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Abstract

We study the class of distance-based centralities that consists
of centrality measures that depend solely on distances to other
nodes in the graph. This class encompasses a number of cen-
trality measures, including the classical Degree and Close-
ness Centralities, as well as their extensions: the Harmonic,
Reach and Decay Centralities. We axiomatize the class of
distance-based centralities and study what conditions are im-
posed by the axioms proposed in the literature. Building upon
our analysis, we propose the class of additive distance-based
centralities and pin-point properties which combined with the
axiomatic characterization of the whole class uniquely char-
acterize a number of centralities from the literature.

Introduction

Identifying the nodes that play the most important role in
the network is a fundamental challenge in network anal-
ysis (Brandes and Erlebach 2005). This area of research,
named centrality analysis, is rooted in social network liter-
ature, but attracted attention in many fields, including AI. It
is, for instance, essential both in determining key infrastruc-
ture nodes in the Internet (Page et al. 1999) and central hubs
in a transportation networks (Guimera et al. 2005), but also
key proteins in protein-protein networks (Jeong et al. 2001).

Arguably, the most well-known centrality measures are
the Degree, Closeness and Betweenness Centralities (Free-
man 1979). The Degree Centrality assesses the importance
of a node simply by looking at the number of its links. The
Closeness Centrality, defined as the inverse of the sum of
distances to others in the network, promotes nodes which
are close to others in the network. In contrast, the Between-
ness Centrality measures how many shortest paths in the
network traverse a given node. To date, many extensions of
these standard centrality measures have been proposed in the
literature (Koschützki et al. 2005a).

Unfortunately, the multitude of centrality measures with
unclear distinctions between them makes it difficult to de-
termine which one should be used in a specific application.
To help understand the differences between various central-
ities, various classifications have been proposed. Notably,
Borgatti (2005) argued that all standard centrality measures

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can be classified according to two factors: the type of flow
and the type of a path considered. Another well-known char-
acterization is due to Borgatti and Everett (2006) who char-
acterized centrality measures in term of cohesiveness. Their
approach basically boils down to two categories, both with
two options: the type of path and the type of unit.

While these characteristics provide additional insights,
they do not help much in answering the question which cen-
trality should be applied to a specific, perhaps non-standard,
setting. In particular, criteria chosen are not intuitive and are
mostly based on the mathematical formulations and not on
the properties stemming from them. For instance, it is hard
to decide whether a measure for key nodes in a social net-
works should be based on paths or walks.

To address the problems with characterization, various au-
thors proposed axiomatic foundations for some centrality
measures. This approach was first used by Sabidussi (1966),
who proposed several simple axioms that should be satisfied
by all centrality measures based on two graph operations –
adding an edge, and moving an edge. Since then, a number
of authors used axiomatic approach to characterize specific
centralities (see the Related Work section for details). Un-
fortunately, from the three standard centralities only the De-
gree Centrality has been extensively studied. In other words,
there are still no axiomatic characterizations of the other two
standard measures – the Closeness and Betweenness Cen-
tralities.

Against this background, we study a large class of
distance-based centralities which rely only on distances
from a node in question to other nodes in the network. This
class encompasses both the Degree and Closeness Central-
ities, as well as their many extensions, such as the Decay,
Reach, and Harmonic Centralities. In our analysis we at-
tempt to answer two questions – in which settings distance-
based centralities should be used? and, given those settings,
which centrality should be selected? To this end, we ax-
iomatize the class of distance-based centralities using the
Sabidussi’s operations of adding and moving edges, but lim-
ited to versions invariant in this class. Building upon this
axiomatic characterization, we propose the first axiom sys-
tem for the Closeness Centrality. Furthermore, we propose
and axiomatically characterize the class of additive distance-
based centralities and characterize several other centralities
from this class.
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Preliminaries

A graph is a pair, G = (V,E), where V is a set of nodes and
E is a set of undirected edges, i.e., subsets of V of size 2.

A path, p = (v1, . . . , vk), is a sequence of nodes in which
every two consecutive nodes are connected by an edge, i.e.,
{vi, vi+1} ∈ E, ∀i ∈ {1, . . . , k−1}. If v1 = v and vk = u,
we say that path is between v and u. The length of a path
is the number of edges in it (i.e., the number of nodes in it
minus 1). We write v ∈ p if v is one of the nodes in p. A
maximal subset of nodes such that between every two nodes
there is a path is called a connected component. The set of
connected components of a graph G is denoted K(G). Note
that K(G) is a partition of V . A bridge is an edge whose
deletion increases the number of connected components. A
cut-vertex is a node whose deletion increases the number of
connected components.

The distance between two nodes v, u ∈ V in graph G =
(V,E) is denoted by dG(v, u), and is defined as the length
of the shortest path between them. If there exists no path
between v and u, we assume that dG(v, u) =∞. For a node
v, the nodes at distance 1 from v, are called neighbours and
their set is denoted NG(v). Formally, NG(v) = {u ∈ V :
{v, u} ∈ E}. For k ∈ N, the set of nodes at distance k from
v in graph G is denoted by Nk

G(v):

Nk
G(v) = {u ∈ V : dG(v, u) = k}.

In particular, N0
G = {v} and N1

G(v) = NG(v). We will
use two shorthand notations: N≤k

G (v) for the set of nodes
at distance at most k, called k-neighbourhood of node v,
and N<k

G (v) for the set of nodes at distance smaller than
k. Formally: N≤k

G (v) =
⋃

0≤i≤k N
k
G(v), and N<k

G (v) =

N≤k−1
G (v). Especially, N<∞

G (v) denotes the set of all nodes
in the same component as v. See Figure 1 for an illustration.

A special subclass of graphs are paths and stars. For
k ∈ N, Pk is a graph which is a path of k nodes, denoted
u1, . . . , uk:

Pk = ({u1, . . . , uk}, {{ui, ui+1} : i ∈ {1, . . . , k − 1}}).
By P v

k we denote Pk such that u1 = v. For k ∈ N, Sv
k is a

graph which is a star, center of which is v:

Sv
k = ({v, v1, . . . , vk−1}, {{v, vi} : i ∈ {1, . . . , k − 1}}).
We use shorthand notation to denote graphs obtained by

adding/removing edge e or node v to/from graph G: G+e =
(V,E ∪ {e}), G− e = (V,E \ {e}), G+ v = (V ∪ {v}, E)
and G− v = (V \ {v}, E \ {{v, u} : u ∈ V }).

Figure 1: The neighbourhood notation. The dotted nodes are
cut vertices. The dotted lines are bridges.

Centrality measures: A function that assigns to every node
a number reflecting its importance is called a centrality mea-
sure and defined as F : GV → R

V , where GV denotes the
set of all possible graphs with nodes V . There is a plethora
of centrality measures proposed in the literature. The first
and the most well-know centrality indices are the following:
• Degree Centrality (Dv) is the number of neighbours of a

node:
Dv(G) = |NG(v)|;

• Closeness Centrality (Cv), defined only for connected
graphs, is the inverse of the sum of distances to other
nodes (Sabidussi 1966):

Cv(G) =
1∑

u∈V \{v} dG(v, u)
;

• Betweenness Centrality (Bv) is the sum of percentages
of shortest paths between any two other nodes that goes
through the node under consideration (Freeman 1977).
Formally, if we denote by Πs(s, t) the set of shortest paths
between s and t, then:

Bv(G) =
∑

s,t∈V \{v}

|{p ∈ Πs(s, t) : v ∈ p}|
|Πs(s, t)| .

All these three centralities are based on the concept of a dis-
tance. However, in this paper we focus on centralities that
assess the importance of node v based only on distances
between v and other nodes in the graph. The Betweenness
Centrality does not belong to this category, as the Between-
ness Centrality of node v depends on the shortest paths, but
between nodes other than v.

Other particular centralities studied in this paper are:
• k-Step Reach Centrality (Rk

v ) (or k-Degree Centrality) is
the number of distinct nodes within k links of a given
node (Borgatti, Everett, and Johnson 2013):

Rk
v(G) = |N≤k

G (v)| − 1.

• Decay Centrality (Yv) is the number of nodes at distance
1 plus the number of nodes at distance 2 multiplied by the
decay parameter δ ∈ (0, 1), plus the number of nodes at
distance 3 multiplied by δ2, and so on (Jackson 2008):1

Yv(G) =
∑
k≥1

|Nk
G(v)| · δk−1.

• Harmonic Centrality (Hv) is an alternative version of the
Closeness Centrality – and sometimes called by this name
– for graphs that do not have to be connected; it is the sum
of inverses of distances to other nodes (assuming 1

∞ =
0) (Rochat 2009):

Hv(G) =
∑

u∈V \{v}

1

dG(v, u)
;

• Component-Size Centrality (Sv), a toy centrality proposed
in this paper, is a borderline case of the k-Step Reach Cen-
trality when k → ∞ and of the Decay Centrality when
δ → 1:

Sv(G) = |N<∞
G (v)| − 1.

1Note that sometimes in the definition of the Decay Centrality
δk instead of δk−1 is used.
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Distance-based centralities

In this section, we define a class of distance-based centrali-
ties. This class encompasses all measures such that centrality
of a node depends solely on its distances from other nodes
in a graph.
Definition 1. A centrality measure F is a distance-based
centrality if for every two graphs G1 = (V,E1) and G2 =
(V,E2) and every v ∈ V , condition |Nk

G1
(v)| = |Nk

G2
(v)|

for every k ∈ N ∪ {∞} implies Fv(G1) = Fv(G2).
We characterize the class of distance-based centralities

with three axioms – Anonymity, Add Edge Distance, and
Move Edge Distance. Our characterization is based on
a seminal work by Sabidussi (1966). The first axiom,
Anonymity, comes directly from this work. It states that
centrality measures should not depend on nodes names. In
particular, if there exists an automorphism that transforms
one node into another, then they should have the same
centrality.

Anonymity: For every graph G = (V,E), node v ∈ V
and bijection f : V → V

Fv(V,E) = Ff(v)(V, {{f(u), f(w)} : {u,w} ∈ E}).
Two other axioms – Add Edge Distance and Move Edge
Distance – states that a centrality measure is invariant under
two operations studied by Sabidussi – adding and moving
an edge. However, while Sabidussi considered adding and
moving an arbitrary edge, to define distance-based centrali-
ties, we restrict our attention to adding and moving an edge
between equidistant nodes, i.e., nodes at a same distance
from the node in question. Specifically, Add Edge Distance
states that adding an edge between equidistant nodes does
not affect the centrality of v; Move Edge Distance states
that moving such an edge to a neighbour of one of incident
nodes does not affect the centrality of v either.

Add Edge Distance: For every graph G = (V,E) and
every triple of nodes v, u, w ∈ V such that dG(v, u) =
dG(v, w)

Fv(G) = Fv(G+ {u,w}).

Move Edge Distance: For every graph G = (V,E)
and every quadruple of nodes v, u, w, t ∈ V such that
dG(v, u) = dG(v, w) and {u,w} ∈ E, {w, t} ∈ E

Fv(G) = Fv(G− {u,w}+ {u, t}).
Theorem 1 characterizes distance-based centralities.

Theorem 1. A centrality is a distance-based centrality iff
it satisfies Anonymity, Add Edge Distance and Move Edge
Distance.

Proof. It is easy to check that distance-based centralities sat-
isfy Anonymity, Add Edge Distance and Move Edge Dis-
tance. Assume F satisfies Anonymity, Add Edge Distance
and Move Edge Distance. Let G1 = (V,E1) and G2 =
(V,E2) be two graphs and v ∈ V be a node such that
|Nk

G1
(v)| = |Nk

G2
(v)| for every k ∈ N. We will prove that

Fv(G1) = Fv(G2).

Figure 2: The illustration for the proof of Theorem 1. Graph
G∗ can be obtained from G by adding edges between the
nodes equidistant from v and moving one end of such edges
to a neighbour. Thus, based on Add Edge Distance and Move
Edge Distance, the centralities of v in G and G∗ are equal.

First, let us assume that there exists a node, u ∈ V , such
that dG1

(v, u) �= dG2
(v, u). Then, there exists a bijection

f : V → V such that dG1(v, u) = df(G2)(v, f(u)) and
from Anonymity Fv(G1) = Fv(f(G2)). Therefore, in what
follows, we assume that dG1

(v, u) = dG2
(v, u) for every

u ∈ V .
Now, let us consider graph G∗ = (V,E∗) defined as fol-

lows:
E∗={{u,w} : k≥0, u∈Nk

G1
(v), w∈Nk

G1
(v)∪Nk+1

G1
(v)}.

Graph G∗ is the maximal graph with the same set of dis-
tances as G1 and G2 and E1 ⊆ E∗, E2 ⊆ E∗ (see Figure 2).
We will show that Fv(G1) = Fv(G

∗) = Fv(G2). Without
loss of generality, let us consider graph G1. To this end, we
will show that G∗ can be obtained from G1 by adding edges
that does not affect the centrality of v.

Note that E∗ consists of two types of edges – (1) edges
between two nodes from a set Nk

G1
(v) for some k (i.e.,

{u,w} such that dG1
(v, u) = dG1

(v, w) = k), and (2)
edges between a node from a set Nk

G1
(v) and a node from set

Nk+1
G1

(v) for some k (i.e., {u,w} such that dG1
(v, u) + 1 =

dG1(v, w) = k + 1).
Regarding (1), we know that adding an edge between

any two nodes at the same distance from node v does not
affect the distances between node v and other nodes. Let
G′ = (V,E′) be a graph obtained from G1 by adding all
such edges from G∗:

E′ = E1 ∪ {{u,w} : k ≥ 0, u, w ∈ Nk
G1

(v)}.
Thus, for every node u ∈ V the distance between v and u
is the same in both graphs G1 and G′ and from Add Edge
Distance we get Fv(G1) = Fv(G

′).
Regarding (2), consider k ≥ 0 and two nodes u ∈ Nk

G1
(v)

and w ∈ Nk+1
G1

(v) such that {u,w} /∈ E′. We will show that
adding {u,w} to the graph G′ does not change the central-
ity of v. Since dG′(v, w) = dG1

(v, w) = k + 1, then there
must exist a node t ∈ Nk

G1
(v), which is a neighbour of node

w in G′, i.e., {t, w} ∈ E′. Node u is connected with node
t in graph G′, so from Move Edge Distance, we know that
replacing edge {u, t} with {u,w} does not change the cen-
trality of v:

Fv(G
′) = Fv(G

′ − {u, t}+ {u,w}).
After this replacement, from Add Edge Distance, we can add
edge {u, t} again, without changing the centrality of node v.
Thus, we showed that:

Fv(G
′) = Fv(G

′ + {u,w}) for every {u,w} ∈ G∗.
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Repeating this argument for every edge we obtain graph G∗
and get Fv(G1) = Fv(G

∗). This concludes the proof of The-
orem 1.

From now on, we will consider only distance-based cen-
tralities. We begin with the Closeness Centrality, which
is one of the three standard centrality measures (Freeman
1979). It assesses how “central” a given node is in the net-
work by looking at the sum of distances to other nodes in the
network. Since the bigger this sum is, the farther the node is,
the Closeness Centrality is defined as an inverse of the sum.

To axiomatize this measure, we propose three axioms.
First axiom, called Bridge, states that out of two endpoints
of a bridge the bigger centrality has a node from a bigger
part of the graph, i.e., the bigger component in a graph with
this bridge removed. Roughly speaking, in such a case, the
“center” of a graph is expected to be located in a bigger
component; that is why a node from the bigger component
is more “central” in the graph.

Bridge: For every graph, G = (V,E), and edge {v, u}
such that K(G− {v, u}) = {Cv, Cu}, v ∈ Cv , u ∈ Cu,

|Cv| ≤ |Cu| ⇔ Fv(G) ≤ Fu(G).

The next axiom – Cut-vertex Average – relates the
centrality of a cut-vertex to the centrality of this node in
parts it connects. Specifically, if (V1, E1) and (V2, E2)
are two graphs with only one joint node, v = V1 ∩ V2,
then the centrality of v in the sum of these graphs is half
of the harmonic average of centralities in both graphs:
H(x, y) = 2/( 1x + 1

y ); i.e., it is an inverse of the sum of
inverses of centralities in both graphs.

Cut-vertex Average: For every two graphs G1 =
(V1, E1) and G2 = (V2, E2) such that V1 ∩ V2 = {v}
and Fv(G1), Fv(G2) > 0:

Fv(V1∪V2, E1∪E2) =
1

2
·H(Fv(V1, E1), Fv(V2, E2)).

In the next section, we propose an additive version of this
axiom, called Cut-vertex Additivity, which will be a basis of
the class of Additive Distance-Based Centralities.

Finally, we propose a simple axiom saying that in a
connected graph centrality should be positive.

Positivity: For every connected graph G = (V,E), |V | >
1, and node v ∈ V : Fv(G) > 0.

The following theorem shows that, in the class of
distance-based centralities, Bridge, Cut-vertex Average, and
Positivity characterize the Closeness Centrality up to an
affine transformation of distances.

Theorem 2. If a distance-based centrality F satisfies
Bridge, Cut-vertex Average and Positivity, then there exists
α, β ∈ R, α ≥ 0, α + β > 0 such that for every connected
graph G = (V,E) and node v ∈ V

Fv(G) =
1∑

u∈V \{v}(α · d(v, u) + β)
. (1)

Figure 3: The illustration for the proof of Theorem 2. Bridge
implies centralities of v∗ and u∗ are equal. From Cut-vertex
Average, we know that the centrality of v∗ is a combination
of centralities in Sv∗

k−1 and P v∗
k . Analogously, the centrality

of u∗ is a combination of centralities in Pu∗
k−1 and Sv∗

k . For
known centralities in a star this yields a recursive formula
for centralities in paths.

Proof. Assume F is a distance-based centrality that satisfies
Bridge, Cut-vertex Average and Positivity. Let us denote by
a, b ∈ R two centralities: a = Fv({v, u}, {{v, u}}) and b =
Fv({v, u, w}, {{v, u}, {u,w}}). We will prove that Fv(G)
in every connected graph is uniquely characterized based on
a and b. More formally, if F, F ′ satisfy both these equations
for some a, b ∈ R, then F (G) = F ′(G) for every connected
graph G. To this end, first consider a star, Sv∗

k , with k nodes,
the center of which is v∗. Based on Cut-vertex Average we
get a recursive formula for Fv∗(Sv∗

k ):

Fv∗(Sv∗
k )=

1

2
H(Fv∗(Sv∗

k−1),Fv∗({v∗, vk−1},{{v∗, vk−1}}))
with the borderline case: Fv∗(Sv∗

2 ) = a. From this formula,
we get that: Fv∗(Sv∗

k ) = a/(k − 1).
Now, consider the centrality of a leaf v1 in star Sv∗

k . Let w
be an additional node, not from the graph. From Move Edge
Distance and Cut-vertex Average we get the formula:

H(Fv1
(Sv∗

k ), Fv1
({v1, w}, {{v1, w}})) =

H(Fv1(S
v∗
k−1), Fv1({v1, w, vk−1}, {{v1, w}, {w, vk−1}}))

with the borderline cases Fv1
(Sv∗

2 ) = a and Fv1
(Sv∗

3 ) = b.
By solving this formula we get Fv1(S

v∗
k ) = ab/(a(k− 2)−

b(k − 3)).
Next, let us analyze paths. To this end, consider a graph

G∗ obtained by connecting star Sv∗
k−1 with Pu∗

k−1 by an
edge {v∗, u∗} (see Figure 3). From Bridge we know that
Fv∗(G∗) = Fu∗(G∗). Observe that v∗ added to Pu∗

k−1 forms
a path with k nodes: P v∗

k , and u∗ added to Sv∗
k−1 forms a

star with k nodes: Sv∗
k with uk−1 = u∗. Using Cut-vertex

Average for both nodes we get:

H(Fv∗(Sv∗
k−1), Fv∗(P v∗

k )) = H(Fu∗(Sv∗
k ), Fu∗(Pu∗

k−1)),

which based on calculated centralities in star gives us recur-
sive formula for P v∗

k , with the borderline cases Fv∗(P v∗
2 ) =

a and Fv∗(P v∗
3 ) = b. These conditions imply Fv∗(P v∗

k ) =
2ab/((k − 2)(k − 1)a− 2(k − 3)(k − 1)b).

Finally, consider arbitrary connected graph G = (V,E),
node v∗ ∈ V and let k be the distance to the farthest
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node from v∗, denoted by u∗. Consider a graph obtained
by adding path P v∗

k to G. Observe that when we remove
all edges of u∗ and add edge {uk, u

∗} no distances of node
v∗ will change. Thus, from the definition of distance-based
class and Cut-vertex Average we get:

H(Fv∗(G), Fv∗(P v∗
k )) = H(Fv∗(G− u∗), Fv∗(P v∗

k+1)),

with already defined borderline case for Fv∗(Sv∗
j ) for every

j ∈ N (all graphs with k = 1). Solving this, we get that for
every connected graph G = (V,E), |V | > 1, and v ∈ V :

Fv(G) =
1∑

u∈V \{v}(
a−2b
ab · d(v, u) + 3b−a

ab )
.

Consider α = a−2b
ab and β = 3b−a

ab . Since a > 0 from Posi-
tivity, we see that α + β = 1/a > 0. Moreover, we proved
that Fu(S

u
3 ) = a/2, so from the assumption and Bridge, we

get that b = Fv1
(Su

3 ) ≤ Fu(S
u
3 ) = a/2 and α = a−2b

ab ≥ 0.
Thus, we proved that if a distance-based centrality F satis-
fies Bridge, Cut-vertex Average and Positivity, then F satis-
fies (1) with α, β defined above. This concludes the proof of
Theorem 2.

For α = 1 and β = 0 (1) simplifies to the Closeness Cen-
trality. A corollary from Theorem 2 is the fact that to charac-
terize the Closeness Centrality we need to additionally spec-
ify the centralities of end-points of paths of length 2 and 3.
Corollary 3. If a distance-based centrality F satisfies
Bridge, Cut-vertex Average and Positivity and Fv(P

v
2 ) = 1

and Fv(P
v
3 ) = 1/3, then for every connected graph it is

equal to the Closeness Centrality.

Additive distance-based centralities

In this section, we propose a new class of centralities –
additive distance-based centralities. This class consists of
distance-based centralities in which the profit from each
node at a given distance is fixed.
Definition 2. For a sequence of real values: a =
(a1, a2, . . . , a∞), ai ∈ R the centrality F a

v is defined as

F a
v (G) =

∑
u∈V \{v}

ad(v,u),

for every graph G = (V,E). A distance-based centrality is
additive if it is equal to F a

v for some sequence a.
Table 1 lists centralities that belong to the class of additive

distance-based centralities.
If a distance-based centrality is additive, then the central-

ity of a cut-vertex equals the sum of centralities in each parts
it connects. We call this property Cut-vertex Additivity.

Cut-vertex Additivity: For every two graphs G =
(V1, E1), G2 = (V2, E2) such that V1 ∩ V2 = {v}:
Fv(V1 ∪ V2, E1 ∪ E2) = Fv(V1, E1) + Fv(V2, E2).

Interestingly, in the following theorem, we show that a
distance-based centrality is additive if and only if it satisfies
Cut-vertex Additivity.

Centrality a1 a2 · ak ak+1 · a∞
Degree 1 0 · 0 0 · 0
k-Step Reach 1 1 · 1 0 · 0
Comp.-Size 1 1 · 1 1 · 0
Decay 1 δ1 · δk−1 δk · 0
Harmonic 1 1

2 · 1
k

1
k+1 · 0

Table 1: Additive distance-based centralities.

Theorem 4. A distance-based centrality is additive iff it sat-
isfies Cut-vertex Additivity.

Proof. Any additive distance-based centrality satisfies Cut-
vertex Additivity. It remains to prove that if distance-based
centrality satisfies Cut-vertex Additivity, then it is additive.

Let F be a distance-based centrality that satisfies Cut-
vertex Additivity, G = (V,E) be a graph, and v ∈ V be
an arbitrary node. We will prove that:

Fv(G)=F a
v (G) for ak=

{
Fv(P

v
k+1)−Fv(P

v
k ) if k <∞

Fv({v, u}, ∅) if k =∞.
(2)

We will prove this by induction over the number of nodes
in the graph. If |V | = 1, then from Cut-vertex Additiv-
ity we get Fv(G) + Fv(G) = Fv(G) = 0, and (2) is
satisfied: Fv(G) =

∑
u∈V \{v} ad(v,u) = 0. Assume (2)

holds if |V | < n. Now, consider graph G = (V,E) with
|V | = n. Let u be the farthest node from v: d(v, u) = k
and k ≥ d(v, w) for every w ∈ V . If k = ∞, then
from Cut-vertex Additivity we immediately get Fv(G) =
Fv(G−u)+Fv({v, u}, ∅). Since Fv({v, u}, ∅) = a∞, from
the inductive assumption (2) is satisfied. Assume k <∞ and
consider graph G∗ obtained by adding a path graph P v

k to G
(see Figure 4). From Cut-vertex Additivity we get that:

Fv(G) + Fv(P
v
k ) = Fv(G

∗). (3)

Let us move u from its position in the graph G∗ to the end
of the path P v

k (formally, we remove edges of u and add the
edge {uk, u}). In so doing, we obtain a new graph such that
the distance from v to any node in the graph is the same.
Therefore, since F is a distance-based centrality, the cen-
trality of node v in this graph is the same. Using Cut-vertex
Additivity again we get:

Fv(G
∗) = Fv(G− u) + Fv(P

v
k+1). (4)

Figure 4: The illustration for the proof of Theorem 4. For
a distance-based centrality F the centralities of v in both
graphs are equal. For an arbitrary graph G with the farthest
node (u) at distance k, Cut-vertex Additivity implies that
Fv(G)+Fv(P

v
k ) = Fv(G−u)+Fv(P

v
k+1). Thus, the profit

from node at distance k is fixed and centrality is additive.
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From (3) and (4) we know that:
Fv(G)− Fv(G− u) = Fv(P

v
k+1)− Fv(P

v
k ).

Thus, removing u from G decreases the centrality of v by
ad(v,u) defined in (2). Using inductive assumption we get
(2). This concludes the proof of Theorem 4.

Combining Theorem 4 with Theorem 1 we get that the
class of additive distance-based centralities is characterized
by Anonymity, Add Edge Distance, Move Edge Distance,
and Cut-vertex Additivity.

In theory, any sequence (a1, a2, . . . , a∞) will character-
ize an additive distance-based centrality. However, central-
ities proposed and used in practice (see Table 1) are based
on sequences that share several common properties: (1) all
values are between 0 and 1; (2) a1 equals 1; (3) a∞ equals 0;
(4) all sequences are (weakly) decreasing. As we will show,
these properties correspond to two known axioms from the
literature – Normalization and Monotonicity.

We begin with Normalization proposed by Skibski et
al. (2016). Normalization specifies boundaries for the
centrality – 0 and (|V | − 1) – where the minimum value
should be obtained by isolated nodes and maximal – by the
center of a star.

Normalization: For every graph, G = (V,E), and every
node v ∈ V , we have:

(a) Fv(G) ∈ [0, |V | − 1];

(b) Fv(G) = 0 where v is isolated in G;

(c) Fv(G) = |V |−1 where G is a star with v in the center.

Monotonicity axiom is a part of Sabidussi’s axiom (A4)
(Sabidussi 1966). Here, we state it in the form proposed
by Skibski et al. (2016). Monotonicity requires that adding
an edge does not decrease the centrality of any node.

Monotonicity: For every graph, G = (V,E), v, u, w ∈ V

Fw(G+ {v, u}) ≥ Fw(G).

The following proposition presents conditions imposed
by Normalization and Monotonicity on sequence a.
Proposition 5. An additive distance-based centrality F a

satisfies:
- Normalization iff a1 = 1, a∞ = 0, and ai ∈ [0, 1] for

every i ∈ {2, 3, . . .};
- Monotonicity iff a1 ≥ a2 ≥ . . . ≥ a∞.

Unlike Normalization, most axioms impose only relation
between elements of a, but do not indicate specific values.
The following proposition states that for every centrality
there exists at most one centrality equal to it up to an affine
transformation that satisfies Normalization. That is why, in
what follows, we will axiomatize centrality measures up to
an affine transformation and use Normalization only to pin-
point a specific centrality.
Definition 3. We say that an additive distance-based cen-
trality F a is equal to F a′

up to an affine transformation if
there exists α, β ∈ R such that ak = α · a′k + β for every
k ∈ {1, 2, . . .} ∪ {∞}.

Proposition 6. For every additive distance-based centrality
there exists at most one centrality equal to it up to an affine
transformation that satisfies Normalization.

The Degree and Component-Size Centralities

In this section, we propose an axiomatization of the Degree
Centrality and the Component-Size Centrality. To this end,
we consider two axioms from the literature – Fairness and
Gain-Loss. The former one, proposed by Myerson (1977),
states that the profit of an edge is the same for both its
adjacent nodes. The later one, proposed as an alternative to
Monotonicity, states that the sum of centralities does not
change if an edge is added to a connected component in the
graph (Sosnowska and Skibski 2017).

Fairness: For every graph G = (V,E) and every v, u∈V
Fv(G+ {v, u})− Fv(G) = Fu(G+ {v, u})− Fu(G).

Gain-Loss: For every graph, G = (V,E), and every
v, u ∈ C ∈ K(G)∑

w∈V
Fw(G+ {v, u}) =

∑
w∈V

Fw(G).

There exists a number of centralities that satisfy both
properties. In fact, Fairness is satisfied by a large class
of separable game-theoretic centralities (Skibski, Michalak,
and Rahwan 2017). On the other hand, Gain-Loss is satis-
fied by many game-theoretic centralities based on the My-
erson value. In particular, the Attachment Centrality sat-
isfies both axioms (Skibski et al. 2016). Interestingly, in
Theorems 7 and 8 we prove that every additive distance-
based centrality that satisfies Fairness is equal to the Degree
Centrality (up to affine transformation) and every additive
distance-based centrality that satisfies Gain-Loss is equal to
the Component-Size Centrality (up to affine transformation).

Theorem 7. An additive distance-based centrality satisfies
Fairness iff it is equal to the Degree Centrality up to an affine
transformation. If it also satisfies Normalization, then it is
equal to the Degree Centrality.

Theorem 8. An additive distance-based centrality satisfies
Gain-Loss iff it is equal to the Component-Size Centrality up
to an affine transformation. If it also satisfies Normalization,
then it is equal to the Component-Size Centrality.

The k-Step Reach Centrality

The k-Step Reach Centrality is a middle-point between the
Degree Centrality and the Component-Size Centrality. As
we will show in this section, it can be characterized by
using the same axioms – Fairness and Gain-Loss – but ex-
tended/limited to the neighbourhood of a node. Specifically,
k-Fairness states that if (k − 1)-neighbourhoods of two
nodes do not overlap, then adding an edge does not affect
the sum of centralities of these neighbourhoods. On the
other hand, k-Gain-Loss states that if adding an edge does
no affect (k − 1)-neighbourhood of any node, then the sum
of centralities in the graph does not change.
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k-Fairness: For every graph G = (V,E) and every e =
{v, u} ⊆ V such that N<k

G (v) ∩N<k
G (u) = ∅:∑

w∈N<k
G (v)

Fw(G+e)−Fw(G) =
∑

w∈N<k
G (u)

Fw(G+e)−Fw(G).

k-Gain-Loss: For every graph, G = (V,E), and every
v, u ∈ V such that N<k

G (w) = N<k
G+{v,u}(w) for every

w ∈ V : ∑
w∈V

Fw(G+ {v, u}) =
∑
w∈V

Fw(G).

We define k-Fairness and k-Gain-Loss based on (k − 1)-
neighbourhood, as in the (k−1)-neighbourhood nodes from
k different distances are considered: distance 0, 1, . . . , (k −
1). In result, 1-Fairness is equivalent to Fairness and ∞-
Gain-Loss is equivalent to Gain-Loss. The following theo-
rems characterize the conditions imposed by k-Fairness and
k-Gain-Loss.

Proposition 9. An additive distance-based centrality F a

satisfies:

- k-Fairness iff ai = aj for every i, j ∈ {k+1, k+2, . . .}∪
{∞};

- k-Gain-Loss iff ai = aj for every i, j ∈ {1, 2, . . . , k−1}.
Proof (sketch). (k-Fairness, ⇒): Let F a be an additive
distance-based centrality that satisfies k-Fairness. We will
prove that ai = aj for every i, j ∈ {k+1, k+2, . . .}∪{∞}.
Consider graph G = ({u1, . . . , u2k+m, w}, {{ui, ui+1} :
i ∈ {1, . . . , 2k+m−1}}∪{{uk, w}}), v = u1, u = u2k+m

(see Figure 5 for an illustration). We will also consider
graph G + {v, u}. Observe that only the distances to node
w are significant. Adding edge {v, u} does not affect dis-
tances of nodes from N<k

G (v). Thus, by analyzing distances
from N<k

G (u) to w we get:
∑2k+m

i=2k+�m/2+1	 a3k+m+1−i =∑2k+m
i=2k+�m/2+1	 ai−k+1. Using induction over m it boils

down to ak+1 = ak+m+1 for every m ∈ N+. To prove that
a∞ = ak+1 we consider a path P v

k+1 with an isolated node.
(k-Fairness, ⇐): Assume ai = aj for every i, j ∈

{k + 1, k + 2, . . .} ∪ {∞}. We will prove that F a satis-
fies k-Fairness. Let G = (V,E) be a graph, v, u ∈ V
be two nodes such that N<k

G (v) ∩ N<k
G (u) = ∅ and de-

note G′ = G + {v, u}. Consider node w from N<k
G (v) and

node t such that the distance between w and t is shorter
in G′ than in G. If dG′(w, t) > k, then from the assump-
tion adG′ (w,t) = adG(w,t) and the difference of centralities
of node w in k-Fairness condition equals 0. Otherwise, if
dG′(w, t) ≤ k, then t must be in N<k

G (u) and the expression
adG′ (w,t) − adG(w,t) appears both as the profit of (k−1)-
neighbourhood of v and of u.

(k-Gain-loss,⇒): omitted due to space constraints.
(k-Gain-loss, ⇐): Assume ai = aj for every 1 ≤ i, j <

k. We will prove that F a satisfies k-Gain-loss. Fix graph
G = (V,E), G′ = G + {v, u} and assume adding the
edge {v, u} to E does not affect (k − 1)-neighbourhood of

Figure 5: The illustration for the proof of Proposition 9.
Adding edge {v, u} does not affect distances from N<k

G (v)

to node w, but do affect distances from N<k
G (u) to node w.

Considering different m shows ak+1 = ak+m+1 for m > 0.

any node. By contradiction, assume there exist two nodes,
w, t ∈ V , for which dG(w, t) > dG′(w, t) and adG(w,t) �=
adG′ (w,t). Since ai = aj for every 1 ≤ i, j < k and from
the fact that (k − 1)-neighbourhood of t does not change
we know that dG(w, t) > dG′(w, t) ≥ k. Consider a path
p = (u1, u2, . . . , us) between w and t in graph G′, i.e.,
u1 = w and us = t. Since adding the edge {v, u} has de-
creased the distance between nodes w and t, nodes v, u must
appear on the path. Without loss of generality, assume that
um = v and um+1 = u. If m ≥ k, then it can be shown
that the (k − 1)-neighbourhood of um−k+2 has changed. If
m < k, then the (k − 1)-neighbourhood of node uk has
changed – node u1 is at distance k− 1 in G′ and was farther
in G. In both cases we get the contradiction.

In result, we get the following characterization of the k-Step
Reach Centrality.

Theorem 10. An additive distance-based centrality satisfies
k-Fairness and (k + 1)-Gain-Loss iff it is equal to the k-
Step Reach Centrality up to an affine transformation. If it
also satisfies Normalization, then it is equal to k-Step Reach
Centrality.

The Decay Centrality

The last centrality measure considered by us is the Decay
Centrality. To this end, we propose an axiom named Leaf
Proportionality. Let v be an isolated node and consider a
graph obtained by adding an edge between v and some node
u ∈ V \ {v}. Leaf Proportionality states the centrality of
v in the new graph minus the profit from a single edge is
proportional to the centrality of u in the original graph.

Leaf Proportionality: There exists α ∈ (0, 1) such that
for every graph, G = (V,E), an isolated node v ∈ V
and node u ∈ V \ {v}

Fv(G+ {v, u})− Fv(V, {{v, u}}) = α · Fu(G).

Theorem 11. An additive distance-based centrality satisfies
Leaf Proportionality iff it is equal to the Decay Centrality
multiplied by a scalar. If it also satisfies Normalization, then
it is the Decay Centrality.

Related Work

Since the seminal work by Sabidussi (1966), there have been
an extensive literature on axiomatizing centrality measures.
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See (Koschützki et al. 2005b) and (Boldi and Vigna 2014,
Section 4.4) for an overview.

In a related work, Bloch, Jackson, and Tebaldi (2016)
propose several nodal statistics which are vectors of data
that describes the position of a node in the network. One
of such statistic is a vector of distances to other nodes:
(|N1

G(v)|, |N2
G(v)|, . . .). The authors’ main claim is that the

classic centrality measures differ solely in terms of vectors
of statistics and not in the manner in which they process that
information. Our claim can be considered orthogonal, as we
studied a large class of centralities based on the same nodal
statistic (called neighbourhood statistic) and highlighted the
differences in a way that they process this information.

As far as we know, in this paper we provided the first
axiomatization of the Closeness Centrality and Reach Cen-
trality. There is a couple of papers that axiomatize other
distance-based centralities. van den Brink et al. (2008), De-
quiedt and Zenou (2014), and Skibski et al. (2016) proposed
different axiomatizations of the Degree Centrality. Boldi and
Vigna (2014) proposed three axioms and checked that they
are satisfied only by the Harmonic Centrality but did not
provide characterization results. Finally, in an unfinished
manuscript, Garg (2009) characterized the Degree, Decay
and Harmonic Centralities (under the name the Closeness
Centrality). Two axioms used by Garg are Breadth-First
Search, which states the centrality in a graph is equal to the
centrality in a breadth-first search tree, and C-Additivity that
explicitly states that the profit of a node at a given distance
is constant. These axioms combined are equivalent to our
definition (but not the axiomatization) of additive distance-
based centralities.

Conclusions

In this paper, we axiomatized distance-based centralities and
its most prominent representative – the Closeness Centrality.
Furthermore, we axiomatized the class of additive distance-
based centralities and with additional axioms provided ax-
iomatizations of the Degree, Reach, Component-Size, and
Decay Centralities. In our future work, we plan to axiom-
atize the Harmonic Centrality and extend our approach to
edge-weighted graphs, which will result in a continuous, not
discrete function. We also plan to study the connection be-
tween additive distance-based centralities and methods of
evaluating candidates scores based on similar score vectors
in social choice theory.
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Koschützki, D.; Lehmann, K. A.; Tenfelde-Podehl, D.; and Zlo-
towski, O. 2005b. Advanced centrality concepts. In Network Anal-
ysis, volume 3418 of Lecture Notes in Computer Science. Springer.
83–111.
Myerson, R. B. 1977. Graphs and cooperation in games. Mathe-
matical Methods of Operations Research 2(3):225–229.
Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999. The pager-
ank citation ranking: bringing order to the web. Stanford InfoLab.
Rochat, Y. 2009. Closeness centrality extended to unconnected
graphs: The harmonic centrality index. In ASNA, number EPFL-
CONF-200525.
Sabidussi, G. 1966. The centrality index of a graph. Psychometrika
31(4):581–603.
Skibski, O.; Rahwan, T.; Michalak, T. P.; and Yokoo, M. 2016.
Attachment centrality: An axiomatic approach to connectivity in
networks. In Proceedings of 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 168–176.
Skibski, O.; Michalak, T. P.; and Rahwan, T. 2017. Axiomatic char-
acterization of game-theoretic network centralities. In Proceedings
of 31st AAAI Conference on Artificial Intelligence (AAAI), 698–
705.
Sosnowska, J., and Skibski, O. 2017. Attachment centrality for
weighted graphs. In Proceedings of 26th International Joint Con-
ference on Artificial Intelligence (IJCAI), 416–422. AAAI Press.
van den Brink, R.; Borm, P.; Hendrickx, R.; and Owen, G. 2008.
Characterizations of the β-and the degree network power measure.
Theory and Decision 64(4):519–536.

1225


