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Abstract

We revisit the well-studied problem of constructing strat-
egyproof approximation mechanisms for facility location
games, but offer a fundamentally new perspective by con-
sidering risk averse designers. Specifically, we are interested
in the tradeoff between a randomized strategyproof mecha-
nism’s approximation ratio, and its variance (which has long
served as a proxy for risk). When there is just one facility,
we observe that the social cost objective is trivial, and de-
rive the optimal tradeoff with respect to the maximum cost
objective. When there are multiple facilities, the main chal-
lenge is the social cost objective, and we establish a surpris-
ing impossibility result: under mild assumptions, no smooth
approximation-variance tradeoff exists. We also discuss the
implications of our work for computational mechanism de-
sign at large.

1 Introduction

A facility location game consists of n players who are lo-
cated on the real line; xi denotes the location of player i. A
mechanism f takes the vector of player locations x ∈ R

n as
input, and outputs a vector of k facility locations y ∈ R

k.
The facilities are usually thought of as public goods, such
as libraries or police stations, but the facility location set-
ting can be interpreted in many other ways, e.g., player lo-
cations can represent opinions on a (quantitative) political
spectrum, and a facility can be a policy choice. The cost
of player i is her distance from the nearest facility, that is,
min�∈[k] |xi − y�|. We wish to minimize one of two natu-
ral objectives: the utilitarian objective of social cost, which
is the sum of individual costs; and Rawlsian objective of
maximum cost, which is, obviously, the maximum individ-
ual cost.

However, naı̈ve optimization of these objectives may lead
to undesirable strategic behavior on the part of the players.
For example, the optimal solution for the case of k = 1
(a single facility), and the maximum cost objective, is to
place the facility at the average of the leftmost and right-
most player locations, that is, at (mini xi+maxi xi)/2. The
problem is that, say, the rightmost player can drag the facil-
ity towards her true location by reporting a location that is
further to the right, thereby decreasing her cost. The goal is,
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therefore, to design facility location mechanisms that opti-
mize the foregoing objectives, and are also strategyproof, in
the sense that no player can decrease her cost by misreport-
ing her location.

This challenge is the original and paradigmatic instance
of approximate mechanism design without money (Procac-
cia and Tennenholtz 2013), an agenda that focuses on prob-
lems where monetary transfers are not allowed, which is
why the need for approximation typically stems from strate-
gic considerations (the optimal solution is not strategyproof)
rather than computational complexity. Procaccia and Ten-
nenholtz advocate using the approximation ratio of a strate-
gyproof mechanism (the worst-case ratio between the ob-
jective value of the mechanism’s solution and the opti-
mal solution) to quantify the solution quality that must in-
evitably be sacrificed in order to achieve strategyproofness.
The design of strategyproof approximation mechanisms for
facility location has been extensively studied (Procaccia
and Tennenholtz 2013; Alon et al. 2010; Lu et al. 2010;
Nissim, Smorodinsky, and Tennenholtz 2012; Thang 2010;
Fotakis and Tzamos 2010; 2013a; 2013b; Cheng, Yu, and
Zhang 2013; Wilf and Feldman 2013; Feldman, Fiat, and
Golumb 2016; Golomb and Tzamos 2017), and, in particu-
lar, has been a topic of significant interest in recent AI con-
ferences (Todo, Iwasaki, and Yokoo 2011; Zou and Li 2015;
Serafino and Ventre 2015; Filos-Ratsikas et al. 2015; Cai,
Filos-Ratsikas, and Tang 2016).

Our point of departure from this dense literature is that we
re-examine the assumptions underlying randomized strat-
egyproof mechanisms, which are known to provide better
guarantees than their deterministic counterparts (Procaccia
and Tennenholtz 2013). Specifically, in line with the liter-
ature on randomized approximation algorithms in general,
previous work measures the expected objective value of a
randomized mechanism, and disregards its variance. How-
ever, a risk-averse designer would be concerned with both.
In fact, expectation-variance analysis has long been viewed
as one of the fundamental approaches to reasoning about
risk aversion, and nowadays it is ubiquitous in economics
and finance (Markowitz 1952). In our case, given two dis-
tributions over facility locations with the same expected ob-
jective value, the designer should prefer the one with lower
risk (variance); and may prefer a distribution with higher
risk only if that risk is offset by sufficiently lower expected
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objective value (for a minimization objective). The optimal
distribution depends on the designer’s individual level of
risk aversion, as well as on the optimal tradeoff between ex-
pected objective value and risk.

We therefore aim to characterize the optimal tradeoff be-
tween approximation (equivalently, expectation) and vari-
ance in facility location games. Formally, our research ques-
tion is:

Given γ ∈ R
+, what is the optimal approximation ra-

tio achievable by a strategyproof (randomized) facility
location mechanism whose variance is at most γ?

We believe this question is important for two reasons. First,
it provides a fundamentally new viewpoint on facility lo-
cation games. Second, it can serve as a starting point for
a broader investigation of expectation-variance tradeoffs in
mechanism design, as we discuss in §4.

1.1 Our Results

In §2, we study the case of a single facility. For the social
cost objective, placing the facility on the median reported
location is strategyproof, optimal, and deterministic (so the
variance of the social cost is 0). We focus, therefore, on the
maximum cost objective.

We define a family of mechanisms, parameterized by
α ∈ [0, 1/2], which includes the LEFT-RIGHT-MIDDLE
(LRM) Mechanism of Procaccia and Tennenholtz (2013) as
a special case. Informally, given a location profile x ∈ R

n,
the GENERALIZED-LRMα Mechanism chooses uniformly
at random among four potential facility locations: leftmost
player location, rightmost location, and two locations whose
distance from the optimal solution depends on α. We prove:

Theorem 2.3 (informally stated). For all α ∈ [0, 1/2],
GENERALIZED-LRMα is a (group) strategyproof mecha-
nism for the 1-facility location problem. Moreover, on loca-
tion profile x ∈ R

n, the expectation of its maximum cost
is (3/2 + α) · opt(x) (that is, its approximation ratio is
3/2 + α), and the standard deviation of its maximum cost
is (1/2− α) · opt(x).

Theorem 2.3 is especially satisfying in light of the
next theorem — our first major technical result — which
implies that GENERALIZED-LRM(α) gives the optimal
approximation-variance tradeoff for the maximum cost ob-
jective.

Theorem 2.4 (informally stated). For any strategyproof
mechanism for the 1-facility location problem with the max-
imum cost objective, given a location profile x ∈ R

n, if the
mechanism’s maximum cost has standard deviation at most
(1/2−α) ·opt(x), then its expected maximum cost is at least
(3/2 + α) · opt(x). In other words, the sum of expectation
and standard deviation is at least 2 · opt(x).

In §3, we explore the case of multiple facilities. This time
it is the maximum cost objective that is less challenging:
We observe that the best known approximation ratio for any
number of facilities k ≥ 2 is given by a randomized mecha-
nism of Fotakis and Tzamos (2013b), which (miraculously)
happens to have zero variance.

Next we consider the social cost objective, and things take
a turn for the strange: Our second major result asserts that, in
this setting, a “reasonable” approximation-variance tradeoff
simply does not exist, even when there are just two facilities.

Theorem 3.1 (very informally stated). For the 2-facility
location problem with the social cost objective, there is no
family of mechanisms fθ for every θ ∈ [0, 1] that satisfies
two mild technical conditions, and smoothly interpolates be-
tween zero variance and constant approximation ratio, i.e.,
which satisfies the following properties: (i) f0 has a constant
approximation ratio, (ii) the variance of the social cost de-
creases monotonically with θ, down to zero variance at f1,
and (iii) fθ changes continuously with θ.

Importantly, for the case of 2 facilities, determinis-
tic strategyproof mechanisms are severely limited (Fotakis
and Tzamos 2013a), but a randomized strategyproof 4-
approximation mechanism is known (Lu et al. 2010). Our
initial goal was to provide an approximation-variance trade-
off with this mechanism on one end, and a bounded de-
terministic mechanism on the other, but surprisingly, The-
orem 3.1 rules this out.

1.2 Related Work

We are aware of only a single paper in computational mech-
anism design that directly studies variance (Esfandiari and
Kortsarz 2016), in the context of kidney exchange. In con-
trast to our paper, it does not investigate the tradeoff be-
tween variance and approximation. Rather, the main result
is a mechanism whose approximation ratio matches that of a
mechanism of Ashlagi et al. (2015), but has lower variance.

Bhalgat, Chakraborty, and Khanna (2012) study multi-
unit auctions with risk-averse sellers, where risk aversion
is modeled as a concave utility function. They design
polynomial-time strategyproof mechanisms that approxi-
mate the seller’s utility under the best strategyproof mech-
anism. The results depend on the notion of strategyproof-
ness in question, and whether the buyers are also risk averse;
in one case Eso and Futó (1999) have previously shown
how to achieve the maximum utility. This work is differ-
ent from ours in many ways, but one fundamental differ-
ence is especially important to point out: The goal of Bhal-
gat, Chakraborty, and Khanna (2012) is to achieve utility as
close as possible to that of the optimal strategyproof mecha-
nism; in principle it is possible to achieve an approximation
ratio of 1 by running the optimal mechanism itself (which
incorporates the concave utility function of the seller) —
the obstacle is computational efficiency. Crucially, there is
no tradeoff in their setting. In contrast, in our setting the
benchmark is the unconstrained optimum, and the smaller
the allowed variance, the worse our approximation becomes;
our goal is to quantify this tradeoff. Relatedly, Sundararajan
and Yan (2017) also endow a risk-averse seller with a con-
cave utility function, and seek to simultaneously provide an
approximation to the optimal utility of any possible seller,
independently of her specific utility function.

Further afield, there is a body of work in auction theory
that studies optimal auctions for risk averse buyers (Maskin
and Riley 1984; Bhalgat, Chakraborty, and Khanna 2012;
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Fu, Hartline, and Hoy 2013; Dughmi and Peres 2012). See
§4 for a discussion of our problem with risk-averse players.

2 One Facility: The Optimal Tradeoff

In this section we consider the one-facility game. Let us first
briefly discuss the social cost objective. As observed by Pro-
caccia and Tennenholtz (2013), selecting the median1 is an
optimal GSP (group strategyproof) mechanism for this ob-
jective. (The proof of optimality and group strategyproof-
ness is left as a very easy exercise for the reader.) As the
median is a deterministic mechanism, the variance of its so-
cial cost is zero. It follows that the approximation-variance
tradeoff is a nonissue in one-facility games with the social
cost objective. We therefore focus in this section on the max-
imum cost objective.

2.1 Upper Bound

Our starting point is the optimal SP mechanism for the
maximum cost, without variance constraints: the LEFT-
RIGHT-MIDDLE (LRM) Mechanism of Procaccia and Ten-
nenholtz (2013). This simple mechanism selects lt(x) with
probability 1/4, rt(x) with probability 1/4, and the opti-
mal solution mid(x) — whose maximum cost is opt(x) =
diam(x)/2 — with probability 1/2 (see Figure 1). The ap-
proximation ratio of the mechanism is clearly 3/2: with
probability 1/2 it selects one of the extreme locations, which
have maximum cost diam(x) = 2opt(x); and with probabil-
ity 1/2 it selects the optimal solution. Why is this mecha-
nism SP? In a nutshell, consider a player i ∈ N ; she can
only affect the outcome by changing the position of lt(x) or
rt(x). Assume without loss of generality that i reports a loca-
tion x′

i to the left of lt(x), such that lt(x)−x′
i = δ > 0. Then

the leftmost location moves away from xi by exactly δ, and
that location is selected with probability 1/4. On the other
hand, the midpoint might move towards xi, but it moves half
as fast, that is, i might gain at most δ/2 with probability 1/2
— and the two terms cancel out. This argument is easily
extended to show that LRM is GSP (in fact, the proof of
Theorem 2.3 rigorously establishes a more general claim).
Furthermore, even if we just impose strategyproofness, no
mechanism can give an approximation ratio better than 3/2
for the maximum cost (Procaccia and Tennenholtz 2013).

A first attempt: The CONVEXp Mechanism. On a loca-
tion vector x ∈ R

n, the LRM Mechanism has variance
opt(x)2/4, or, equivalently, standard deviation opt(x)/2.
Given a smaller variance “budget”, how would the approxi-
mation ratio change? The most natural approach to reduc-
ing the variance of the LRM Mechanism is to random-
ize between it and the optimal deterministic (G)SP mecha-
nism, which gives a 2-approximation for the maximum cost
by simply selecting lt(x). Specifically, we select lt(x) with
probability 1 − p ≥ 0, and with probability p follow LRM
(see Figure 1). This is a special case of a general mechanism,
which randomizes between the optimal deterministic mech-
anism and the optimal randomized mechanism. We call this
mechanism CONVEXp, and analyze it in some generality in

1Take the left median when the number of players is even.

the paper’s full version.2 For the specific problem in ques-
tion, this mechanism yields the following result.

Proposition 2.1. Let X be the maximum cost of CONVEXp

on input x. Then,

E[X] + std(X) =

(
2− p

2
+

√(
1− p

2

)
· p
2

)
· opt(x).

In particular, if p �= 0, 1 then E[X]+ std(X) > 2 ·opt(x).
As we shall see in Section 2.1, this approximation to stan-
dard deviation tradeoff is suboptimal.

It is worth noting that another natural approach — modi-
fying LRM by increasing the probability of each of the two
extreme points to q ∈ [1/4, 1/2], and decreasing the proba-
bility of the midpoint to 1− 2q — turns out to be equivalent
to CONVEXp for p = 4q− 1. Indeed, the former mechanism
is just a symmetrized version of CONVEXp.

The optimal mechanism. In retrospect, the extension of
LRM that does achieve the optimal approximation-variance
tradeoff is no less intuitive than the ones discussed ear-
lier. The idea is to think of mid(x), which is selected by
LRM with probability 1/2, as two points, each selected with
probability 1/4. These two points can then be continuously
moved at equal pace towards the extremes (see Figure 1). In
what follows, this mechanism is defined formally.

lt(x) mid(x) rt(x)

LRM

CONVEX1/2

GENERALIZED-LRM1/4

Figure 1: Illustration of the three randomized mechanisms.
The balls’ radii correspond to their points’ probabilities of
being selected.

Definition 2.2. The GENERALIZED-LRMα Mechanism
is parameterized by α ∈ [0, 1/2]; on location vec-
tor x, GENERALIZED-LRMα outputs a point y chosen
uniformly at random from the set {lt(x),mid(x) − α ·
diam(x), mid(x) + α · diam(x), rt(x)}.

The next theorem presents the properties satisfied by
GENERALIZED-LRMα.

Theorem 2.3. For all α ∈ [0, 1/2], GENERALIZED-LRMα

is a GSP mechanism for one-facility games. Moreover, if X
is the random variable corresponding to the maximum cost
of the mechanism on input x, then E[X] = (3/2+α)·opt(x)
and std(X) = (1/2− α) · opt(x).

Proof. Table 1 summarizes the maximum cost for each
possible y that GENERALIZED-LRMα outputs (recall that

2Available at http://procaccia.info/research.
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Table 1: Maximum cost of GENERALIZED-LRMα for its different choices of y.

y argmaxxi∈x |y − xi| X = maxxi∈x |y − xi|
mid(x)− α · diam(x) rt(x) (1 + 2α) · opt(x)
mid(x) + α · diam(x) lt(x) (1 + 2α) · opt(x)

lt(x) rt(x) 2 · opt(x)
rt(x) lt(x) 2 · opt(x)

opt(x) = diam(x)/2). Inspecting this table we find that in-
deed the expectation satisfies

E[X] =

(
3

2
+ α

)
· opt(x).

Given E[X] and our table of X given y, we see that the vari-
ance is

Var(X) =

(
1

2
− α

)2

· opt(x)2,

and so

std(X) =

(
1

2
− α

)
· opt(x),

as claimed.
To establish that GENERALIZED-LRMα is GSP, suppose

a group of players S ⊆ [n] misreport their locations, re-
sulting in a different location vector x′. Denote ΔL �
lt(x) − lt(x′) and ΔR � rt(x′) − rt(x). Note that ΔL and
ΔR may be positive for any misreporting group S ⊆ [n], but
for ΔL (or ΔR) to be negative requires the leftmost (respec-
tively, the rightmost) player in [n] to be in S. By considering
the cases given by the signs of ΔL and ΔR, we show that
for any values of ΔL,ΔR, there is some misreporting player
i ∈ S whose cost does not decrease.

Case 1: ΔL,ΔR ≥ 0. Let zL � mid(x) − α · diam(x)

and zR � mid(x) + α · diam(x) and let z′L, z
′
R be defined

analogously for the misreported location vector x′. Then, for
any player location xi (clearly xi ∈ [lt(x), rt(x)]) we have

cost(f(x), xi) =
1

4
· ((xi − lt(x)) + (rt(x)− xi)

+ |zL − xi|+ |zR − xi|),
and

cost(f(x′), xi) =
1

4
· ((xi − lt(x) + ΔL)

+ (rt(x)− xi +ΔR)

+ |z′L − xi|+ |z′R − xi|).
But by the triangle inequality, we find that

|z′L − xi| ≥ |zL − xi| −
∣∣∣∣ΔR −ΔL

2
− α(ΔL +ΔR)

∣∣∣∣ ,
|z′R − xi| ≥ |zR − xi| −

∣∣∣∣ΔR −ΔL

2
+ α(ΔL +ΔR)

∣∣∣∣ .
For

α ∈
{
0,
|ΔR −ΔL|
2(ΔL +ΔR)

,
1

2

}
,

it is easily verified that the implied lower bound on |z′L −
xi|+ |z′R−xi| is at least |zL−xi|+ |zR−xi|−(ΔL+ΔR).
Furthermore, as this lower bound is linear in α in the two
ranges defined by these values, the same holds for all α ∈
[0, 1

2 ]. Putting the above together we get

cost(f(x′), xi)

≥ cost(f(x), xi)) +
1

4
· (ΔL +ΔR − (ΔL +ΔR))

≥ cost(f(x), xi).

Case 2(a): ΔL < 0 and ΔR ≥ 0. As observed above,
for ΔL to be negative the leftmost player must be in the
deviating set S, but this player cannot gain from this change,
and in fact only stands to lose from such a change, as all four
points in the support of the mechanism’s output move further
away from the leftmost player’s location.

Case 2(b): ΔL ≥ 0 and ΔR < 0. This is symmetric to
case 2(a) above.

Case 3: ΔL,ΔR < 0. In this case the mechanism out-
puts a location y ∈ [lt(x′), rt(x′)] ⊆ [lt(x), rt(x)] with
probability one, and by the triangle inequality |rt(x)− y|+
|y − lt(x)| = diam(x). Thus, by linearity of expecta-
tion, cost(f(x′), lt(x)) + cost(f(x′), rt(x)) = diam(x). By
the same argument cost(f(x), lt(x)) + cost(f(x), rt(x)) =
diam(x). Consequently, either

cost(f(x′), lt(x)) ≥ cost(f(x), lt(x))

or
cost(f(x′), rt(x)) ≥ cost(f(x), rt(x)).

But for ΔL and ΔR to both be negative, both the leftmost
and rightmost players must be in the deviating set S, and so
some player in S does not gain from S misreporting their
locations.

2.2 Matching Lower Bound

We are now ready to present our main technical result for
the single-facility location problem: a lower bound for the
expectation-variance tradeoff matching the upper bound of
Theorem 2.3.
Theorem 2.4. For all α ∈ [0, 1/2], no SP mechanism for
one-facility location games which is (3/2+α)-approximate
for maximum cost minimization has standard deviation of
maximum cost less than (1/2−α) ·opt(x) on every location
vector x.

In our proof we fix some SP mechanism f . We will con-
sider inputs of the form x = (l, r), where l ≤ r, that is,
two-player inputs; this is without loss of generality as the
two extreme player locations always define the maximum

1188



cost.3 Throughout the remainder of this section, we denote
by Y (x) ∼ f(x) the random variable corresponding to the
location of the facility output by the mechanism f on input
x. We write Y = Y (x), whenever the input x is clear from
context. The following two definitions will prove useful in
our proof of Theorem 2.4.
Definition 2.5. Given an instance x = (l, r) and a “gap” t,
the normalized leakage of (l, r) with relaxation parameter t
is

Λ(l, r, t) � E

[∣∣∣∣Y − l + r

2

∣∣∣∣
∣∣∣∣Y �∈ (l + t, r − t)

]

· Pr [Y �∈ (l + t, r − t)] ·
(
r − l

2

)−1

.

Intuitively, Λ(l, r, t) is the contribution of probabilities
outside (l+t, r−t) to the expected distance from the facility
to mid(x) = l+r

2 , normalized by opt(x) = r−l
2 .

Definition 2.6. The left- and right-normalized distance of
an instance (l, r) are defined to be

dL(l, r) � E[|Y − l|] ·
(
r − l

2

)−1

,

dR(l, r) � E[|Y − r|] ·
(
r − l

2

)−1

.

By the triangle inequality, f satisfies dL(l, r)+dR(l, r) ≥
2. Moreover, as we may safely assume that f is at worst 2-
approximate, we also have dL(l, r), dR(l, r) ≤ 2, and so
dL(l, r) + dR(l, r) ≤ 4.

The next result is the core lemma underlying the proof
of Theorem 2.4; its rather intricate proof is relegated to the
paper’s full version.
Lemma 2.7. For all δ > 0 and t ∈ (0, 1/2) there exists
some input x = (l, r), such that

Λ(l, r, t(r − l)) ≥ 1

2
− δ.

We proceed to inspect the variance of bounded SP approx-
imate single-facility mechanisms for maximum cost mini-
mization. For the remainder of the section we assume f is
an SP mechanism with expected approximation ratio at most
3
2 + α for all inputs (with α < 1

2 , as Theorem 2.4 is trivial
for α ≥ 1

2 .)
By Lemma 2.7, for any (δ, t), there exists an instance x =

xδ,t satisfying Λ(x, t) ≥ 1
2 − δ. Without loss of generality

we shift and scale x to be (−1, 1). Let Y (δ, t) ∼ f(xδ,t)
denote the output of the mechanism on the instance xδ,t.
We omit the parameters δ and t when the context is clear.
Let Z = |Y |. The following lemma, due to Procaccia and
Tennenholtz (2013), relates Z to X , the maximum cost of f
on x.
Lemma 2.8 (Procaccia and Tennenholtz 2013). Let X be
the maximum cost of f on input (−1, 1). Then X = Z + 1.

3The extension to more than two players is almost immediate,
as we can identify more than one player with either extreme loca-
tion, using (Lu et al. 2010, Lemma 2.1).

Consequently, the maximum cost X has variance
Var(X) = Var(Z) and so we turn our attention to lower
bounding the variance of Z. Moreover, as mechanism f is(
3
2 + α

)
-approximate and clearly opt(−1, 1) = 1, Lemma

2.8 implies that E[Z] = 1
2 + α′ for some α′ ≤ α. By our

choice of x = (−1, 1) satisfying Λ(−1, 1, t) ≥ 1
2 − δ, we

have E[Z|Z ≥ 1 − t] · Pr[Z ≥ 1 − t] ≥ 1
2 − δ. In order to

lower bound Var(Z) we first consider a simpler distribution,
defined below.
Definition 2.9. The concentrated version Zc(δ, t) �
{(xc, pc), (yc, 1−pc)} of Z(δ, t) is a two-point distribution,
where

yc = E[Z|Z ∈ [0, 1− t)],

xc = E[Z|Z ∈ [1− t,∞)],

pc = Pr[Z ∈ [1− t,∞)].

In words, Zc is obtained from Z by concentrating prob-
abilities in the intervals [1 − t,∞) and [0, 1 − t) respec-
tively to points xc and yc. Note that concentrating proba-
bilities in both intervals to points yields the same expec-
tation as Z and can only decrease the variance. That is,
E[Zc] = E[Z] = 1

2 + α′ and Var(Zc) ≤ Var(Z). Moreover,
the contribution to E[Z] of Z conditioned on Z �∈ [0, 1− t)
and the equivalent contribution to E[Zc] are the same. That
is,

pcxc = Λ(−1, 1, t) ≥ 1

2
− δ.

Revisiting the variance of Zc, it is easy to see that

Var(Zc) = E[Z2
c ]− E[Zc]

2

= pcx
2
c +

(
1
2 + α′ − pcxc

)2
1− pc

−
(
1

2
+ α′

)2

.

Extracting the form of Var(Zc), we obtain the following def-
inition.
Definition 2.10. The formal variance v(p, x, ε) is the ex-
pression

v(p, x, ε) � px2 +

(
1
2 + ε− px

)2
1− p

−
(
1

2
+ ε

)2

,

and the simplified formal variance is v(p, x) � v(p, x, α).
We aim to bound v(p, x, ε) and v(p, x) with some con-

straints on (p, x, ε), instead of bounding Var(Zc) or Var(Z)
directly.
Definition 2.11. The feasible domain Ω(δ, t) is defined to be

Ω(δ, t) �
{
(p, x)

∣∣∣ p ∈ [0, 1], x ∈ [1− t,∞),
1

2
− δ ≤ px

}

and the relaxed variance bound V (δ, t) is defined to be

V (δ, t) � inf{v(p, x) | (p, x) ∈ Ω(δ, t)}.
In words, Ω(δ, t) is a domain of simplified formal vari-

ance v(p, x) containing all possible concentrated versions of
Z(δ, t), and V (δ, t) is the tightest lower bound on the sim-
plified formal variance v(p, x) in this domain.
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The next lemma establishes that the relaxed variance
bound serves as a lower bound for Var(Z(δ, t)); its first in-
equality was observed earlier, and the proof of the second
inequality appears in the paper’s full version.

Lemma 2.12. For any δ and t ≤ 1
2 − α,

Var(Z(δ, t)) ≥ Var(Zc(δ, t)) ≥ V (δ, t).

By Lemma 2.12, it suffices to derive a lower bound on
V (δ, t). The final lemma helps us do that, by giving a for-
mula for the relaxed variance bound; its proof is relegated to
the paper’s full version.

Lemma 2.13. For t ≤ 1
2 − α, the relaxed variance bound

V (δ, t) satisfies

V (δ, t) = v

( 1
2 − δ

1− t
, 1− t

)
.

With Lemma 2.13 in hand, we are finally ready to prove
this section’s main result.

Proof of Theorem 2.4. Consider a sequence of (δ, t) values{
( 1i ,

1
i ) | i ∈ N

}
. By Lemmas 2.12 and 2.13, for i large

enough, i.e., 1
i ≤ 1

2 − α (recall that α < 1
2 , so such an i

exists), we have

Var
(
Z

(
1

i
,
1

i

))
≥ V

(
1

i
,
1

i

)
= v

( 1
2 − 1

i

1− 1
i

, 1− 1

i

)
.

Note that v
(

1
2−τ

1−τ , 1− τ
)

, a function of τ , is continuous at
0. Therefore

sup
x

Var(Z(x)) ≥ sup
1
i ≤ 1

2−α

Var
(
Z

(
1

i
,
1

i

))

≥ lim
i→∞

v

( 1
2 − 1

i

1− 1
i

, 1− 1

i

)

= v

(
1

2
, 1

)

=

(
1

2
− α

)2

,

completing the proof.

3 The Curious Case of Multiple Facilities

Having fully characterized the optimal approximation-
variance tradeoff for the case of a single facility in Section 2,
we turn our attention to multiple facilities. Our first obser-
vation is that now the tables are turned: the maximum cost
objective is relatively straightforward (given previous work),
whereas the social cost objective turns out to be quite con-
voluted.

In more detail, the best known SP mechanism for the
maximum cost objective, and any number of facilities k ≥
2, is the EQUAL COST (EC) Mechanism of Fotakis and
Tzamos (2013b). The mechanism first covers the player lo-
cations with k disjoint intervals [αi, αi + �], in a way that
minimizes the interval length �. Then, with probability 1/2,

the mechanism places a facility at each αi if i is odd, and at
αi+ � if i is even; and, with probability 1/2, the mechanism
places a facility at each αi if i is even, and at αi + � if i is i
is odd.

It is easy to see that the EC Mechanism is 2-approximate.
Moreover (if not as obvious), it is GSP. The crucial observa-
tion in our context is that the maximum cost under the EC
Mechanism is always exactly �, that is, its maximum cost
has zero variance — even though it relies strongly on ran-
domization!

We conclude that, in order to establish any kind of
approximation-variance tradeoff for the maximum cost ob-
jective, we would need to improve the best known SP
approximation mechanism without variance constraints,
which is not our focus. In the remainder of this section,
therefore, we study the social cost objective. Moreover, we
restrict ourselves to the case of two facilities; the reason is
twofold. First, very little is known about SP mechanisms for
social cost minimization with k ≥ 3 facilities — not for
lack of trying. Second, and more importantly, we establish
an impossibility result, that holds even for the case of two
facilities.

The best known SP mechanism for social cost minimiza-
tion in two-facility games is due to Lu et al. (2010). It selects
the first facility from the player locations uniformly at ran-
dom. Then, it selects the second facility also from the player
locations with each location selected to be the second facil-
ity with probability proportional to its distance from the first
selected facility. Lu et al. show that this mechanism is an SP
4-approximate mechanism. The best deterministic approxi-
mation is given by the GSP mechanism which simply selects
lt(x) and rt(x) — its approximation ratio is Θ(n).

It is natural to think that it should at least be possible to
obtain some (possibly suboptimal) approximation-variance
tradeoff by randomizing between the two foregoing mecha-
nisms, via the CONVEXp Mechanism. Strangely enough, the
following theorem — our second major technical result —
essentially rules this out.
Theorem 3.1. Let {fθ}θ∈[0,1] be a family of SP mechanisms
for two-facility games that satisfy the following technical as-
sumptions:

1. For any θ ∈ [0, 1] and location vector x, fθ(x) places
facilities only on locations in x.

2. For any θ ∈ [0, 1], if the location vector x contains at least
two different locations, then fθ(x) always selects two dif-
ferent locations.

Define the random variable C(fθ,x) to be the social cost
of mechanism fθ on location vector x. Then the following
conditions are mutually exclusive:

3. f0 is constant-approximate; i.e., there is a constant α ≥ 1
such that E[C(fθ,x)] ≤ α · opt(x).

4. For any location vector x ∈ R
n, Var(C(fθ,x)) decreases

monotonically with θ, down to Var(C(f1,x)) = 0.
5. For any location vector x ∈ R

n, E[C(fθ,x)] is continu-
ous in θ.
We think of Conditions 3–5 as the basic requirements

that any “reasonable” tradeoff must satisfy. We also con-
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sider the first two assumptions as rather mild. In particu-
lar, they are both satisfied by every “useful” SP mechanism
for minimizing the social cost in two-facility games,4 in-
cluding the best known SP approximation mechanism of Lu
et al. (2010), all the mechanisms characterized by Miya-
gawa (2001),5 and the winner-imposing mechanism of Fo-
takis and Tzamos (2010).

Let us now revisit CONVEXp in this setting; why is it not a
counterexample to the theorem? To be clear, we are thinking
of f0 as the 4-approximation mechanism of Lu et al. (2010),
and of f1 as the rule that deterministically selects lt(x) and
rt(x) (and has a bounded, though not constant, approxima-
tion ratio). It is easy to see that this mechanism satisfies Con-
ditions 1, 2, 3, and 5. Therefore, the theorem implies that
CONVEXp (surprisingly) violates Condition 4: the variance
does not decrease monotonically with θ. This stands in con-
trast to Section 2.1, where the variance of CONVEXp (as well
as GENERALIZED-LRMα) is monotonic.

The proof of Theorem 3.1 relies on establishing the fol-
lowing, clearly contradictory lemmas.
Lemma 3.2. If {fθ}θ∈[0,1] is a family of SP mechanisms
for 2-facility location which satisfies the conditions of The-
orem 3.1, then mechanism f1 has unbounded approximation
ratio for the social cost, (even) when restricted to 3-location
instances.

In the proof of the lemma, which can be found in the full
version, we first show that the zero-variance mechanism f1
must, in fact, be deterministic. We can therefore leverage
a characterization of deterministic bounded SP mechanisms
for 2-facility location (Fotakis and Tzamos 2013a) to estab-
lish that f1 has unbounded approximation ratio, by proving
that it cannot belong to this family. We then prove the oppo-
site statement — and Theorem 3.1 follows.
Lemma 3.3. If {fθ}θ∈[0,1] is a family of SP mechanisms
for 2-facility location which satisfies the conditions of The-
orem 3.1, then mechanism f1 has bounded approximation
ratio for the social cost, (even) when restricted to 3-location
instances.

4 Discussion

We wrap up with a brief discussion of a few salient points.

Possible criticism: Why is the designer risk averse and
the players risk neutral? One may wonder why we are
studying approximation-variance tradeoffs for the designer,
yet the players care only about expected cost. But the two
issues are orthogonal. For example, the papers we discuss
in Section 1.2 consider sellers and buyers, and typically as-
sume that one side is risk averse while the other is risk neu-
tral. Our model is even more asymmetric as we have two
completely different types of objective functions (individual
distance from the facility versus an aggregate cost function).
Furthermore, to be able to distill the approximation-variance

4Unlike the maximum cost objective, for which “useful” mech-
anisms such as LRM and GENERALIZED-LRMα are known to use
the freedom to choose facilities outside the player locations.

5Miyagawa (2001) assumes Pareto efficiency, which implies
our Assumption 2

tradeoff in facility location games, we study the simplest ver-
sion of the problem, which includes risk-neutral players, in
addition to several other strong assumptions made by Pro-
caccia and Tennenholtz (2013), e.g., the cost of a player is
exactly her distance to the nearest facility, and players and
facilities are located on the real line.

That said, it is worth discussing whether our results can
be extended to the case of risk-averse players. If we mod-
eled the players’ risk aversion by changing their utility
functions, we would change the set of strategyproof mech-
anisms. Nevertheless, it might be the case that the opti-
mal approximation-variance tradeoff — for the social cost
or maximum cost objective — is independent of the play-
ers’ individual utility functions. It is somewhat encourag-
ing that the EQUAL COST Mechanism (see §3) of Fotakis
and Tzamos (2013b) gives the same approximation guaran-
tees (the best known for the maximum cost) for players with
any concave cost function. But risk aversion corresponds to
a convex cost function (or a concave utility function), for
which Fotakis and Tzamos establish negative results.

Possible criticism: Is GENERALIZED-LRMα actually a
good mechanism? A curious — perhaps even troubling —
property of the GENERALIZED-LRMα mechanism is that
for α < α′, GENERALIZED-LRMα has higher variance
than GENERALIZED-LRMα′ , yet the outcome of the for-
mer mechanism stochastically dominates that of the latter,
in the sense that for every t, the probability that the for-
mer mechanism has maximum cost at most t is at least as
high as that probability under the latter mechanism. How-
ever, this is not an inherent property of our model: There are
certainly examples of mechanisms such that one has higher
variance than the other, yet neither one stochastically dom-
inates the other. We therefore view Theorem 2.3, and the
GENERALIZED-LRMα mechanism itself, mainly as a tight
upper bound on the optimal approximation-variance trade-
off, rather than as a mechanism that a risk-averse designer
would necessarily want to employ.

A broader agenda. As briefly mentioned in §1, we be-
lieve that our paper potentially introduces a new research
agenda. Just to give one example, the problem of impar-
tial selection (Alon et al. 2011; Fischer and Klimm 2014;
Holzman and Moulin 2013) exhibits an easy separation be-
tween the approximation ratio achieved by deterministic and
randomized SP mechanisms (much like facility location);
what is the optimal approximation-variance tradeoff? Even
more exciting are general results that apply to a range of
problems in mechanism design. And, while our work mainly
applies to facility location, it does tease out general insights
and questions: Can we build on the ideas behind the CON-
VEXp mechanism to obtain “good” (albeit suboptimal, see
§2.1), general approximation-variance tradeoffs? Is a “lin-
ear” upper bound of the form c · opt on the sum of expec-
tation and standard deviation (Theorem 2.3) something that
we should expect to see more broadly? Can we characterize
problems that do not admit approximation-variance trade-
offs satisfying the conditions of Theorem 3.1? These chal-
lenges can drive the development of a theory of expectation-
variance analysis in computational mechanism design.
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