
It Takes (Only) Two: Adversarial Generator-Encoder Networks

Dmitry Ulyanov
Skolkovo Institute of Science and Technology, Yandex

dmitry.ulyanov@skoltech.ru

Andrea Vedaldi
University of Oxford

vedaldi@robots.ox.ac.uk

Victor Lempitsky
Skolkovo Institute of Science and Technology

lempitsky@skoltech.ru

Abstract

We present a new autoencoder-type architecture that is train-
able in an unsupervised mode, sustains both generation and
inference, and has the quality of conditional and unconditional
samples boosted by adversarial learning. Unlike previous hy-
brids of autoencoders and adversarial networks, the adversarial
game in our approach is set up directly between the encoder
and the generator, and no external mappings are trained in the
process of learning. The game objective compares the diver-
gences of each of the real and the generated data distributions
with the prior distribution in the latent space. We show that di-
rect generator-vs-encoder game leads to a tight coupling of the
two components, resulting in samples and reconstructions of a
comparable quality to some recently-proposed more complex
architectures.

Introduction

Deep (Variational) Auto Encoders (AEs (Bengio 2009) and
VAEs (Kingma and Welling 2014; Rezende, Mohamed, and
Wierstra 2014)) and deep Generative Adversarial Networks
(GANs (Goodfellow et al. 2014)) are two of the most popu-
lar approaches to generative learning. These methods have
complementary strengths and weaknesses. VAEs can learn a
bidirectional mapping between a complex data distribution
and a much simpler prior distribution, allowing both genera-
tion and inference; on the contrary, the original formulation
of GAN learns a unidirectional mapping that only allows
sampling the data distribution. On the other hand, GANs
use more complex loss functions compared to the simplistic
data-fitting losses in (V)AEs and can usually generate more
realistic samples.

Several recent works have looked for hybrid approaches
to support, in a principled way, both sampling and infer-
ence like AEs, while producing samples of quality compa-
rable to GANs. Typically this is achieved by training a AE
jointly with one or more adversarial discriminators whose
purpose is to improve the alignment of distributions in the
latent space (Brock et al. 2017; Makhzani et al. 2016), the
data space (Che et al. 2017; Larsen, Sønderby, and Winther
2015) or in the joint (product) latent-data space (Donahue,
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Krähenbühl, and Darrell 2017; Dumoulin et al. 2017). Alter-
natively, the method of (Zhu et al. 2016) starts by learning a
unidirectional GAN, and then learns a corresponding inverse
mapping (the encoder) post-hoc.

While compounding autoencoding and adversarial dis-
crimination does improve GANs and VAEs, it does so at
the cost of added complexity. In particular, each of these
systems involves at least three deep mappings: an encoder,
a decoder/generator, and a discriminator. In this work, we
show that this is unnecessary and that the advantages of au-
toencoders and adversarial training can be combined without
increasing the complexity of the model.

In order to do so, we propose a new architecture, called
an Adversarial Generator-Encoder (AGE) Network, that con-
tains only two feed-forward mappings, the encoder and the
generator, operating in opposite directions. As in VAEs, the
generator maps a simple prior distribution in latent space
to the data space, while the encoder is used to move both
the real and generated data samples into the latent space.
In this manner, the encoder induces two latent distributions,
corresponding respectively to the encoded real data and the
encoded generated data. The AGE learning process then con-
siders the divergence of each of these two distributions to the
original prior distribution.

There are two advantages of this approach. First, due to the
simplicity of the prior distribution, computing its divergence
to the latent data distributions reduces to the calculation of
simple statistics over small batches of images. Second, un-
like GAN-like approaches, real and generated distributions
are never compared directly, thus bypassing the need for
discriminator networks as used by GANs. Instead, the ad-
versarial signal in AGE comes from learning the encoder to
increase the divergence between the latent distribution of the
generated data and the prior, which works against the genera-
tor, which tries to decrease the same divergence (Figure 1).
Optionally, AGE training may include reconstruction losses
typical of AEs.

The AGE approach is evaluated on a number of standard
image datasets, where we show that the quality of generated
samples is comparable to that of GANs (Goodfellow et al.
2014; Radford, Metz, and Chintala 2016), and the quality of
reconstructions is comparable or better to that of the more
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complex Adversarially-Learned Inference (ALI) approach
of (Dumoulin et al. 2017), while training faster. We further
evaluate the AGE approach in the conditional setting, where
we show that it can successfully tackle the colorization prob-
lem that is known to be difficult for GAN-based approaches.

Other related work. Apart from the above-mentioned
approaches, AGE networks can be related to several other re-
cent GAN-based systems. Thus, they are related to improved
GANs (Salimans et al. 2016) that proposed to use batch-level
information in order to prevent mode collapse. The diver-
gences within AGE training are also computed as batch-level
statistics.

Another avenue for improving the stability of GANs has
been the replacement of the classifying discriminator with
the regression-based one as in energy-based GANs (Zhao,
Mathieu, and LeCun 2017) and Wasserstein GANs (Ar-
jovsky, Chintala, and Bottou 2017). Our statistics (the di-
vergence from the prior distribution) can be seen as a very
special form of regression. In this way, the encoder in the
AGE architecture can be (with some reservations) seen as
a discriminator computing a single number similarly to
how it is done in (Arjovsky, Chintala, and Bottou 2017;
Zhao, Mathieu, and LeCun 2017).

Adversarial Generator-Encoder Networks
This section introduces our Adversarial Generator-Encoder
(AGE) networks. An AGE is composed of two parametric
mappings: the encoder eψ(x), with the learnable parameters
ψ, that maps the data space X to the latent space Z , and the
generator gθ(z), with the learnable parameters θ, which runs
in the opposite direction. We will use the shorthand notation
f(Y ) to denote the distribution of the random variable f(y),
y ∼ Y .

The reference distribution Z is chosen so that it is easy to
sample from it, which in turns allow to sample gθ(Z) uncon-
ditionally be first sampling z ∼ Z and then by feed-forward
evaluation of x = gθ(z), exactly as it is done in GANs. In
our experiments, we pick the latent space Z to be an M -
dimensional sphere SM , and the latent distribution to be a
uniform distribution on that sphere Z = Uniform(SM ). We
have also conducted some experiments with the unit Gaus-
sian distribution in the Euclidean space and have obtained
results comparable in quality.

The goal of learning an AGE is to align the real data
distribution X to the generated distribution gθ(Z) while es-
tablishing a correspondence between data and latent samples
x and z. The real data distribution X is empirical and repre-
sented by a large number N of data samples {x1,x2, ...xN}.
Learning amounts to tuning the parameter ψ and θ to opti-
mize the AGE criterion, discussed in the next section. This
criterion is based on an adversarial game whose saddle points
correspond to networks that align real and generated data
distribution (g(Z) = X). The criterion is augmented with
additional terms that encourage the reciprocity of the encoder
e and the generator g.

Adversarial distribution alignment

The GAN approach to aligning two distributions is to define
an adversarial game based on a ratio of probabilities (Goodfel-

low et al. 2014). The ratio is estimated by repeatedly fitting
a binary classifier that distinguishes between samples ob-
tained from the real and generated data distributions. Here,
we propose an alternative adversarial setup with some advan-
tages with respect to GAN’s, including avoiding generator
collapse (Goodfellow 2017).

The goal of AGE is to generate a distribution g(Z) in data
space that is close to the true data distribution X . However,
direct matching of the distributions in the high-dimensional
data space, as done in GAN, can be challenging. We propose
instead to move this comparison to the simpler latent space.
This is done by introducing a divergence measure Δ(P‖Q)
between distributions defined in the latent space Z . We only
require this divergence to be non-negative and zero if, and
only if, the distributions are identical (Δ(P‖Q) = 0 ⇐⇒
P = Q).1 The encoder function e maps the distributions X
and g(Z) defined in data space to corresponding distributions
e(X) and e(g(Z)) in the latent space. Below, we show how
to design an adversarial criterion such that minimizing the
divergence Δ(e(X), e(g(Z))) in latent space induces the
distributions X and g(Z) to align in data space as well.

In the theoretical analysis below, we assume that encoders
and decoders span the class of all measurable mappings be-
tween the corresponding spaces. This assumption, often re-
ferred to as non-parametric limit, is justified by the univer-
sality of neural networks (Hornik, Stinchcombe, and White
1989). We further make the assumption that there exists at
least one “perfect” generator that matches the data distribu-
tion, i.e. ∃g0 : g0(Z) = X .

We start by considering a simple game with objective
defined as:

max
e

min
g
V1(g, e) = Δ( e(g(Z))‖e(X) ) . (1)

As the following theorem shows, perfect generators form
saddle points (Nash equilibria) of the game (1) and all saddle
points of the game (1) are based on perfect generators.
Theorem 1. A pair (g∗, e∗) forms a saddle point of the game
(1) if and only if the generator g∗ matches the data distribu-
tion, i.e. g∗(Z) = X .

The proofs of this and the following theorems are given in
the supplementary material.

While the game (1) is sufficient for aligning distributions
in the data space, finding such saddle points is difficult due to
the need of comparing two empirical (hence non-parametric)
distributions e(X) and e(g(Z)). We can avoid this issue
by introducing an intermediate reference distribution Y and
comparing the distributions to that instead, resulting in the
game:

max
e

min
g
V2(g, e) = Δ(e(g(Z))‖Y )−Δ(e(X)‖Y ). (2)

Importantly, (2) still induces alignment of real and generated
distributions in data space:
Theorem 2. If a pair (g∗, e∗) is a saddle point of game
(2) then the generator g∗ matches the data distribution, i.e.
g∗(Z) = X . Conversely, if the generator g∗ matches the data

1We do not require the divergence to be a distance.
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Generator g
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g(Z)
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e(g(Z))
Latent space Data spaceg(Z) Data space

X

Figure 1: Our model (AGE network) has only two components: the generator g and the encoder e. The learning process adjusts
their parameters in order to align a simple prior distribution Z in the latent space and the data distribution X . This is done by
adversarial training, as updates for the generator aim to minimize the divergence between e(g(Z)) and Z (aligning green with
gray), while updates for the encoder aim to minimize the divergence between e(X) (aligning blue with gray) and to maximize
the divergence between e(g(Z)) and Z (shrink green “away” from gray). We demonstrate that such adversarial learning gives
rise to high-quality generators that result in the close match between the real distribution X and the generated distribution g(Z).
Our learning can also incorporate reconstruction losses to ensure that encoder-generator acts as autoencoder.

distribution, then for some e∗ the pair (g∗, e∗) is a saddle
point of (2).

The important benefit of formulation (2) is that, if Y is
selected in a suitable manner, it is simple to compute the diver-
gence of Y to the empirical distributions e(g(Z)) and e(X).
For convenience, in particular, we choose Y to coincide with
the “canonical” (prior) distribution Z. By substituting Y = Z
in objective (2), the loss can be extended to include recon-
struction terms that can improve the quality of the result. It
can also be optimized by using stochastic approximations as
described in section .

Given a distribution Q in data space, the encoder e and
divergence Δ(·‖Y ) can be interpreted as extracting statis-
tics F (Q) = Δ(e(Q)‖Y ) from Q. Hence, game (2) can be
though of as comparing certain statistics of the real and gen-
erated data distributions. Similarly to GANs, these statistics
are not fixed but evolve during learning.

We also note that, even away from the saddle point, the
minimization ming V2(g, e) for a fixed e does not tend to
collapse for many reasonable choice of divergence (e.g. KL-
divergence). In fact, any collapsed distribution would in-
evitably lead to a very high value of the first term in (2). Thus,
unlike GANs, our approach can optimize the generator for a
fixed adversary till convergence and obtain a non-degenerate
solution. On the other hand, the maximization maxe V2(g, e)
for some fixed g can lead to +∞ score for some divergences.

Encoder-generator reciprocity and reconstruction
losses

In the previous section we have demonstrated that finding a
saddle point of (2) is sufficient to align real and generated
data distributions X and g(Z) and thus generate realistically-
looking data samples. At the same time, this by itself does not
necessarily imply that mappings e and g are reciprocal. Reci-
procity, however, can be desirable if one wishes to reconstruct
samples x = g(z) from their codes z = e(x).

In this section, we introduce losses that encourage encoder
and generator to be reciprocal. Reciprocity can be measured

either in the latent space or in the data space, resulting in the
loss functions based on reconstruction errors, e.g.:

LX (gθ, eψ) = Ex∼X‖x− gθ
(
eψ(x)

) ‖1 , (3)

LZ(gθ, eψ) = Ez∼Z‖z− eψ
(
gθ(z)

) ‖22 . (4)

Both losses (3) and (4) thus encourage the reciprocity of
the two mappings. Note also that (3) is the traditional pix-
elwise loss used within AEs (L1-loss was preferred, as it is
known to perform better in image synthesis tasks with deep
architectures).

A natural question then is whether it is helpful to mini-
mize both losses (3) and (4) at the same time or whether
considering only one is sufficient. The answer is given by the
following statement:

Theorem 3. Let the two distributions W and Q be aligned
by the mapping f (i.e. f(W ) = Q) and let Ew∼W ‖w −
h
(
f(w)

) ‖22 = 0. Then, for w ∼ W and q ∼ Q, we have
w = h(f(w)) and q = f(h(q)) almost certainly, i.e. the
mappings f and h invert each other almost everywhere on
the supports of W and Q. Furthermore, Q is aligned with W
by h, i.e. h(Q) =W .

Recall that Theorem 2 establishes that the solution (saddle
point) of game (2) aligns distributions in the data space. Then
Theorem 3 shows that when augmented with the latent space
loss (4), the objective (2) is sufficient to ensure reciprocity.

Training AGE networks

Based on the theoretical analysis derived in the previous
subsections, we now suggest the approach to the joint training
of the generator in the encoder within the AGE networks. As
in the case of GAN training, we set up the learning process
for an AGE network as a game with the iterative updates over
the parameters θ and ψ that are driven by the optimization
of different objectives. In general, the optimization process
combines the maximin game for the functional (2) with the
optimization of the reciprocity losses (3) and (4).
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In particular, we use the following game objectives for the
generator and the encoder:

θ̂ = argmin
θ

(
V2(gθ, eψ̄) + λLZ(gθ, eψ̄)

)
, (5)

ψ̂ = argmax
ψ

(V2(gθ̄, eψ)− μLX (gθ̄, eψ)) , (6)

where ψ̄ and θ̄ denote the value of the encoder and generator
parameters at the moment of the optimization and λ, μ is
a user-defined parameter. Note that both objectives (5), (6)
include only one of the reconstruction losses. Specifically, the
generator objective includes only the latent space reconstruc-
tion loss. In the experiments, we found that the omission of
the other reconstruction loss (in the data space) is important
to avoid possible blurring of the generator outputs that is char-
acteristic to autoencoders. Similarly to GANs, in (5), (6) we
perform only several steps toward optimum at each iteration,
thus alternating between generator and encoder updates.

By maximizing the difference between Δ(eψ(gθ̄(Z))‖Z)
and Δ(eψ(X)‖Z), the optimization process (6) focuses on
the maximization of the mismatch between the real data distri-
bution X and the distribution of the samples from the gener-
ator gθ̄(Z). Informally speaking, the optimization (6) forces
the encoder to find the mapping that aligns real data distribu-
tionX with the target distribution Z, while mapping non-real
(synthesized data) gθ̄(Z) away from Z. When Z is a uniform
distribution on a sphere, the goal of the encoder would be to
uniformly spread the real data over the sphere, while cramp-
ing as much of synthesized data as possible together assuring
non-uniformity of the distribution eψ

(
gθ̄(Z)

)
.

Any differences (misalignment) between the two distribu-
tions are thus amplified by the optimization process (6) and
force the optimization process (5) to focus specifically on
removing these differences. Since the misalignment between
X and g(Z) is measured after projecting the two distributions
into the latent space, the maximization of this misalignment
makes the encoder to compute features that distinguish the
two distributions.

Experiments

We have validated AGE networks in two settings. A more
traditional setting involves unconditional generation and re-
construction, where we consider a number of standard image
datasets. We have also evaluated AGE networks in the condi-
tional setting. Here, we tackle the problem of image coloriza-
tion, which is hard for GANs. In this setting, we condition
both the generator and the encoder on the grayscale image.
Taken together, our experiments demonstrate the versatility
of the AGE approach.

Unconditionally-trained AGE networks

Network architectures: In our experiments, the generator
and the encoder networks have a similar structure to the
generator and the discriminator in DCGAN (Radford, Metz,
and Chintala 2016). To turn the discriminator into the encoder,
we have modified it to output an M -dimensional vector and
replaced the final sigmoid layer with the normalization layer
that projects the points onto the sphere.

Divergence measure: As we need to measure the diver-
gence between the empirical distribution and the prior distri-
bution in the latent space, we have used the following mea-
sure. Given a set of samples on the M -dimensional sphere,
we fit the Gaussian Normal distribution with diagonal covari-
ance matrix in the embedding M -dimensional space and we
compute the KL-divergence of such Gaussian with the unit
Gaussian as

KL(Q‖N (0, I)) = −1

2
+

1

M

M∑

j=1

s2j +m2
j

2
− log(sj) (7)

where mj and sj are the means and the standard deviations
of the fitted Gaussians along various dimensions. Since the
uniform distribution on the sphere will entail the lowest pos-
sible divergence with the unit Gaussian in the embedding
space among all distributions on the unit sphere, such diver-
gence measure is valid for our analysis above. We have also
tried to measure the same divergence non-parametrically us-
ing Kozachenko-Leonenko estimator (Kozachenko and Leo-
nenko 1987). In our initial experiments, both versions worked
equally well, and we used a simpler parametric estimator in
the presented experiments.

Hyper-parameters: We use ADAM (Kingma and Ba
2015) optimizer with the learning rate of 0.0002. We per-
form two generator updates per one encoder update for all
datasets. For each dataset we tried λ ∈ {500, 1000, 2000}
and picked the best one. We ended up using μ = 10 for
all datasets. The dimensionality M of the latent space was
manually set according to the complexity of the dataset. We
thus used M = 64 for CelebA and SVHN datasets, and
M = 128 for the more complex datasets of Tiny ImageNet
and CIFAR-10.

Results: We evaluate unconditional AGE networks on sev-
eral standard datasets, while treating the system (Dumoulin et
al. 2017) as the most natural reference for comparison (as the
closest three-component counterpart to our two-component
system). The results for (Dumoulin et al. 2017) are either
reproduced with the author’s code or copied from (Dumoulin
et al. 2017).

In Figure 2, we present the results on the challenging Tiny
ImageNet dataset (Russakovsky et al. 2015) and the SVHN
dataset (Netzer et al. 2011). We show both samples g(z) ob-
tained for z ∼ Z as well as the reconstructions g

(
e(x)

)

alongside the real data samples x. We also show the recon-
structions obtained by (Dumoulin et al. 2017) for comparison.
Inspection reveals that the fidelity of (Dumoulin et al. 2017)
is considerably lower for Tiny ImageNet dataset.

In Figure 3, we further compare the reconstructions of
CelebA (Liu et al. 2015) images obtained by the AGE net-
work, ALI (Dumoulin et al. 2017), and VAE (Kingma and
Welling 2014). Overall, the fidelity and the visual quality of
AGE reconstructions are roughly comparable or better than
ALI. Furthermore, ALI takes notoriously longer time to con-
verge than our method, and the reconstructions of ALI after
10 epochs (which take six hours) of training look consider-
ably worse than AGE reconstructions after 10 epochs (which
take only two hours), thus attesting to the benefits of having
a simpler two-component system.
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(a) Real images (b) AGE samples (c) [Real, AGE reconstr.] (d) [Real, ALI reconstr.]

Figure 2: Samples (b) and reconstructions (c) for Tiny ImageNet dataset (top) and SVHN dataset (bottom). The results of
ALI (Dumoulin et al. 2017) on the same datasets are shown in (d). In (c,d) odd columns show real examples and even columns
show their reconstructions. Qualitatively, our method seems to obtain more accurate reconstructions than ALI (Dumoulin et al.
2017), especially on the Tiny ImageNet dataset, while having samples of similar visual quality.

Next we evaluate our method quantitatively. For the model
trained on CIFAR-10 dataset we compute Inception score
(Salimans et al. 2016). The AGE score is 5.90± 0.04, which
is higher than the ALI (Dumoulin et al. 2017) score of 5.34±
0.05 (as reported in (Warde-Farley and Bengio 2017)) and
than the score of 4.36 ± 0.04 from (Salimans et al. 2016).
The state-of-the-art from (Warde-Farley and Bengio 2017)
is higher still (7.72 ± 0.13). Qualitative results of AGE for
CIFAR-10 and other datasets are shown in supplementary
material.

We also computed log likelihood for AGE and ALI on
the MNIST dataset using the method of (Wu et al. 2016)
with latent space of size 10 using authours source code. ALIs
score is 721 while AGEs score is 746. The AGE model is also
superior than both VAE and GAN, which scores are 705.375
and 328.772 respectively as evaluated by (Wu et al. 2016).

Finally, similarly to (Dumoulin et al. 2017; Donahue,
Krähenbühl, and Darrell 2017; Radford, Metz, and Chin-
tala 2016) we investigated whether the learned features are
useful for discriminative tasks. We reproduced the evaluation
pipeline from (Dumoulin et al. 2017) for SVHN dataset and
obtained 23.7% error rate in the unsupervised feature learn-
ing protocol with our model, while their result is 19.14%. At
the moment, it is unclear to us why AGE networks underper-
form ALI at this task.

Conditional AGE network experiments

Recently, several GAN-based systems have achieved very
impressive results in the conditional setting, where the latent
space is augmented or replaced with a second data space
corresponding to different modality (Isola et al. 2017; Zhu
et al. 2017). Arguably, it is in the conditional setting where
the bi-directionality lacking in conventional GANs is most
needed. In fact, by allowing to switch back-and-forth between
the data space and the latent space, bi-directionality allows
powerful neural image editing interfaces (Zhu et al. 2016;
Brock et al. 2017).

Here, we demonstate that AGE networks perform well in
the conditional setting. To show that, we have picked the
image colorization problem, which is known to be hard for
GANs. To the best of our knowledge, while the idea of ap-
plying GANs to the colorization task seems very natural, the
only successful GAN-based colorization results were pre-
sented in (Isola et al. 2017), and we compare to the authors’
implementation of their pix2pix system. We are also aware
of several unsuccessful efforts to use GANs for colorization.

To use AGE for colorization, we work with images in the
Lab color space, and we treat the ab color channels of an
image as a data sample x. We then use the lightness channel
L of the image as an input to both the encoder eψ(x|L) and
the generator gθ(z|L), effectively conditioning the encoder
and the generator on it. Thus, different latent variables z
will result in different colorizations x for the same grayscale
image L. The latent space in these experiments is taken to be
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Orig. AGE
10 ep.

ALI
10 ep.

ALI
100 ep.

VAE Orig. AGE
10 ep.

ALI
10 ep.

ALI
100 ep.

VAE Orig. AGE
10 ep.

ALI
10 ep.

ALI
100 ep.

VAE

Figure 3: Reconstruction quality comparison of our method with ALI (Dumoulin et al. 2017) and VAE (Kingma and Welling
2014). The first column in each set shows examples from the test set of CelebA dataset. In the other columns the reconstructions
for different methods are presented: column two for ours method, three and four for ALI and five for VAE. We train our model
for 10 epochs and compare to ALI, trained for the same number of epochs (column three). Importantly one epoch for our method
takes 3 times less time than for ALI. For a fair comparison we also present the results of ALI, trained till convergence.

three-dimensional.
The particular architecture of the generator takes the input

image L, augments it with z variables expanded to constant
maps of the same spatial dimensions as L, and then applies
the ResNet type architecture (He et al. 2016; Johnson, Alahi,
and Fei-Fei 2016) that computes x (i.e. the ab-channels). The
encoder architecture is a convolutional network that maps the
concatenation of L and x (essentially, an image in the Lab-
space) to the latent space. The divergence measure is the same
as in the unconditional AGE experiments and is computed
“unconditionally” (i.e. each minibatch passed through the
encoder combines multiple images with different L).

We perform the colorization experiments on Stanford Cars
dataset (Krause et al. 2013) with 16,000 training images
of 196 car models, since cars have inherently ambiguous
colors and hence their colorization is particularly prone to the
regression-to-mean effect. The images were downsampled to
64×64.

We present colorization results in Figure 4. Crucially, AGE
generator is often able to produce plausible and diverse col-
orizations for different latent vector inputs. As we wanted
to enable pix2pix GAN-based system of (Isola et al. 2017)
to produce diverse colorizations, we augmented the input to
their generator architecture with three constant-valued maps
(same as in our method). We however found that their system

effectively learns to ignore such input augmentation and the
diversity of colorizations was very low (Figure 4a).

To demonstrate the meaningfulness of the latent space
learned by the conditional AGE training, we also demonstrate
the color transfer examples, where the latent vector z1 =
eψ(x1|L1) obtained by encoding the image [x1, L1] is then
used to colorize the grayscale image L2, i.e. x2 = gθ(z1|L2)
(Figure 4b).

Conclusion

We have introduced a new approach for simultaneous learning
of generation and inference networks. We have demonstrated
how to set up such learning as an adversarial game between
generation and inference, which has a different type of ob-
jective from traditional GAN approaches. In particular the
objective of the game considers divergences between distri-
butions rather than discrimination at the level of individual
samples. As a consequence, our approach does not require
training a discriminator network and enjoys relatively quick
convergence.

We demonstrate that on a range of standard datasets, the
generators obtained by our approach provides high-quality
samples, and that the reconstrunctions of real data samples
passed subsequently through the encoder and the generator
are of better fidelity than in (Dumoulin et al. 2017). We have
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(a) Colorizations – AGE network (top rows) vs. pix2pix (Isola et al. 2017) (bottom rows) (b) Color transfer

Figure 4: (a) Each pane shows colorizations of the input grayscale image (emphasized) using conditional AGE networks (top
rows) and pix2pix (Isola et al. 2017) with added noise maps (bottom rows). AGE networks produce diverse colorizations, which
are hard to obtain using pix2pix. (b) In each row we show the result of color transfer using the conditional AGE network. The
color scheme from the first image is transferred onto the second image.

also shown that our approach is able to generate plausible and
diverse colorizations, which is not possible with the GAN-
based system (Isola et al. 2017).

Our approach leaves a lot of room for further experiments.
In particular, a more complex latent space distribution can
be chosen as in (Makhzani et al. 2016), and other divergence
measures between distributions can be easily tried.
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