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Abstract

Apart from the principles and methodologies inherited from
Economics and Game Theory, the studies in Algorithmic
Mechanism Design typically employ the worst-case anal-
ysis and approximation schemes of Theoretical Computer
Science. For instance, the approximation ratio, which is
the canonical measure of evaluating how well an incentive-
compatible mechanism approximately optimizes the objec-
tive, is defined in the worst-case sense. It compares the per-
formance of the optimal mechanism against the performance
of a truthful mechanism, for all possible inputs.
In this paper, we take the average-case analysis approach,
and tackle one of the primary motivating problems in Algo-
rithmic Mechanism Design – the scheduling problem (Nisan
and Ronen 1999). One version of this problem which includes
a verification component is studied by Koutsoupias (2014). It
was shown that the problem has a tight approximation ratio
bound of (n + 1)/2 for the single-task setting, where n is
the number of machines. We show, however, when the costs
of the machines to executing the task follow any indepen-
dent and identical distribution, the average-case approxima-
tion ratio of the mechanism given in (Koutsoupias 2014) is
upper bounded by a constant. This positive result asymptoti-
cally separates the average-case ratio from the worst-case ra-
tio, and indicates that the optimal mechanism for the problem
actually works well on average, although in the worst-case
the expected cost of the mechanism is Θ(n) times that of the
optimal cost.

Introduction

The field of Algorithmic Mechanism Design (Nisan and Ro-
nen 1999; Nisan et al. 2007; Procaccia and Tennenholtz
2009) focuses on optimization problems where the input
is provided by self-interested agents that participate in the
mechanism by reporting their private information. These
agents are utility maximizers so they may misreport their
private information to the mechanism, if that results in a
more favorable outcome to them. Given the reports from
the agents as input, a mechanism is a function that maps
the input to allocations and payments if monetary transfers
are allowed. The goal of the mechanism designer is twofold.
On the one hand, the objective is to motivate agents to al-
ways report truthfully, regardless of what strategies the other
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agents follow; on the other hand, the aim is to optimize
a specific objective function that measures the quality of
the outcome, subject to a polynomial-time implementabil-
ity constraint. However, these objectives are usually incom-
patible. Therefore, often we need to trade one objective to
achieve the other. One standard approach is to maintain the
truthfulness property of the mechanism, and approximately
optimize the specific objective function (e.g., social welfare
maximization, revenue maximization, or cost minimization).
The approximation ratio is the canonical measure for evalu-
ating the performance of a truthful mechanism towards this
goal. It compares the performance of the truthful mecha-
nism against the optimal mechanism which is not necessar-
ily truthful, over all possible inputs.

The approximation ratio is defined in the worst-case sense
which resembles the worst-case time complexity of the al-
gorithms. These are strong but very pessimistic measures.
On the one hand, if it is possible to obtain a small worst-
case ratio, then it is a very solid guarantee on the perfor-
mance of the mechanism no matter what input is provided.
On the other hand, if it turns out to be a large value, then
one can hardly judge the performance of the mechanism as
it may perform well on most inputs and perform poorly on
only a few inputs. To address this issue, Deng, Gao, and
Zhang (2017) propose an alternative measure, the average-
case approximation ratio, that compares the performance of
the truthful mechanism against the optimal mechanism, av-
eraged over all possible inputs when they follow a certain
distribution. Although average-case analysis is usually more
complex than the worst-case analysis, it provides a different
measure.

In this paper, we study the problem of scheduling un-
related machines without money. Scheduling is one of the
primary problems in algorithmic mechanism design. In the
general setting, the problem is to schedule a set of tasks
to n unrelated machines with private processing times, in
order to minimize the makespan. The machines (alterna-
tively, speaking of the agents in game theoretical settings)
are rational and want to minimize their execution time. They
may achieve this by misreporting their processing times to
the mechanism. No monetary payments are allowed in this
problem. The objective is to design truthful mechanisms
with good approximation ratio. One important version of the
problem is studied by (Koutsoupias 2014) in which the ma-
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chines are bound by their declarations. More specifically, in
case a machine declares a longer time than its actual time
for a task and it is allocated the task, then in practice its
processing time must be the declared value. This is in the
spirit that machines have been observed during the execu-
tion of the task and cannot afford to be caught lying about
the execution times (an unaffordable penalty would apply).
One can consider this as a monitoring model of the prob-
lem and it is more complex than some other models. Kout-
soupias (2014) devises a truthful-in-expectation mechanism
which achieves the tight bound of n+1

2 for one task, and gen-
eralizes to n(n+1)

2 for multiple tasks when the objective is
minimizing makespan and n+1

2 when the objective is mini-
mizing social cost. We note that, the tight bound instance is
obtained when the ratio of the minimum value of the pro-
cessing times against the maximum value of the processing
times approaches 0. Obviously this instance is very unlikely
to occur in practice. Therefore, it would be interesting to un-
derstand how well the optimal mechanism given in (Kout-
soupias 2014) performs on average, when the instances are
chosen from a certain distribution.

Our contribution

This paper provides a fresh view of the performance of the
mechanism developed by Koutsoupias (2014). In particular,
we show the following:
• The average-case approximation ratio of the mechanism

devised by Koutsoupias (2014) is upper bounded by a
constant, no matter which distribution is given.

In contrast, the worst-case approximation ratio of the mech-
anism shown in (Koutsoupias 2014) is n+1

2 which is asymp-
totically different.

A major criticism of the average-case analysis is that the
results usually depend on the assumptions about the distribu-
tion of inputs, and these are not guaranteed to hold in prac-
tice. Even for the same mechanism, when it is applied to
different application areas, the real-world distribution may
vary. For example, Deng, Gao, and Zhang (2017) show that
their average-case result holds for a uniform distribution; the
positive results in the Bayesian analysis of auctions usually
need to assume that the hazard rate function is monotone
non-decreasing. In this paper, we develop a powerful proof
that works for any i.i.d distribution. This is extraordinary in
the average-case analysis literature, even in the more estab-
lished space such as the analysis of time complexity of algo-
rithms. Our results imply that, although the worst-case ap-
proximation ratios of the known mechanisms are quite neg-
ative, the average-case approximation ratios are rather posi-
tive.

Related work

The field of Algorithmic Mechanism Design was initiated by
Nisan and Ronen (1999) and is further enriched by Procaccia
and Tennenholtz (2009) to approximate mechanism design
without money. For a more detailed investigation, we refer
the reader to Nisan et al. (2007).

The scheduling problem has been extensively studied.
However, after nearly two decades, we still have little

progress in resolving this challenge. The known approxi-
mation ratio upper bounds are rather negative, and there is
a large gap between the lower bounds and upper bounds.
For the model presented by (Nisan and Ronen 1999) where
payments are allowed to facilitate designing truthful mech-
anisms, the best known upper bound is given in their orig-
inal paper and is achieved by allocating each task indepen-
dently using the classical VCG mechanism, while the best
known lower bound is 2.61 (Koutsoupias and Vidali 2013).
Ashlagi, Dobzinski, and Lavi (2012) prove that the upper
bound of n is tight for anonymous mechanisms. For ran-
domized mechanisms, the best known upper bound is n+1

2
shown by (Mu’alem and Schapira 2007). For the special
case of related machines, where the private information of
each machine is a single value, Archer and Tardos (2001)
give an randomized 3-approximation mechanism. Lavi and
Swamy (2009) show a constant approximation ratio for the
special case that the processing times of each task can take
one of two fixed values. Yu (2009) generalizes this result
to two-range-values, while together with (Lu and Yu 2008)
and (Lu 2009), they show constant bounds for the case of
two machines. For the setting that payments are not allowed,
Koutsoupias (2014) first considers the setting that the ma-
chines are bound by their declarations. This is influenced
by the notion of impositions that appears in (Fotakis and
Tzamos 2013) for the facility location problems, as well
as the notion of verification that appears in (Auletta et al.
2009). Penna and Ventre (2014) present a general construc-
tion of collusion-resistant mechanisms with verification that
return optimal solutions for a wide class of mechanism de-
sign problems, including the scheduling problem. The mech-
anism presented in (Koutsoupias 2014) has a tight approx-
imation ratio bound of n+1

2 for the single-task setting; by
running the mechanism independently on multiple tasks a
tight bound of n+1

2 can be achieved for social cost mini-
mization and an upper bound of n(n+1)

2 can be achieved
for the makespan minimization. Kovács, Meyer, and Ven-
tre (2015) further apply mechanism design with monitoring
techniques to the truthful RAM allocation problem. There
are some works on characterizing truthful mechanisms in
scheduling problems, such as (Kovács and Vidali 2015),
as well as scheduling with uncertain execution time, such
as (Conitzer and Vidali 2014).

In (Deng, Gao, and Zhang 2017), the authors propose to
study the average-case and smoothed approximation ratios,
and conduct these analyses on the one-sided matching prob-
lem. They show that, although the asymptotically best truth-
ful mechanism for the problem is random priority and its
worst-case approximation ratio is bounded by Θ(

√
n), ran-

dom priority has a constant average-case approximation ra-
tio when the inputs follow a uniform distribution, and it has
a constant smoothed approximation ratio.

Notably, the analysis of average-case approximation ratio
takes a similar but fundamentally different approach to the
Bayesian analysis. In the Bayesian auction design literature
(Chawla and Sivan 2014; Hartline and Lucier 2010), the fo-
cus is on how well a truthful mechanism can approximately
maximize the expected revenue, when instances are taken
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from the entire input space. More specifically, the dominant
approach in the study of Bayesian auction design is the ratio
of expectations. A more detailed comparison of the two met-
rics will be given in the next section after their definitions are
given.

Preliminaries

In the problem of scheduling unrelated machines without
payment, there are a set of self-interested machines (alter-
natively, speaking of self-interested agents in game theoret-
ical settings) and a set of tasks. The general setting com-
prises n machines and m tasks. In this paper we consider
the setting of a single task. The machines are lazy and pre-
fer not to execute any tasks. There are no monetary tools
to incentivise machines to execute tasks. Machine i needs
time (or cost) ti to execute the task, i ∈ [n]. These ti’s are
independent to each other. There could be two different ob-
jectives. One is to allocate the task to machines so that the
makespan is minimized; the other is to allocate the task so
that the social cost is minimized. The makespan is the total
length of the schedule, and the social cost is the sum of all
agents’ costs. In the single-task setting, these two objectives
are identical. Obviously, allocating the task to the machine
with minimum execution time is the optimal solution. How-
ever, the mechanism has no access to the values ti. Instead,
each machine reports an execution time t̃i to the mechanism,
where t̃i is not necessarily equal to ti, ∀i ∈ [n]. A mecha-
nism is a (possibly randomized) algorithm which computes
an allocation based on the declarations t̃i of the machines.
Denote the output of the mechanism by p = (pi)i∈[n], where
pi is an indicator variable in deterministic mechanisms and
is the probability of machine i getting allocated to execute
the task in randomized mechanisms. We follow the standard
literature and consider the case that machines are bound by
their reports. That is, the cost of machine i for the task is
max{ti, t̃i}. So in case a machine i declares t̃i ≥ ti and it
is allocated the task, then its actual cost is the declared value
t̃i and not ti. This is in the spirit that machines are being
observed during the execution of the task and cannot afford
to be caught lying about the execution times (a high penalty
would apply). Therefore, the expected cost of machine i is
ci = ci(ti, t̃) = pi(t̃)max(ti, t̃i). In approximate mecha-
nism design, we restrict our interest to the class of truthful
mechanisms. A mechanism is truthful if for any report of
other agents, the expected cost ci of agent i is minimized
when t̃i = ti. We note that this weak notion of truthful-
ness, truthful-in-expectation, enables us to consider a richer
class of mechanisms than universal truthfulness. However,
as mentioned in the Introduction, even with this rich class
of truthful mechanisms, the performance of these mecha-
nisms is still very limited in terms of approximation ratio.
The canonical measure of efficiency of a truthful mechanism
M is the worst-case approximation ratio,

rworst(M) = sup
t∈T

SCM(t)

SCOPT(t)
,

where SCOPT(t) = minp∈P
∑n

i=1 ci is the optimal social
cost which is essentially the minimum ti, for all i ∈ [n];

SCM(t) is the social cost of the mechanism M on the input
t; and T is the input space. This ratio compares the social
cost of the truthful mechanism M against the social cost of
the optimal mechanism OPT over all possible inputs t.

In (Koutsoupias 2014), the author devises the following
randomized mechanism.

Mechanism M: Given the input t = (t1, . . . , tn), without
loss of generality, let the values of ti’s be in ascending order
0 < t1 ≤ t2 ≤ · · · ≤ tn. Then the allocation probabilities
are

p1 =
1

t1

∫ t1

0

n∏
i=2

(
1− y

ti

)
dy,

pk =
1

t1tk

∫ t1

0

∫ y

0

∏
i=2,...,n

i �=k

(
1− x

ti

)
dxdy, for k �= 1.

Note that this is a symmetric mechanism, so it suffices to
describe it when 0 < t1 ≤ t2 ≤ · · · ≤ tn. It is shown
in (Koutsoupias 2014) that this mechanism is truthful and
achieves an approximation ratio tight bound of n+1

2 .
Analogously to the definition of the average-case approx-

imation ratio of mechanisms for social welfare maximiza-
tion in (Deng, Gao, and Zhang 2017), we define it for social
cost minimization as follows:

raverage(M) = Et∼D

[
SCM(t)

SCOPT(t)

]
,

where the input t = (t1, . . . , tn) is chosen from a distri-
bution D. Hence, the metric we study in this paper is the
expectation of the ratio.

Comparison with the Bayesian Approach

In Bayesian mechanism design (Chawla and Sivan 2014;
Hartline and Lucier 2010), there is also a prior distribution
from which the agent types come from. However, the ob-
jective is to characterize the maximum ratio (for some given
distribution of the agent types) of the expected social welfare
(or social cost) of a truthful mechanism over the expected so-
cial welfare (or social cost) of the optimal mechanism. So,
the metric in the study of the Bayesian approach is the ratio
of expectations. That is, the objective is to characterize the
ratio r in the following formula,

r · E [SCOPT(t)] ≤ E [SCM(t)] .

Therefore, in Bayesian approach, the optimal mechanism
is in respect of the entire input space. In other words, it out-
puts the optimal solution in expectation, when the inputs run
over the entire prior distribution. In contrast, in the analysis
of average-case approximation ratio, the optimal mechanism
is in respect of each individual input instance. So, if we in-
terpret the optimal mechanism as an adversary to the truthful
mechanism, this adversary can take different actions in each
round.

In light of this difference, also due to the fact that the
expectation of the ratio is a nonlinear function of the two
random variables, the analysis of average-case approxima-
tion ratio introduces more technical challenges. In some spe-
cific scenarios, a constant average-case approximation ratio
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would imply a constant approximation ratio under Bayesian
approach.

Average-case Approximation Ratio
In this section we show that the average-case approximation
ratio of the mechanism M is upper bounded by a constant,
when the inputs ti’s follow any independent and identical
distribution D[tmin,∞), where tmin is the minimum pro-
cessing time for the task.

Let h be a constant, and denote event A = {tn
2

≤
h · tmin}. So, it corresponds to the case that the n

2 -th or-
der statistic of the inputs ti’s is less than or equal to h · tmin.
Firstly, we show that if A is true, then the social cost of the
mechanism M is upper bounded by a constant times t1.
Lemma 1 For any constant h > 0, given that event A holds,
we have

SCM(t) ≤ (2h+ 1)t1.

Proof: The expected cost of the mechanism M is

SCM(t) =
n∑

i=1

pi · ti =
∫ t1

0

n∏
i=2

(
1− y

ti

)
dy

+
n∑

k=2

1

t1

∫ t1

0

∫ y

0

∏
i=2,...,n

i �=k

(
1− x

ti

)
dxdy

Since 1 − y
ti

≤ 1 for any y ∈ [0, t1] , i = 2, . . . , n, we can
simply bound the first term by∫ t1

0

n∏
i=2

(
1− y

ti

)
dy ≤

∫ t1

0

1dy = t1

Because event A holds, i.e., tn
2

≤ h · tmin, we have∏
i=2,...,n

i �=k

(
1− x

ti

)
≤

(
1− x

h·tmin

)n
2 −2

· 1
n
2 , ∀k =

2, . . . , n. So we can bound the second term as follows.

n∑
k=2

1

t1

∫ t1

0

∫ y

0

∏
i=2,...,n

i �=k

(
1− x

ti

)
dxdy

≤
n∑

k=2

1

t1

∫ t1

0

∫ y

0

(
1− x

h · tmin

)n
2 −2

· 1n
2 dxdy

≤ n− 1

t1

∫ t1

0

∫ y

0

(
1− x

h · t1

)n
2 −2

dxdy

=
n− 1

t1

∫ t1

0

(
2ht1
n− 2

− 2ht1
n− 2

(
1− y

ht1

)n
2 −1

)
dy

=
n− 1

t1

[
2ht21
n− 2

+
4h2t21

n(n− 2)

((
1− 1

h

)n
2

− 1

)]

≤ n− 1

n− 2
· 2ht1

< 2h · t1
So, SCM(t) =

∑n
i=1 pi · ti ≤ (2h+ 1)t1. �

Since SCOPT(t) = t1, we get the following Corollary.

Corollary 1 When event A holds, we have

Et∼D

[
SCM(t)

SCOPT(t)

]
≤ 2h+ 1.

Obviously, Lemma 1 and Corollary 1 hold regardless of
the distribution.

Secondly, we show that there exists a constant h such that
event A occurs with a large probability. Intuitively, the larger
h is, the higher probability that event A occurs. We will need
the following Lemma to find such an h.

Lemma 2 For any n > 1, we have
(

n
n/2

)
≤ e

π
√
n
·2n, where

e is the base of the natural logarithm.

Proof: According to the estimation by (Robbins 1955),

n! =
√
2πnn+ 1

2 e−n+r(n),

where 1
12n+1 < r(n) < 1

12n . Here we only need a looser
bound to prove our lemma, i.e.,
√
2πnn+ 1

2 e−n < n! <
√
2πnn+ 1

2 e−n+ 1
12n < nn+ 1

2 e−n+1.

We have(
n

n/2

)
=

n!

(n2 )!(
n
2 )!

≤
e
√
n(ne )

n(√
2π n

2

(
n
2e

)n
2

)2 =
e

π
√
n
· 2n

�
Next we show that event A can occur with a large proba-

bility, with a properly choosing h.

Lemma 3 For any n > 1, there exists a constant h, such
that F (htmin) ≥ 11

12 , and we have

Pr[A] ≥ 1− e

2π
· 1
n

Proof: Since event A = {tn
2
≤ h · tmin}, the probability

that event A occurs can be calculated by

Pr[A] = Pr[tn
2
≤ h · tmin]

=
n∑

k=n
2

(
n

k

)
(F (htmin))

k
(1− F (htmin))

n−k

= 1−
n
2 −1∑
k=0

(
n

k

)
(F (htmin))

k
(1− F (htmin))

n−k

(1)

Since (1− F (htmin))
n−k ≤ (1− F (htmin))

n/2,
(
n
k

)
≤(

n
n/2

)
, k = 0, · · · , n

2 − 1, and (F (htmin))
k
< 1, we get

(1) ≥ 1−
n
2 −1∑
k=0

(
n

n/2

)
(1− F (htmin))

n
2

= 1− n

2

(
n

n/2

)
(1− F (htmin))

n
2

≥ 1− n

2
· e

π
√
n
· 2n · (1− F (htmin))

n
2 (2)
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By choosing h such that F (htmin) ≥ 11
12 , we get

(2) ≥ 1− n

2
· e

π
√
n
· 2n ·

(
1

12

)n
2

= 1− e

2π
·
√
n · 3−n

2

≥ 1− e

2π
· 1
n

The last inequality is due to 3n ≥ n3, ∀n > 1.
Therefore, Pr[A] ≥ 1− e

2π · 1
n . �

We can then bound the probability of the case that the
expected cost of the mechanism M is larger than (2h+1)t1.

Lemma 4 When event A holds, and for the choice of h in
the above lemma, we have

Pr [SCM(t) > (2h+ 1)t1] <
e

2π
· 1
n
.

Proof: According to Lemma 1, event A implies
SCM(t) ≤ (2h+ 1)t1, so we have

Pr[A] ≤ Pr[SCM(t) ≤ (2h+ 1)t1]

Hence,

1− Pr[A] ≥ Pr[SCM(t) > (2h+ 1)t1]

According to Lemma 3, we have

1− Pr[A] ≤ e

2π
· 1
n

So,

Pr [SCM(t) > (2h+ 1)t1] <
e

2π
· 1
n

�
We have established necessary building blocks. By care-

fully choosing the parameter h, we can partition the val-
uation space into two sets: {SCM(t) ≤ (2h + 1)t1} and
{SCM(t) > (2h+ 1)t1}. Last, we will use Corollary 1 and
Lemma 4 to prove our main result. Essentially, Corollary 1
upper bounds the expected approximation ratio of the first
case and Lemma 4 upper bounds the probability of the sec-
ond case occurring. Note that in any case, the worst-case
ratio is upper bounded by n+1

2 according to (Koutsoupias
2014). By adding them up together, we obtain our upper
bound.

Theorem 1 For any distribution on [tmin,+∞), and a con-
stant h such that F (htmin) ≥ 11

12 , the average-case ap-
proximation ratio of the mechanism M is upper bounded by
2h+ 1.33. That is,

raverage = Et∼D

[
SCM(t)

SCOPT(t)

]
< 2h+ 1.33

Proof: It is easy to see that the above two sets are col-
lectively exhaustive and mutually exclusive, and Lemma 4
holds. So we have

raverage = Et∼D

[
SCM(t)

SCOPT(t)

]

≤ Pr [SCM(t) ≤ (2h+ 1)t1] · E
[

SCM(t)

SCOPT(t)

]
+

Pr [SCM(t) > (2h+ 1)t1] · E
[

SCM(t)

SCOPT(t)

]
≤ Pr [SCM(t) ≤ (2h+ 1)t1] · (2h+ 1)+

Pr [SCM(t) > (2h+ 1)t1] ·
n+ 1

2

≤ 1 · (2h+ 1) +
e

2π
· 1
n
· n+ 1

2

= 2h+ 1 +
e

4π
· n+ 1

n

≤ 2h+ 1 +
3e

8π
< 2h+ 1.33

Therefore, the average-case approximation ratio of the
mechanism M is upper bounded by 2h+ 1.33. �

In hindsight, when the costs of the machines ti’s follow
any heavy-tailed distribution, no matter how heavy is the
tail, the mechanism M has a constant average-case approx-
imation ratio bound. However, this was not intuitively clear
beforehand, as the social cost of the mechanism M depends
on how often the inputs contain large ti and how big they
are.

In the following, we give a few examples of the distribu-
tion to show the choice of h and the constant upper bounds
for these distributions.
Example 1: Pareto Distribution

The Pareto distribution is a power law distribution that
is widely used in the description of social, scientific, geo-
physical, actuarial, and many other types of observable phe-
nomena. According to the influential studies by (Arlitt and
Williamson 1996) and (Reed and Jorgensen 2004) as well
as the references therein, the distributions of the file size (of
web server workload and of Internet traffic which uses the
TCP protocol) match well with the Pareto distribution.

That is, for a random variable T chosen from this Pareto
distribution, the probability that T is smaller than a value t,
is given by

F (t) = Pr(T < t) =

{
1−

(
tmin

t

)α
t ≥ tmin

0 t < tmin

where α > 0 is the tail index of the distribution.
Note that in the proof of Theorem 1, the only place we

need to deal with the particular distribution is Lemma 3. So,
by handling the constant h for the Pareto distribution, we
obtain the following result.

Theorem 2 For the Pareto distribution, let h = 12
1
α . The

average-case approximation ratio of the mechanism M is
upper bounded by 2 · 12 1

α + 1.33.
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Proof: For the Pareto distribution, let h = 12
1
α . In Lemma

3, we would have

Pr[A] = Pr[tn
2
≤ h · tmin]

=
n∑

k=n
2

(
n

k

)
(F (htmin))

k
(1− F (htmin))

n−k

=

n∑
k=n

2

(
n

k

)(
1− 1

hα

)k (
1

hα

)n−k

= 1−
n
2 −1∑
k=0

(
n

k

)(
1− 1

hα

)k (
1

hα

)n−k

≥ 1−
n
2 −1∑
k=0

(
n

n/2

)(
1

hα

)n
2

= 1− n

2

(
n

n/2

)(
1

hα

)n
2

≥ 1− n

2
· e

π
√
n
· 2n

(
1

hα

)n
2

= 1− n

2
· e

π
√
n
· 2n

(
1

12

)n
2

= 1− e

2π
·
√
n · 3−n

2

≥ 1− e

2π
· 1
n

The rest of the proof follows the proof in Theorem 1. �
Example 2: Exponential Distribution

We then consider the case that machines’ costs ti’s are in-
dependent variables and follow a truncated Exponential dis-
tribution D[tmin,∞). That is, for a random variable T cho-
sen from this Exponential distribution, the probability that T
is smaller than a value t, is given by

F (t) = Pr(T < t) =

{
1− 1

eλt t ≥ tmin

0 t < tmin

where λ > 0 is the tail index of the distribution.

Theorem 3 For the Exponential distribution, let h =
1

λtmin
ln 12. The average-case approximation ratio of the

mechanism M is upper bounded by 2 · 1
λtmin

ln 12 + 1.33.

The proof is omitted here.
Example 3: Log-logistic Distribution

The log-logistic distribution is the probability distribution
of a random variable whose logarithm has a logistic distribu-
tion. It is similar in shape to the log-normal distribution but
has heavier tails. It is used in networking to model the trans-
mission times of data. The cumulative distribution function
is

F (t;α, β) =
tβ

αβ + tβ

where α > 0 is a scale parameter and β > 0 is a shape
parameter. For simplicity, we take α = 1 and have the fol-
lowing result.

Theorem 4 For the Log-logistic distribution, let h = 1
tmin

·
e

ln 11
β . The average-case approximation ratio of the mecha-

nism M is upper bounded by 2 · 1
tmin

· e ln 11
β + 1.33.

Conclusion and Future Work

In this paper, we extend the worst-case approximation ratio
analysis for the scheduling problem studied in (Koutsoupias
2014) to the average-case approximation ratio analysis. We
show that, when the costs of the machines are independent
and identically distributed, the average-case approximation
ratios of the optimal mechanism M have constant bounds,
which is asymptotically better than the worst-case approxi-
mation ratios. Our results offer some relief for applying the
mechanism M in practice, apart from the fact that in the
worst case the expected cost of the mechanism is Θ(n) times
of what the optimal cost is.

A lot of problems remain open. Firstly, as we employ the
worst-case analysis as a framework for comparing truthful
mechanisms, the average-case analysis is also a framework
for doing so. Although the mechanism M in (Koutsoupias
2014) is the best mechanism for the problem in terms of the
worst-case ratio, it is not clear whether there is any other
mechanism could be better than M in terms of average-case
ratio. In any attempts to comparing M and other mecha-
nisms, the specific distribution that the inputs follow matters,
as we have pointed out that the assumptions on the distribu-
tion are vital in the average-case analysis so the comparison
has to be done on the same distribution. There may not be a
mechanism that is universally best for any distribution.

Secondly, it would be interesting to show some lower
bounds for the average-case ratio of any truthful mechanism,
but one should expect some much more involved arguments
than their worst-case lower bound counterparts, and again,
very likely different distributions need to be handled differ-
ently.

One might query the smoothed analysis of the mechanism
M. We should note that, unlike the random priority mech-
anism studied in (Deng, Gao, and Zhang 2017) that has a
constant smoothed approximation ratio, the smoothed ratio
of the mechanism M would not be asymptotically different
from the worst-case ratio. To see this, the tight bound ex-
ample in the worst-case analysis of the mechanism M is ob-
tained when the ratio of the minimum value of the process-
ing times against the maximum value of the processing times
approaches 0, i.e., t1/tn → 0. Obviously, any small pertur-
bation around these inputs would not change the nature of
this fact.

Many more approximate mechanism design problems de-
serve average-case analysis to understand the nature of the
problems and the performance of the mechanisms.
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