2006), showing that even approximating
Nash equilibrium in non-negative constant-sparse games is
also hard, by replacing GMP games with our chasing games.
Then we transform the non-negative constant-sparse game to
sparse win-lose game by modifying a construction in (Chen,
Teng, and Valiant 2007), and build the connection between
the solutions of these two games. Now we are ready to prove
the hardness result for non-negative constant-sparse games.

Theorem 1. Finding an n−6-well-supported Nash equilib-
rium in non-negative constant-sparse game of dimension
n× n is PPAD-hard.

Furthermore, the numerator of each entry in the resulting
game can be represented as one 0-1 bits of length O(log n)
with only constant ones.

Proof. We use Chasing game as the prototype game of the
reduction and use the same construction in (Chen, Deng, and
Teng 2006). That is, for the same valid collection of gad-
gets T as (Chen, Deng, and Teng 2006), we build a game
HU = (AU ,BU ) = BUILDGAME(U,J , T ). By Lemma 5
and Lemma 6, with the similar argument, one can prove the
first statement.

It is easy to see that each entry of chasing game J will be
changed at most once, since for a valid collection of gadget
games, different gadget game occupies different columns or
rows. From Figure 1, we can only add one of the following
numbers {1, c,Kc′, 1/2, 3/8} to matrices in J , and one can
check that c and Kc′ must be one of {1/2, 1/4, 1/8} (cf.
Fig 4. (Chen, Deng, and Teng 2009)). Hence each entry of
the payoff matrices in J should be the sum of constant (at
most two) number of terms in {M, 1, 1/2, 3/8, 1/4, 1/8},
the second statement holds.

Next we will focus on the second phase, reducing from
non-negative constant-sparse game to sparse win-lose game.
We apply Lemma 4, which is modified from Lemma 5.8
in (Chen, Teng, and Valiant 2007). Chen et al. proved
that approximating equilibrium in win-lose game is PPAD-
hard by reducing from hard instances of two-player game
in (Chen, Deng, and Teng 2009) to win-lose games.

The main idea of Lemma 4 is to embed the payoff ma-
trices in an instance of hard games, A,B into a 0-1 matrix
and a matrix containing either {0, 1}’s or entries in B, re-
spectively. Recall that A is K-weak-scaled, one can encode
each entry in A with a 0-1 string of length logK. Then we
exchange the roles of A and B to make B a 0-1 matrix.
To reduce the dimension of our matrix, we will prove the
following lemma by using Lemma 4 twice with different pa-
rameters.

Lemma 7. There exists a pair of polynomial-time com-
putable functions f, g such that given an n × n bimatrix
game H = (A,B) and an integer K = 3(2k − 1) ≤
n19 such that A and BT are both K-weak-scaled, f(H)
is a sparse win-lose game H ′ = (A′,B′) of dimension
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Θ(nk), and for every ε/n87-well-supported Nash equilib-
rium (x′,y′) of game H ′, where ε ≤ 1, (x,y) = g(x′,y′)
is an ε-well-supported Nash equilibrium of H .

Proof. We multiply each entry in the instance of hard games
in Theorem 1 by 8

3(218m+5−1) such that each entry is be-
tween 0 and 1. Recall that the chasing game has non-zero
entry M = 218m+1 in each column and row where m is
the smallest integer such that 2m > n, we have each col-
umn of the matrix A has an entry 8M

3(218m+5−1) > 1/6, hence
the matrix A is K-weak-scaled, where K = 3(2k − 1) =
3(218m+5 − 1) ≤ n19. The similar argument with BT . So
now we have A and BT are both K-weak-scaled. We first
apply Lemma 4 to construct a game H ′ = (A′,B′) where
A′ and B′ satisfy the properties in Lemma 4:

A′ =

(
S I
0 R

)
,B′ =

(
1− S 0
0 B

)
.

We can see that many rows in the upper blocks of A′ con-
tain O(k) = O(log n) ones while rows in the lower blocks
contain only constant ones from Theorem 1. The next step is
to apply Lemma 4 again to (B′T , A′T ), to make the matrix
B′ to be a 0-1 matrix. One can see that many rows of matrix
B′ contains O(log n) ones in the (1− S) part, if we encode
each of them with log n bits by the same construction, we
can only get the hardness result for the game with at least
O(log2 n) ones in a column.

A crucial observation is that we can encode the entry
which is 1 with only constant bits! The idea is to deal with
(1 − S) part and B part separatively, we consider the sub-
matrix (1 − S) to be K1 = 3(22 − 1)-weak-scaled while
the B part to be K2 = 3(2k − 1)-weak-scaled. Since the
analysis of Lemma 4 only considers each individual block
separatively, the properties of resulted game still hold in our
setting. We set n′′ = n(3k + 1),K1 = 9,K2 = 3(2k − 1),
and game H ′′ = (B′T ,A′T ). One can check that for any
ε-well-supported Nash equilibrium (x,y) of game H ′′, we
have that (y,x) is an ε-well-supported Nash equilibrium of
game H ′. Now we apply the construction in Lemma 4 again
to yield the game H ′′′ = (A′′′,B′′′) as follows:

A′′′ =

(
S I
0 RB′T

)
,B′′′ =

(
1− S 0
0 A′T

)
,

where RB′T is used to encode the matrix B′T by Lemma 4
and n′′′ = 3kn · 3 · 2 + 3kn = Θ(nk). As a by-product, we
also reduce the dimension of the resulting game which was
Θ(nk2) in (Chen, Teng, and Valiant 2007). For the sparsity,
it is easy to check that each row and column still have at
most O(log n) ones.

Given any ε/n87-well-supported Nash equilibrium
(x′′′,y′′′) of game H ′′′, we can find (x′′,y′′) is ε/n43-
well-supported Nash equilibrium of game H ′′ since
k = O(log n) and

ε

n43
· 1

(n′′)43
=

ε

n43
· 1

(n(3k + 1))43
>

ε

n87
.

So (x′,y′) = (y′′,x′′) is an ε/n43-well-supported Nash
equilibrium of H ′ by our construction. By Lemma 4 again,
we can get a ε-well-supported Nash equilibrium of H .

Combining Theorem 1, Lemma 7 and Lemma 1, we can
prove our main theorem.
Theorem 2. There exists a constant c > 0, such that find a
n−c-approximate Nash equilibrium in n×n sparse win-lose
game is PPAD-hard.
Remark. In (Chen, Teng, and Valiant 2007), they proved
the same hardness result for win-lose games with any con-
stant c > 0. This cannot be true for sparse win-lose games,
since for any game with only log n non-zero entries in each
row and column, we can use two uniform distributions over
all the strategies from each player to yield a log n/n-well-
supported Nash equilibrium.

Conclusion

In this paper, we introduce a new class of two-player games
named Chasing games. Using Chasing games we can prove
approximating win-lose game with at most logarithmic ones
entries in each column and row of bimatrix game, is also
PPAD-hard. We strongly believe that this new class of games
can be of independent interest, it can be used to prove new
hardness result in Nash computation.

It is worth pointing out that our initial goal is to prove
the same result for constant-sparse win-lose games in which
each row and column have constant many ones. Also note
that we can encode any entry of the hard instance in Theo-
rem 1 with only constant ones using our techniques. How-
ever, some of the rows and columns in the game we con-
struct do contain log n many ones. We conjecture that the
same result holds for constant-sparse win-lose games but
new insights and techniques are needed for understanding
structures of sparse win-lose games.
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