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Abstract

A paper by Deng and Conitzer in AAAI’17 introduces dis-
armament games, in which players alternatingly commit not
to play certain pure strategies. However, in practice disarma-
ment usually does not consist in removing a strategy, but
rather in removing a resource (and doing so rules out all
the strategies in which that resource is used simultaneously).
In this paper, we introduce a model of disarmament games
in which resources, rather than strategies, are removed. We
prove NP-completeness of several formulations of the prob-
lem of achieving desirable outcomes via disarmament. We
then study the case where resources can be fractionally re-
moved, and prove a result analogous to the folk theorem that
all desirable outcomes can be achieved. We show that we can
approximately achieve any desirable outcome in a polyno-
mial number of rounds, though determining whether a given
outcome can be obtained in a given number of rounds remains
NP-complete.

Introduction

Computing game-theoretic solutions has long been a topic
of interest to AI researchers and other computer scientists. In
earlier days, the main focus was on computing Nash equilib-
ria (Gilboa and Zemel 1989; Porter, Nudelman, and Shoham
2008; Conitzer and Sandholm 2008; Daskalakis, Goldberg,
and Papadimitriou 2009; Chen, Deng, and Teng 2009).
While computing Nash equilibria remains a very active topic
of research, much of the recent work on computing game-
theoretic solutions done in the AI community has focused
on computing optimal strategies to commit to, also referred
to as Stackelberg strategies (Conitzer and Sandholm 2006;
von Stengel and Zamir 2010). Algorithms for computing
these solutions have been deployed in a variety of real-world
domains (Tambe 2011). All this work concerns models in
which one player commits, and then another responds to
the commitment. A recent exception is a paper by Deng and
Conitzer (2017), who show that sometimes, much more can
be achieved by allowing players to go back and forth, alter-
natingly committing not to play certain pure strategies. They
call the resulting games disarmament games.

In these disarmament games, there is a disarmament
phase before the players play the game. In a step of this
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phase, the current player can remove any of his pure strate-
gies in the normal-form game. Once players stop disarming,
the players play the normal-form game consisting of the re-
maining pure strategies. This results in a larger (extensive-
form) game that includes the disarmament phase, and the
goal is to identify desirable equilibria of this larger game,
which generally result in much better outcomes than the
equilibria of the game without disarmament.1 That is, we
try to have players disarm so as to achieve a better outcome,
but we must ensure that players are incentivized to take these
disarmament steps.

However, in real disarmament games, the removal of in-
dividual pure strategies would often be hard to achieve.
It is often possible to remove a resource (say, a particular
weapon), but doing so generally eliminates many strategies,
namely all those that involved the use of that resource. More-
over, removing resources does not allow one to remove the
pure strategy of not using any resources at all. Finally, even
in an environment where it is somehow possible to remove
individual pure strategies (i.e., subsets of resources), the
number of pure strategies is exponential. Moreover, Deng
and Conitzer (2017) only consider Nash equilibrium as the
solution concept, which may consist of incredible threats in
subgames of the extensive-form disarmament games. How-
ever, it is hard to generalize to subgame perfect equilibrium
when considering normal-form games since the computation
of Nash equilibrium in a normal-form game is already hard.

Motivated by these observations, in this paper, we directly
model the removal of resources instead of pure strategies. To
do so, we define multi-resource games, in which each player
has some resources, the use of which will impact the play-
ers differently. We then consider a disarmament model for
these games and investigate whether and how we can reach
desirable outcomes for several variants (requiring subgame
perfection or not and allowing fractional removals or not).

Example 1. Suppose that there are two players, 0 and 1.
Each of them has two resources, x and y. Using x results
in 1 utility for the player who plays it and −2 utility for the
opponent; using y results in 0 utility for the player who plays

1There will also always be an undesirable equilibrium of the
disarmament game where nobody disarms, but it seems reasonable
to believe that better equilibria will be played in practice, if they
can be identified.
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it and −2 utility for the opponent. Without disarmament, the
Pareto optimal equilibrium of this game is that both players
use only x, resulting in −1 utility for each.

However, with disarmament, it is possible to remove all
resources, so that both players end up with utility 0, a clear
Pareto improvement. To achieve this, we can use the follow-
ing disarmament schedule. First, player 0 removes x; then,
player 1 removes x and y; and finally, player 0 removes y.
This disarmament schedule can be sustained in an equilib-
rium of the larger disarmament game, because if player 1
decides to deviate from the schedule and not disarm, then 0
can play resource y, resulting in a utility of at most −1 for
player 1, lower than what 1 would obtain for not deviating.

Definitions

We first introduce multi-resource games and then define dis-
armament games based on the multi-resource games. We
only consider multi-resource games in which there are no
interactions between the resources, i.e., their effects on the
players’ utilities are additive. This restriction only strength-
ens the hardness results that we prove, because hardness re-
sults are stronger when they are proved in a more restricted
setting. The positive results for fractional disarmament that
we prove later in the paper can be generalized to hold under
a much weaker assumption than additivity, but we do not do
so here for the sake of readability.
Definition 1. A 2-player multi-resource game is defined by
G = 〈R0, R1, v0, v1〉. For each player b ∈ {0, 1}, his set of
resources is Rb and his strategy set is the power set 2Rb of
his resource set Rb. His valuation function is vb : R0∪R1 →
R, where vb(s) denotes player b’s valuation for resource s ∈
R0 ∪ R1. The utility ub(S0, S1) of player b when player 0
plays S0 ∈ 2R0 and 1 plays S1 ∈ 2R1 is

ub(S0, S1) =
∑

s∈S0∪S1

vb(s).

In multi-resource games, we have the following sim-
ple characterization of Nash equilibria, which allows us
to quickly compute a Nash equilibrium or even an opti-
mal Nash equilibrium. For convenience, let Pb = {s ∈
R0∪R1 | vb(s) > 0} be the set of resources that give player
b positive utility and let Nb = {s ∈ R0 ∪ R1 | vb(s) < 0}
be the set of resources that give player b negative utility.
Proposition 1. In a multi-resource game G =
〈R0, R1, v0, v1〉, the strategy profile (S0, S1) forms a
Nash equilibrium if and only if Rb ∩ Pb ⊆ Sb ⊆ Rb \ Nb

for b ∈ {0, 1}.
The game induced by T0 ⊆ R0 and T1 ⊆ R1 is the

two-player multi-resource game GT0,T1 = 〈T0, T1, v0, v1〉,
where v0 and v1 are restricted to T0 ∪ T1. As usual, we use
−b to denote the player other than b.

We now define the disarmament game GD(G) on top of
this multi-resource game. The remaining definitions in this
section very closely mirror (and are in some cases identi-
cal to) those in (Deng and Conitzer 2017), and so should be
seen as background rather than as a new contribution. The
main difference is that in that earlier work, specific strate-
gies of the normal-form game are removed, whereas in this

work, resources are removed (where the removal of a single
resource generally results in the elimination of many strate-
gies). We also consider subgame-perfect Nash equilibrium
in this paper.

The disarmament game consists of two stages, a disar-
mament stage and a game play stage. During the disarma-
ment stage, players alternatingly remove nonempty sets of
resources from R0 and R1. In the game play stage, triggered
when a player removes nothing, they play whatever multi-
resource game remains. We then consider the resulting game
as a perfect information extensive-form game. To be more
precise, we consider a game DAG rather than a game tree,
because multiple sequences of disarmaments may lead to the
same state. Also, we associate terminal nodes of this DAG
with multi-resource games, rather than (directly) with pay-
offs. This DAG still has exponential size, however, so we
never represent it explicitly. All of this is consistent with
prior work (Deng and Conitzer 2017).
Definition 2 (Disarmament Game). Given a multi-resource
game G = 〈R0, R1, v0, v1〉, the disarmament game GD(G)
is defined as an extensive-form game by the following.
• The set of disarmament actions A: {X0 | X0 � R0} ∪
{X1 | X1 � R1} ∪ {Play}, where Xb denotes the set of
resources to keep and Play denotes ending the disarma-
ment stage.

• The set of non-terminal nodes H: {[T0, T1, b] | T0 ⊆
R0, T1 ⊆ R1, b ∈ {0, 1}}, where T0 and T1 denote the
remaining resources and b denotes the player to move.

• The set of terminal nodes Z: {[T0, T1] | T0 ⊆ R0, T1 ⊆
R1}.

• The player selection function ρ : H → {0, 1}:
ρ([T0, T1, b]) = b.

• The available-actions function χ : H → 2A, where
χ([T0, T1, b]) = {Xb | Xb � Tb} ∪ {Play}. (Playing Xb

corresponds to keeping those resources.)
• The successor function γ : H ×A → H ∪ Z:

– γ([T0, T1, 0], X0) = [X0, T1, 1];
– γ([T0, T1, 1], X1) = [T0, X1, 0];
– γ([T0, T1, b],Play) = [T0, T1].

• The root of the game is root = [R0, R1, 0].
In the terminal nodes z = [T0, T1], player 0 and 1 play the
multi-resource game GT0,T1

, resulting in their final utilities.
Definition 3 (Strategy in GD). A strategy σb =
(α, β) for GD consists of disarmament strategy α ∈∏

h∈H | ρ(h)=b χ(h) for non-terminal nodes and play strat-
egy β ∈ ∏

[T0,T1]∈Z 2Tb (i.e., subsets of remaining re-
sources) for terminal nodes.

Note that we restrict our attention to deterministic behav-
ior during the disarmament stage (in which there is perfect
information).
Definition 4 (On-path history & outcome). For a strat-
egy profile (σ0, σ1) with σ0 = (α0, β0) and σ1 =
(α1, β1), denote the on-path history by P = (h0 =
root, h1, · · · , hK , hK+1 = z = [T0, T1]) where for all i,
γ(hi, αρ(hi)(hi)) = hi+1. The outcome of the strategy pro-
file (σ0, σ1) is (β0(z), β1(z)).
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We say an on-path history has length K if it contains K
non-terminal nodes, excluding the root. In a slight abuse of
notation, let ub(o) be player b’s utility for outcome o.

We are interested in two equilibrium notions, namely
Nash equilibrium (NE) and sub-game perfect Nash equilib-
rium (SPNE). A strategy profile (σ0, σ1) forms an NE if and
only if no player can increase his utility by deviating to an-
other strategy; and a strategy profile (σ0, σ1) forms an SPNE
if and only if no player can increase his utility starting from
any node by deviating to another strategy.

Deng and Conitzer (2017) shows that on-path histories of
a strategy profile can serve as certificates to check whether
a strategy profile forms a Nash equilibrium or not, placing
the equilibrium computation in NP, if one can compute the
security level for each player at each node of the game.
Definition 5 (Security level). The security level secb
for player b in a two-player multi-resource game G =
〈T0, T1, v0, v1〉 is the utility that player b can guarantee him-
self no matter how the other player plays. Formally,

secb(GT0,T1
) = max

βb∈2Tb

min
β−b∈2T−b

ub(βb, β−b)

Proposition 2. In a multi-resource game G =
〈T0, T1, v0, v1〉, the security level for player b is

secb(GT0,T1
) =

∑

s∈Pb∩Tb

vb(s) +
∑

s∈Nb∩T−b

vb(s)

Lemma 1 (Deng and Conitzer (2017)). P is an on-path
history induced by a Nash equilibrium strategy profile with
outcome o if and only if o is an equilibrium of the terminal
node in P and for each non-terminal node [T0, T1, b] ∈ P ,
secb(GT0,T1) ≤ ub(o).

Computing One Equilibrium

In disarmament games with resources, it is easy to compute
one SPNE of the disarmament game, which implies that it is
also easy to compute one NE.
Theorem 1. In a multi-resource game G =
〈R0, R1, v0, v1〉, given a Nash equilibrium strategy
profile (S0, S1) (without disarmament) with utility
u0(S0, S1) = u∗

0 and u1(S0, S1) = u∗
1, we can effi-

ciently construct a subgame perfect Nash equilibrium of the
corresponding disarmament game GD(G) with the same
utility (u∗

0, u
∗
1).

Proof. Because (S0, S1) is a Nash equilibrium, by Proposi-
tion 1 we have Rb ∩ Pb ⊆ Sb ⊆ Rb \ Nb for b ∈ {0, 1}.
Consider the following strategy profile: for each player b,

• for every non-terminal node, choose Play;
• for every terminal node [T0, T1], choose Tb ∩ Sb.

First, note that the players play an NE in every terminal
node. As for the non-terminal nodes [T0, T1, b], a deviation
must change the state to [Xb, T−b, 1 − b] with Xb � Tb.
Next, −b will choose Play, and subsequently −b will play
T−b ∩ S−b. But this is exactly what −b would have played
if b had not deviated; moreover, without deviating, b would
have best-responded to T−b ∩ S−b from within its resources
T0. Since Xb � Tb, b can do no better after deviating.

Computing Equilibrium with Specific Outcome

Therefore, we are interested in the computation of an equi-
librium that results in a particular outcome. We now define
the two computational problems:

Definition 6 (RESOURCE-DISARMC problem). In
RESOURCE-DISARMC (where C ∈ {NE, SPNE}) given a
disarmament game GD and an outcome o∗ = (β∗

0 , β
∗
1), the

objective is to determine whether there exists an equilibrium
(σ∗

0 , σ
∗
1) of type C such that the outcome is o∗.

We also consider a variation of the RESOURCE-DISARM
problem called K-RESOURCE-DISARM.

Definition 7 (K-RESOURCE-DISARMC problem). In K-
RESOURCE-DISARMC , given a disarmament game GD

and an outcome o∗ = (β∗
0 , β

∗
1), the objective is to determine

whether there exists an equilibrium (σ∗
0 , σ

∗
1) of type C such

that the outcome is o∗ and the length of its induced on-path
history is at most K.

RESOURCE-DISARMNE

For an on-path history with length K, the total number of
non-terminal nodes, excluding the root, is K. For K ≤ 2,
K-RESOURCE-DISARMNE is in P: since both players have
only one step to remove resources, it suffices to check the
path in which player b ∈ {0, 1} removes all resources from
Rb∩Pb, except the resources played in the outcome. We now
show that 3-RESOURCE-DISARMNE is weakly NP-hard by
a reduction from the SUBSET-SUM problem.

Lemma 2. 3-RESOURCE-DISARMNE is weakly NP-hard.
This remains true even if the input outcome o∗, if feasible,
would uniquely maximize welfare.

Note that the last condition implies that finding a welfare-
maximizing equilibrium of the disarmament game (rather
than being given a specific o∗ to achieve) is weakly NP-hard.

Proof. A SUBSET-SUM problem instance is defined by
K = 〈L, �w,W 〉, where L = [n]2 is a set of goods and
each good is associated with a positive value wi, indicating
good i has weight wi. The objective is to determine whether
there exists a subset L′ ⊆ L with total weight exactly W .
Let sumW =

∑n
i=1 wi; W.L.O.G, W < sumW . Given

a SUBSET-SUM instance, we construct a multi-resource
game G(K) = 〈R0, R1, v0, v1〉 as follows:

• R0 = [n] ∪ {∗}, R1 = {x, y};
• v0(i) = wi − ε and v1(i) = −wi − ε for all i ∈ [n];

moreover, v0(∗) = 0 and v1(∗) = −W ;
• v0(x) = −sumW − γ, v1(x) = sumW , v0(y) =
−sumW +W , and v1(y) = 0.

where γ, ε > 0 are sufficiently small. The target outcome is
o∗ = (∅, ∅), i.e., nobody uses any resources. (This does not
necessarily mean that they discarded all the resources.) The
condition in the theorem about maximizing welfare is satis-
fied with outcome o∗, because every resource gives negative
social welfare.

2Let [n] be the set {1, · · · , n}; as a special case, [0] = ∅.
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If there exists a solution L∗ to the SUBSET-SUM prob-
lem K, then the on-path history with h1 = [R0 \L∗, R1, 1],
h2 = [R0 \ L∗, {y}, 0] and h3 = [∅, {y}, 1] is induced by
a Nash equilibrium strategy profile with outcome o∗. One
can check this on-path history satisfies the requirement of
Lemma 1 by computing the security level of every non-
terminal node according to Proposition 2: at the root, player
0’s security level is −nε − γ − sumW + W < 0; at
h1, player 1’s security level is −(n − |L∗|)ε + sumW −
W − ∑

i∈L\L∗ wi ≤ −W +
∑

i∈L∗ wi = 0; at h2, player
0’s security level is −sumW + W +

∑
i∈L\L∗ wi − ε <

W − ∑
i∈L∗ wi = 0; and at h3 it is an equilibrium to play

(∅, ∅).
For the other direction, suppose there exists an on-path

history leading to o∗ induced by a Nash equilibrium strat-
egy profile. Note that (∅, ∅) cannot be a Nash equilibrium
in the induced game if for the terminal node z = [T0, T1],
L ∩ T0 �= ∅ or x ∈ T1. Suppose the state after player 0’s
first move is [R0 \ R′

0, R1, 1]. We first argue that ∗ �∈ R′
0.

For the sake of contradiction, suppose ∗ ∈ R′
0; then it must

be that R′
0 = {∗}, because otherwise sec1(GR0\R′0,R1

) >
sumW − ∑

i∈[n]\R′0(wi + γ) > 0. But, letting R′
1 de-

note what 1 discards next, it cannot be the case that x ∈
R′

1, because this would result in sec0(GR0\R′0,R1\R′1) ≥∑
i∈[n] wi − sumW + W − nε > 0. But we have al-

ready shown that player 1 needs to discard x at this point.
Hence we have our desired contradiction and can conclude
that R′

0 ⊆ [n].
Again using Lemma 1, we must have sec1(GR0\R′0,R1

) =
−W − (n − |R′

0|)ε +
∑

i∈R′0
wi ≤ 0, that is,

∑
i∈R′0

wi ≤
W + (n − |R′

0|)ε. As for player 1’s action in state [R0 \
R′

0, R1, 1], notice that player 1 cannot remove resources
x and y together; otherwise, the security level of player
0 will be larger than 0. Thus, player 1 must remove only
resource x at this turn, leading to state [R0 \ R′

0, {y}, 0].
Again using Lemma 1, we must have sec0(GR0\R′0,{y}) =
−∑

i∈R′0
wi +W − (n− |R′

0|)ε ≤ 0, that is,
∑

i∈R′0
wi ≥

W − (n − |R′
0|)ε. With sufficiently small ε, these two in-

equalities turn to
∑

i∈R′0
wi = W . Therefore, R′

0 is a solu-
tion to the SUBSET-SUM instance.

Although K-RESOURCE-DISARMNE is weakly NP-
hard, it can be solved using dynamic programming to obtain
a pseudopolynomial algorithm.
Theorem 2. K-RESOURCE-DISARMNE is weakly NP-
complete. This remains true even if the input outcome o∗,
if feasible, would uniquely maximize welfare.

When there exists no limitation on the number of rounds,
the problem becomes strongly NP-complete.
Theorem 3. RESOURCE-DISARMNE is strongly NP-
complete. This remains true even if the input outcome o∗,
if feasible, would uniquely maximize welfare.

Proof. A 3-PARTITION problem instance is defined by
a set of integers I = {w1, · · · , wq} with q divisible
by 3; the objective is to partition {1, · · · , q} into subsets
W1, · · · ,Wq/3 such that for each i,

∑
j∈Wi

wj = B where

B = (3/q)
∑q

j=1 wj . 3-PARTITION remains strongly NP-
complete even when we have B/4 < wj < B/2 for each
j, in which case we must have |Wi| = 3 for each i. We
reduce from this special case, also assuming W.L.O.G that
B > 0 (and hence all the wj are positive too). Construct a
multi-resource game G(I) = 〈R0, R1, v0, v1〉 as follows:

• R0 = [q] ∪ {x, y}, R1 = {z1, z2, · · · , zq/3} ∪ {∗};

• v0(i) = wi and v1(i) = −wi−γ for all i ∈ [q]; moreover,
v0(x) = 0, v1(x) = −B, v0(y) = ε−δ, and v1(y) = −δ;

• v0(zj) = −B − 3ε/q and v1(zj) = B for all j ∈ [q/3];
moreover, v0(∗) = −ε and v1(∗) = 0;

where ε/2 < δ < ε, 0 < γ, ε � B, and the target outcome
is o∗ = (∅, ∅).

The condition in the theorem about maximizing welfare
is satisfied with outcome o∗, again because every resource
gives negative social welfare.

If there exists a solution W ∗
1 , · · · ,W ∗

q/3 to the 3-
PARTITION instance I , then consider the on-path history
with h2k−1 = [R0 \ ⋃k

j=1 W
∗
j , R1 \ {z1, · · · , zk−1}, 1],

h2k = [R0 \
⋃k

j=1 W
∗
j , R1 \ {z1, · · · , zk}, 0] for 1 ≤ k ≤ q

and h2q+1 = [{x}, {∗}, 1]. We argue that this corresponds
to a a Nash equilibrium strategy profile with outcome o∗,
by checking that this on-path history satisfies the require-
ment of Lemma 1 by computing the security level at ev-
ery non-terminal node and appealing to Proposition 2. For
1 ≤ k ≤ q, at h2k−1, player 1’s security level is −(q/3 −
k+1)(B+3γ)− δ+(q/3− k+1)B < −δ; at h2k, player
0’s security level is (q/3−k)B−(q/3−k)(B+3ε/q)−δ =
−ε − δ + 3kε/q < 0; and at h2q+1, it is an equilibrium to
play (∅, ∅).

For the other direction, suppose there exists an on-path
history leading to o∗ induced by a Nash equilibrium strat-
egy profile. Note that (∅, ∅) cannot be a Nash equilibrium
in the induced game if for the terminal node z = [T0, T1],
([q]∪ {y})∩ T0 �= ∅ or {z1, z2, · · · , zq/3} ∩ T1 �= ∅. More-
over, it is without loss of generality to assume that player
1 removes strategy ∗ in his final disarmament round if he
does, since removing strategy ∗ earlier only increases player
0’s security level for certain non-terminal nodes. Similarly,
it is W.L.O.G to assume that player 0 removes strategy x in
his final disarmament round if he does.

Consider the first iteration, i.e., the first disarmament step
by both players. Suppose player 0 removes a subset R′

0, and
player 1 removes c ≥ 1 strategies from {z1, · · · , zq/3} (note
that both players have identical valuations for any of these).
After player 0’s move, by Lemma 1, the security level of
player 1 must satisfy −B+(q/3)∗B−δ−∑

i∈R0\R′0(wi+

γ) = −B − δ − (n − |R′
0|)γ +

∑
i∈R′0

wi ≤ 0, that
is,

∑
i∈R′0

wi ≤ B + δ + (n − |R′
0|)γ. Moreover, after

player 1’s move, the security level of player 0 must satisfy
(q/3 − c)(−B − 3ε/q) − δ +

∑
i∈R0\R′0 wi ≤ 0, that is,∑

i∈R′0
wi ≥ c(B + 3ε/q) − ε − δ. Combining the two in-

equalities (and the fact that c ≥ 1), by the choice of ε, δ
and the fact that B/4 < wi < B/2 for all i ∈ [q], we must
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have c = 1 and
∑

i∈R′0
wi = B exactly. Repeating this ar-

gument inductively, we can show that for each iteration j,
the subset Rj

0 of strategies removed by player 0 must sat-
isfy

∑
i∈Rj

0
wi = B and player 1 removes one strategy from

{z1, · · · , zq/3}. Thus, the subsets R1
0, · · · , Rq/3

0 constitute a
solution for the 3-PARTITION problem.

RESOURCE-DISARMSPNE

We now turn to the computation of SPNE. We first obtain
a version of Lemma 1 for the SPNE setting. Under SPNE,
the players can only play an NE of the remaining multi-
resource game even for the nodes not in the on-path history.
By Proposition 1, in an NE of a multi-resource game (with-
out disarmament), a player cannot use a resource that gives
himself negative utility. Hence, such a resource has no im-
pact at all under SPNE; in particular, it does not affect the
other player’s security level. (In contrast, in a non-subgame-
perfect NE of the disarmament game, the resource may be
used in parts of the disarmament game tree that are off the
path of play, constituting a non-credible threat, and thereby
help to implement a particular outcome.) Also, in an NE of
a multi-resource game, a player must use any resource that
provides himself positive utility. Hence, if such a resource
also gives the other player positive utility, while in an NE
of the disarmament game it is, off the path of play, possible
to avoid playing that resource in order to punish the other
player, this is not possible in an SPNE. We use the following
notation for the set of resources that −b will use to punish b
in SPNE:

Q−b(T−b) = (P−b ∩ T−b) ∪ (Nb ∩ (T−b \N−b)).

This is the union of the resources that −b must use to best-
respond in SPNE, and those that it is able to use in order to
punish b. Define the security level against a self-preserving
player (SLAP) as the maximum utility a player can guarantee
himself against a player that is not willing to use resources
that hurt himself.
Proposition 3. The SLAP for player b in a two-player multi-
resource game G = 〈T0, T1, v0, v1〉 is

SLAPb(GT0,T1
) =

∑

s∈Pb∩Tb

vb(s) +
∑

s∈Q−b(T−b)

vb(s)

Now, we are ready to prove a similar lemma as
Lemma 1 for the SLAP level. Using this, we can char-
acterize the computational complexity of 3-RESOURCE-
DISARMSPNE and RESOURCE-DISARMSPNE .
Lemma 3. P is an on-path history induced by a sub-
game perfect Nash equilibrium strategy profile with out-
come o if and only if o is an equilibrium of the terminal
node in P and for each non-terminal node [T0, T1, b] ∈ P ,
SLAPb(GT0,T1) ≤ ub(o).

Proof. “⇒”: If o is not an equilibrium of the terminal node
in P then we clearly do not have an SPNE. If there ex-
ists a non-terminal node h = [T0, T1, b] ∈ P such that
SLAPb(GT0,T1

) > ub(o), then at node h, player b can de-
viate to choose Play and then play the strategy Pb ∩ Tb in

the induced game. By Proposition 1, player −b must play a
strategy X−b for which P−b ∩ T−b ⊆ X−b ⊆ T−b \ N−b

in the induced game. Therefore, the utility of player b is∑
s∈Pb∩Tb

vb(s) +
∑

s∈X−b
vb(s) ≥ ∑

s∈Pb∩Tb
vb(s) +∑

s∈Q−b(T−b)
vb(s) = SLAPb(GT0,T1) > ub(o).

“⇐”: If o is an equilibrium of the terminal node in P
and for each non-terminal node h = [T0, T1, b] ∈ P ,
SLAPb(GT0,T1

) ≤ ub(o), consider a strategy profile that
specifies to:

• for nodes in the on-path history, choose the action to fol-
low the on-path history; and for every non-terminal node
not in the on-path history, choose Play;

• for each terminal node z = [Tb, T−b] not in P , player b
plays Qb(Tb) and player −b plays Q−b(T−b);

• for the terminal node z = [Tb, T−b] in P , both players
play according to o.

First, note that for any subgame rooted at an off-path node,
as in the proof of Theorem 1 (noting that Qb(Tb), Q−b(T−b)
form a Nash equilibrium of the multi-resource game
GTb,T−b

), the strategy profile forms a Nash equilibrium. As
for an on-path non-terminal node [Tb, T−b, b], if player b
deviates to choose Play, according to the definition of the
SLAP level, his utility is at most SLAPb(GTb,T−b

) in the
induced multi-resource game. If player b deviates to re-
move some resource, his utility can only decrease compared
to choosing Play immediately. Finally, the players play the
equilibrium o at the terminal node on the path.

Theorem 4. 3-RESOURCE-DISARMSPNE is weakly NP-
complete and RESOURCE-DISARMSPNE is strongly NP-
complete. These remain true even if the input outcome o∗, if
feasible, would uniquely maximize welfare.

Fractional Disarmament

We now turn our attention to fractional disarmament, where
resources are divisible and each player can reduce each re-
source by a fraction. In the previous section, the integral dis-
armament case, hardness results already appeared with two
players. It turns out that with fractional disarmament, we can
get certain positive results.

Example 2. We now modify Example 1 so that each player
only has resource x. Without resource y, it is impossible to
successfully disarm in the integral disarmament model, be-
cause once a player removes x, the other player has a strict
incentive to not remove his x.

However, in the fractional disarmament model, successful
disarmament is possible: at the k-th move of each player, he
removes an additional fraction 1/2k of resource x; in other
words, he keeps a fraction 1/2k of resource x after his k-
th move. Assuming player 0 moves first, after player 0’s k-
th move, the equilibrium utility for ending disarmament at
that point is (−3/2k, 0), while after player 1’s k-th move,
that utility is (−1/2k,−1/2k). Therefore, both players are
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incentivized to follow the path, and they can obtain utilities
arbitrarily close to (0, 0) after sufficiently many steps.3

The above example demonstrates that with fractional dis-
armament, we can achieve objectives that cannot be obtained
under integral disarmament. In fact, we show that any feasi-
ble outcome can be obtained for any number of players. Be-
fore formalizing our results, we first extend the definition of
two-player multi-resource games to a multi-player version.
Definition 8. An n-player multi-resource game is defined by
G = 〈R1, · · · , Rn, v1, · · · , vn〉, where player i’s resource
set is Ri and his valuation function is vi :

⋃n
j=1 Rj → R.

Given strategy profile (S1, · · · , Sn), the utility of player i is
computed as ui(S1, · · · , Sn) =

∑
s∈⋃n

j=1 Sj
vi(s).

For simplicity, assume Ri = [m] for all i ∈ [n] and let 0
(and 1) denote a vector of all zeroes (ones).

Fractional disarmament game We represent a remaining
game in a terminal node as p = [p1,p2, · · · ,pn]. Here,
pi ∈ [0, 1]m represents the vector of the remaining frac-
tions of player i’s resources. We use pi(s) to denote the s-th
element in the vector pi. In the induced game Gp, player
i can play any vector qi ∈ [0, 1]m with qi ≤ pi. The
utility function for player i becomes ui(q1,q2, · · · ,qn) =∑n

j=1

∑
s∈Rj

qj(s)vi(s).
To define a multi-player disarmament game GF

D(G), we
introduce another option for the players during the disarma-
ment stage (in addition to the options of Play and removing
resources), namely a Pass action, which keeps the disarma-
ment stage alive unless all players use it in sequence. The
reason we need this action once we move beyond two play-
ers is that sometimes, in order to make progress, two play-
ers alternatingly need to remove actions while a third player
waits and does nothing.

Therefore, we associate tuples {[p1, · · · ,pn, i, c] | ∀i ∈
[n],pi ∈ [0, 1]m; 0 ≤ c < n} with the non-terminal nodes,
where i denotes the player to move and c denotes a counter
that records the number of consecutive players that have
chosen Pass. The counter is initialized to 0 and when a player
chooses Pass, if the counter is less than n− 1, the counter is
incremented by 1 and the game turns to player i+1’s move;
if it is equal to n − 1, since all n players have chosen Pass,
the game stage will be triggered by choosing Pass. If a player
chooses to remove some fractions of resources, the counter
is reset to 0. As in the previous (integral) definition of disar-
mament games, player i can still choose Play to trigger the
game stage immediately, or choose a new vector of remain-
ing resource fractions from {p′

i | p′
i � pi,p

′
i ∈ [0, 1]m}.

The root of the game is [1, · · · ,1, 1, 0].
Strategies, on-path histories, and outcomes in fractional

disarmament games are defined similarly as before. Again,
3Of course, if it is common knowledge that a certain round k

is the last disarmament round, then the last player to move has
a strict incentive not to disarm at that point. This problem can be
circumvented by tossing a public coin in each round that with small
probability will signal the end of all disarmament, so that players
are never sure that their current step is the last. This is discussed in
more detail by Deng and Conitzer (2017).

let Pi = {s ∈ ⋃n
j=1 Rj | vi(s) > 0} be the set of re-

sources that give player i positive utility and Nj = {s ∈⋃n
j=1 Rj | vi(s) < 0} the set of resources that give player i

negative utility.

Security and SLAP level The notions of security level
and SLAP are modified accordingly. Formally, the security
level of player b in Gp is defined by

seci(Gp) =
∑

s∈Pi

pi(s)vi(s) +
∑

j �=i

∑

s∈Ni

pj(s)vi(s)

We use Qi,j = (Rj∩Pj)∪(Ni∩(Rj \Nj)) to represent the
set of resources that j will use to punish i in an SPNE. This
is the union of the resources that j must use to best-respond
in an SPNE, and those that it is able to use in order to punish
i. Then we have

SLAPi(Gp) =
∑

s∈Pi

pi(s)vi(s) +
∑

j �=i

∑

s∈Qi,j

pj(s)vi(s)

In fractional disarmament games, Lemmas 1 and 3 still hold.

A folk theorem

Deng and Conitzer (2017) shows a folk theorem that all de-
sirable utility profiles can be obtained for two-player disar-
mament games in which individual mixed strategies can be
removed.4 In that result, desirable utility profiles consist of
utility profiles that are feasible—i.e., the utility profile re-
sults from some mixed-strategy profile—and enforceable—
i.e., for each player, his utility is higher than his security
level at the root of the disarmament game. However, it is not
immediately clear how to extend this result to general games
with more than two players and/or SPNE. For fractional dis-
armament games based on multi-resource games, however,
we obtain a folk theorem result for games with more than
two players and obtain a better convergence rate to approx-
imate the equilibrium (whether NE or SPNE is the solution
concept).

In fractional disarmament games, a utility profile (u∗
1,· · · , u∗

n) is feasible if and only if there exists a strategy
profile (p∗

1, · · · ,p∗
n) such that for all i ∈ [n]: ui(p

∗
1,· · · ,p∗

n) = u∗
i and ∀j ∈ [m], p∗

i (j) > 0 only if vi(j) ≥ 0.5

Theorem 5. In fractional disarmament games GF
D(G), for

any vector of feasible utilities (u∗
1, · · · , u∗

n) and its associ-
ated strategy profile (p∗

1, · · · ,p∗
n) with u∗

i > seci(G1,··· ,1)
for all i ∈ [n], there exists a Nash equilibrium of GF

D(G)
such that the terminal node of its induced on-path history is
z = [p∗

1, · · · ,p∗
n] and the outcome o obtained at the termi-

nal node satisfies ui(o) = u∗
i for all i ∈ [n].

4The removal of mixed strategies is technically similar to the
fractional removal we consider here, though in our context it is
more natural to think about resources being divisible rather than
removing probability distributions.

5The folk theorem result in (Deng and Conitzer 2017) does not
require the last condition. It does not need to, because that folk the-
orem requires that it is possible to remove fractions of any strategy.
In our context, however, it is not possible to, say, remove the strat-
egy of playing no resources at all. This makes it impossible to get
someone to play a resource that harms himself.
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Theorem 6. In fractional disarmament games GF
D(G), for

any vector of feasible utilities (u∗
1, · · · , u∗

n) with u∗
i >

seci(G1,··· ,1) for all i ∈ [n], there exists a V ε (additive)-
Nash equilibrium of GF

D(G), where V is the sum of ab-
solute values associated with the resources, such that the
length of its on-path history is O(n2 log 1

ε ) and the outcome
o obtained at the terminal node satisfies satisfies ui(o) >
u∗
i − V ε for all i ∈ [n].

All the results appear in this section also hold for SPNE if
we replace the security level with the SLAP level.

A constructive proof

In this subsection, we provide a constructive proof for Theo-
rems 5 and 6 via an algorithm to generate the corresponding
on-path history. We first demonstrate an essential property
of fractional disarmament games.

Lemma 4. Given a multi-resource game and util-
ity profile (u∗

1, · · · , u∗
n) for every player i, let F =

{[p1, · · · ,pn] | ∀i ∈ [n],pi ∈ [0, 1]m, seci(Gp1,··· ,pn
) ≤

u∗
i }. Then, F is a convex set.

Given target utility profile (u∗
1, · · · , u∗

n) with correspond-
ing strategy profile (p∗

1, · · · ,p∗
n), let p′

i = 1 − p∗
i . We

introduce parameter θi for each player i, initialized to 1,
such that the vector of fractions of player i’s remaining re-
sources is pi = p∗

i +θip
′
i. For convenience, let Gθ

θ1,··· ,θn =
Gp∗1+θ1p′1,··· ,p∗n+θnp′n . Define an update function f :

fi(θ−i) = inf{θi ≥ 0 | ∀j, secj(Gθ
θi,θ−i

) ≤ u∗
j}

That is, given θ−i, function f returns the minimum θi such
that every player’s security level in the induced game is still
lower than or equal to his target utility. We now present the
algorithm to generate the on-path histories for Theorem 5
and 6. The idea behind the algorithm is to, in each stage,
decrease all players’ θi to the same value l, one by one, un-
til we achieve the desired ε. This avoids getting stuck at a
boundary but requires us to be conservative in choosing l.

Algorithm 1: Generate on-path strategy for feasible
utilities that exceed security levels

Input: A multi-resource game G, a target utility
profile (u∗

1, · · · , u∗
n) associated with its

strategy profile (p∗
1, · · · ,p∗

n), and the
approximation ratio ε

Output: An on-path history P for GF
D(G)

For all i ∈ [n], let p′
i = 1− p∗

i , θi = 1;
Let h0 = [1, · · · ,1, 1, 0], t = 0, l = 1;
while l > ε do

l = ((n− 1)l +maxi∈[n] fi(θ−i))/n;
for i : 1 to n do

θi = l; t = t+ 1;
ht = [p∗

1 + θ1p
′
1, · · · ,p∗

n + θnp
′
n, i+ 1, 0];

ht+1 = [p∗
1 + θ1p

′
1, · · · ,p∗

n + θnp
′
n];

return h;

Lemma 5. When setting ε = 0, Algorithm 1 produces an
on-path history that is part of a Nash equilibrium and in the
limit leads to the terminal node z = [p∗

1, · · · ,p∗
n].

Lemma 6. Given an ε, Algorithm 1 produces an on-path
history with length O(n2 log 1

ε ) that is part of a Nash
equilibrium and leads to a terminal node z = [p∗

1 +
ε′p′

1, · · · ,p∗
n + ε′p′

1] with ε′ < ε, in which ui(G
θ
ε′,··· ,ε′) >

u∗
i − V ε′ for all i ∈ [n].

Computation of minimum rounds

In the previous subsection, we showed that for any desirable
utility profile, there exists a Nash equilibrium of a fractional
disarmament game achieving those utilities; moreover, to
get an ε-approximate Nash equilibrium, we need at most
O(n2 log 1

ε ) rounds. Still, we may wish to compute the min-
imum number of rounds. In fractional disarmament games,
define the number of removal rounds of an on-path history
P = (h0 = root, h1, · · · , hK , hK+1 = z) to be6

K − |{hi ∈ P | χ(hi) = Pass}|
Definition 9 (MIN-FRACTIONAL-DISARMC problem). In
MIN-FRACTIONAL-DISARMC , given a fractional disarma-
ment game GD(G)F , an outcome o∗ = (p∗

1, · · · ,p∗
n), and

a parameter K, the objective is to determine whether there
exists an equilibrium (σ∗

1 , · · · , σ∗
n) of type C such that the

outcome is o∗ and the number of removal rounds in its in-
duced on-path history is at most K.

Unlike in the case where resources must be removed inte-
grally, the problem is easy with two players by implementing
the following scheme: (1) For a resource of player b ∈ {0, 1}
that gives non-negative utilities to both players, remove the
required fraction in player b’s first disarmament round; (2)
For a resource of player b ∈ {0, 1} that gives non-positive
utility to player b, remove the required fraction in player b’s
last disarmament round; (3) For the remaining resources that
give player b positive utility and player −b negative utility;
remove the resources i with larger −vb(i)/v−b(i) first until
the security level of player −b equals u−b(o

∗) in each round.
Theorem 7. In 2-player fractional disarmament games,
MIN-FRACTIONAL-DISARMNE is in P.

However, when we have multiple players, the problem be-
comes NP-complete.
Theorem 8. In n-player fractional disarmament games,
MIN-FRACTIONAL-DISARMNE is strongly NP-complete
even if each player has only one resource.

Future Research

Future research could investigate game representations other
than the multi-resource games defined here, for example
ones that allow interaction between resources. (Of course,
any representation scheme that can compactly represent all
multi-resource games will inherit the hardness results given
here.) It could also attempt to make the model more realistic
by modeling imperfect observation of others’ disarmament

6We do not count the Pass rounds because we can immediately
jump to the next player instead.
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actions, the possibility of re-arming (potentially at a cost),
etc. These steps all may contribute to these techniques be-
coming practical enough for real applications.
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