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Abstract

In large e-commerce websites, sellers have been observed to
engage in fraudulent behaviour, faking historical transactions
in order to receive favourable treatment from the platforms,
specifically through the allocation of additional buyer impres-
sions which results in higher revenue for them, but not for the
system as a whole. This emergent phenomenon has attracted
considerable attention, with previous approaches focusing on
trying to detect illicit practices and to punish the miscreants.
In this paper, we employ the principles of reinforcement
mechanism design, a framework that combines the funda-
mental goals of classical mechanism design, i.e. the consid-
eration of agents’ incentives and their alignment with the ob-
jectives of the designer, with deep reinforcement learning for
optimizing the performance based on these incentives. In par-
ticular, first we set up a deep-learning framework for predict-
ing the sellers’ rationality, based on real data from any alloca-
tion algorithm. We use data from one of largest e-commerce
platforms worldwide and train a neural network model to pre-
dict the extent to which the sellers will engage in fraudulent
behaviour. Using this rationality model, we employ an algo-
rithm based on deep reinforcement learning to optimize the
objectives and compare its performance against several nat-
ural heuristics, including the platform’s implementation and
incentive-based mechanisms from the related literature.

Introduction

One of the most fundamental optimization challenges in e-
commerce websites is the allocation of impressions to the
sellers who offer their products on the platform. When a user
enters a keyword in the search field, a list of sellers with
related products is displayed to the user. But how should one
choose which sellers to be displayed or equivalently, how
should the platform divide millions of user impressions to
sellers with products that match the keyword?
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Most major websites, such as Taobao, Amazon or eBay,
incorporate reputation systems (Jurca and Faltings 2007)
for allocating buyer impressions. Sellers with higher repu-
tations, typically expressed through higher conversion rates
(the number of transactions that a seller can carry out given
one unit of buyer impressions) and higher overall transaction
numbers, will normally be rewarded with higher chances of
showing up in buyers’ recommendation lists. As a result,
sellers with higher reputations are usually rewarded with
more buyer impressions, a process which is implemented
implicitly via the employment of an impression allocation
algorithm. The intention of such reputation schemes is to
bring the most capable sellers forward, ultimately generat-
ing more revenue in the long run.

However, knowing that all these allocation algorithms
are heavily based on historical transaction records, sellers
have been known to manipulate the algorithms by faking
the number of transactions using various illicit ways. In fact,
there has even been an emerging underground industry that
provides sophisticated services for the sellers who want to
quickly increase the number of historical transactions. Xu
et al. (2015) refer to such enterprises as seller-reputation-
escalation (SRE) markets. Attesting to the severity of the
problem are the several lawsuits by Amazon against sellers
that were allegedly using fake reviews to boost their profits,
the most recent of which was against more than 1000 sellers
in 2016 (e.g. see (Techcrunch 2016)).

Detecting such behaviour is usually achieved by a com-
bination of machine learning techniques (Mukherjee et al.
2013; Jindal and Liu 2008; Yoo and Gretzel 2009; Hooi et al.
2016; Schoenebeck, Snook, and Yu 2016), as well as manual
labour, to minimize the number of “false positives”, i.e. the
chances of penalizing honest sellers (Ott et al. 2011). This
is achievable in a smaller scale, but becomes increasingly
more difficult as the number of sellers grows very large.

An alternative approach that has been proposed recently
(Cai et al. 2016) is to use the principles of mechanism design
to prevent such fraudulent behaviour. The idea is to design
the allocation algorithms in a way that does not incentivize
the sellers to resort to illicit means of boosting their rep-
utations. Specifically, Cai et al. (2016) model the problem
as an instance of truthful resource allocation (Shoham and
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Leyton-Brown 2009, Chapter 11), in which sellers aim to
maximize their reputation scores given an associated cost
for eliciting fake reviews and transactions and design mech-
anisms for which it is a dominant strategy to act honestly.

However, the applicability of such an approach relies on
quite strong informational and cognitive assumptions. On
one hand, the costs of sellers for faking transactions are as-
sumed to be public information and are used to design the
mechanisms. This is not always realistic as one would con-
ceivably have to engage in such illicit behaviour themselves
to actually get an estimate of the average costs and even
in that case, the actual costs might defer depending on the
capabilities of each seller. On the other hand, the assump-
tion (Cai et al. 2016) is that of classical mechanism design
(Maskin 2008), i.e. that the participants are perfectly rational
and that they fully understand how the mechanisms operate.
As it has often been pointed out however (Rubinstein 1998;
Simon 1957), in reality people are often bounded by ei-
ther computational constraints or even cognitive limitations,
especially in large and dynamically evolving systems like
those of e-commerce applications. Additionally, it is often
the case that sellers do not know the allocation mechanism
that the platform uses; they rather observe their gains or
costs by faking different numbers of transactions and they
adjust their actions accordingly. From the discussion above,
it is clear that the potential remedies to the problem are sit-
uated at the two ends of the spectrum; either detecting and
punishing illicit behaviour ex-post or trying to prevent such
practices altogether, under often unrealistic assumptions.

To achieve some middle ground and obtain more realistic
solutions, we employ the recently proposed agenda of rein-
forcement mechanism design (Tang 2017; Cai et al. 2017),
which constitutes a general framework for solving large
scale problems in dynamic environments like e-commerce
websites by combining the principles of mechanism de-
sign with deep reinforcement learning. Specifically, assum-
ing some rationality model for the sellers (e.g. some variant
of no-regret learning (Cai et al. 2017; Nekipelov, Syrgka-
nis, and Tardos 2015)), the framework advocates the design
of deep reinforcement learning algorithms that take this ra-
tionality model into account and optimize some objective
function. In simple words, we expect sellers to be strategic,
but we take this behaviour into account when designing our
algorithms.

Our Contributions

In this paper, we build upon the principles of reinforcement
mechanism design (Tang 2017) and employ reinforcement
learning for allocating buyer impressions to sellers in large
e-commerce websites, taking the strategic nature of the sell-
ers into account. However, instead of assuming a generic un-
supervised learning-based rationality model, we take a more
structured approach and employ the idea of inferring and
predicting the rationality of sellers from data. Intuitively,
given a dataset from an e-commerce platform that runs an
allocation algorithm, we can train a neural network to pre-
dict the decisions of the sellers in terms of how many orders
they elect to fake.

More concretely, we propose the following framework to

obtain a behavioural model of sellers that can be used to pre-
dict the number of transactions that each seller will fake in
the next time period. Given a set of data that records the
transactions (real and detected fake) of sellers for a spe-
cific (perhaps unknown) allocation implementation in an e-
commerce platform, we train a neural network to predict the
actions of the sellers. Note that while the detection process
can be resource-consuming, it can usually be done for a rea-
sonably large amount of sellers, which constitutes the train-
ing set of the network. Using this framework we can:

• Evaluate the performance of the allocation algorithm in
terms of the volume of real and fake transactions and de-
sign new algorithms based on this behavioural model.

• Evaluate the loss in performance of a new allocation algo-
rithm due to the adjustment period for the sellers, in which
they are trying to “learn” the new algorithm and find their
optimal strategies.

The first part can be seen as a “repeated evolution” process
in which the rationality of sellers is predicted, a new allo-
cation algorithm is developed based on this prediction with
performance considerations in mind and then, after suffi-
cient data is collected, a new behavioural model is devel-
oped that gives rise to new predictions, with comparisons
between the implemented algorithms being made in every
step. The second part becomes especially relevant together
with rationality assumptions, as it allows us to quantify the
performance loss during the migration period between the
currently implemented allocation algorithm of the platform
and the mechanism to be used in the future.

Performance of heuristics. For the performance evalu-
ation, first we consider three natural heuristics, one of a
greedy nature and two that have been presented in the re-
lated literature (Cai et al. 2016) and would be truthful under
perfect rationality and informational assumptions. Interest-
ingly, the comparison between them reveals that according
to our predicted rationality model, sellers tend to fake trans-
actions in all algorithms, but the extent to which they fake
drastically decreases for the latter allocation algorithms. In
addition, the greedy algorithm is superior to the others, in-
cluding the platform’s current implementation.

Performance of deep reinforcement learning. Then,
we prove that the employment of deep reinforcement
learning allows us to achieve improved results in terms
of performance. In particular an implementation of the
Deep Deterministic Policy Gradient (DDPG) algorithm
of (Lillicrap et al. 2015) outperforms all the different
heuristics, as well as the algorithm in use by the platform
in terms of the total volume of generated revenue. Note that
in order to solve the impression allocation model problem
using deep reinforcement learning, we first model it as a
Markov Decision Process (similarly to (Cai et al. 2017))
which naturally has very large (or even continuous) state
and action spaces and therefore the DDPG algorithm is a
fitting choice, as it has been designed for problems of this
nature.
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Finally, we remark that in parallel to this work, Cai et
al. (2017) apply a similar reinforcement mechanism de-
sign framework to solve the impression allocation prob-
lem, but our contribution is fundamentally different from
theirs in two ways. First, we are concerned with the prob-
lem of faking transactions and fraudulent seller behaviour
whereas their setting considers sellers who strategize with
their choice of prices, which is inherently different. Sec-
ondly, the authors in (Cai et al. 2017) model seller rationality
as a low-regret type strategy whereas crucially, we infer the
rationality in a more structured manner using real data.

The setting

In the setting of an e-commerce website, there are m sellers,
each of which controls a product.1 In each day t, there are
nt buyer impressions to be allocated to these sellers; a buyer
impression means that the seller will be shown on the buy-
ers’ screen when looking for a specific product. The ability
of a seller to facilitate a transaction given an impression is
captured by the conversion rate; cri(t) denotes the conver-
sion rate of seller i on day t and is a random variable that
indicates the number of real transactions that seller i will
make given one buyer impression. On each day t, each seller
i chooses a price pi(t) for its product as well as the number
of transactions to fake denoted by ai(t). These daily choices
of the seller are based on its history Hi(t) = (nt

i, r
t
i , a

t
i, p

t
i).

on day t which is a vector consisting of:
• The number of impressions that each seller i is allocated

before day t, denoted by nt
i = (ni(1), . . . , ni(t − 1)),

where ni(t) is the number of impressions allocated to
seller i on day t.

• The number of real transactions that seller i made
from the beginning until day t, denoted by rti =
(ri(1), . . . , ri(t − 1)), where ri(t) is the number of real
transactions of seller i on day t. Note that the number of
real transactions ri(t) on any day t is a random variable
defined by {min(ni(t), ci) · cri(t)}, where ci is an upper
bound on the number of impressions that a seller might
get allocated, imposed by the allocation algorithm.

• The number of fake transactions that seller i made
from the beginning until day t, denoted by ati =
(ai(1), . . . , ai(t − 1)), where ai(t) is the number of fake
transactions of seller i on day t.

• The vector of prices that buyer i selected in each round
from the beginning until time t, denoted by pti =
(pi(1), . . . , pi(t− 1)).

Having access to the histories of the sellers, we can define
their predicted rationality.

Definition 1 The behavioural model of the sellers is a func-
tion f that inputs the history Hi(t) of seller i before round t
and returns the number of fake transactions of the seller at
round t, i.e. ai(t) = f(Hi(t)).

While the sellers know how many transactions they have
faked in each round, this information is not public and the

1Or multiple products, but each product is treated individually
in our setting.

algorithm designer can only hope to infer an estimation.
We define the record history Ri(t) of seller i before day
t similarly to the definition of the history Hi(t) but we
use the combination of the number of transactions (real
and fake) that the seller facilitated in the past, denoted by
vti = (vi(1), ..., vi(t − 1)), with vi(j) = ri(j) + ai(j) in-
stead, i.e. Ri(t) = (vti , n

t
i, p

t
i).

An allocation algorithm M is a function that inputs the
record history of all sellers R(t) = (R1(t), ..., Rm(t)) be-
fore round t and outputs the number of impressions allo-
cated to each seller, i.e. M(R(t)) = (n1(t), . . . , nm(t)). An
allocation algorithm is feasible if the total number of impres-
sions allocated to the sellers in any day t does not exceed the
supply of impressions available on that day, i.e, ∀t it holds
that

∑m
i=1 ni(t) ≤ nt.

The performance of an algorithm will be quantified by
the revenue or welfare that it achieves (we will use the
two terms interchangeably - the former being more intu-
itive but the latter being more consistent with the field of
mechanism design). The revenue of an allocation algorithm
M within T days is the revenue generated by the real
transactions of all sellers on these days, i.e, R(M,T ) =
∑m

i=1

∑T
t=1 ri(t)pi(t).

Inferring seller rationality from data

In this section, we will develop a procedure for establishing
our behavioural model for the sellers. The general idea is the
following. We make use of a large dataset of several char-
acteristics of sellers, including the volume of real and fake
transactions over a period of several months, under the allo-
cation mechanisms of the platform (which are evolving and
unknown). After some preprocessing of the data, to make
them appropriate for classification, we design a neural net-
work that we train using samples from this dataset. Our neu-
ral network allows us to obtain a prediction for the action of
each seller on the next day, i.e. the number of transactions
that it will elect to fake.

Dataset and preprocessing Our dataset is provided by
one of largest e-commerce sites in China. The relational
dataset contains a history of 50000 different sellers with dif-
ferent items in the past three months. Each record in the
dataset contains a daily record of the number of buyer im-
pressions that a seller received, the number of transactions
(real and fake) in which the seller participated, the total
recorded revenue of a seller (the number of all transactions
involving the seller’s product multiplied by its price) and the
total fake revenue of the seller (defined similarly but only
with respect to the fake transactions).2 We also extract the
features of the associated seller of each product, including
the consignment rate, the rate of the good, the merchandise
score average, the refund rate and the service rate. Because
of the sparsity of the dataset with respect to the number of

2The number of fake transactions is estimated by counting the
number of transactions which are related to buyers who are always
penalized by the platform’s detection team, and is quite reliable
since the original recommendation system does not use this data at
all.
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transactions, since many items do not participate in even a
single transaction, we rebuild records filling the gaps with 0.

After careful inspection of the dataset, we use sampling
on the original data to exclude the non-trivial parts that
could hurt the prediction accuracy. For example, we ex-
clude records that do not include the sellers’ features and
more importantly, those records that correspond to prod-
ucts that were not sold even once during the three-month
period; those data points compose nearly 1/3 of the whole
dataset. The records associated with these products are not
useful for training, since the data contains no information.
We also observe that a portion of the dataset contains a
rather large amount of detected fake transactions. After trac-
ing those entries, they turn out to be mostly e-ticket sellers
that charge only 1 RMB (Chinese yuan, roughly equivalent
to 0.15 USD) per transaction, or compensation items worth
0.99 RMB, on which the platform’s detection system does
not work properly. For this reason, we filter all products with
price lower than 3 RMB to help eliminate such occurrences.3

After this elimination process, we randomly sample 64
continuous days from the remaining data five times, and add
up a 4 days’ total amount of fake transactions after 64 days
as a prediction target.4 To avoid the effects of imbalances
on the classification, we sample 10.000 positive and 10.000
negative data points from the whole item database, where a
point is positive if it has non-zero fake transactions for its
prediction. Such balancing of datasets is common in the lit-
erature, to avoid classification inaccuracies (Chawla et al.
2002; Kotsiantis et al. 2006). For those two types of points,
we use 16,000 points for training and 4,000 points for val-
idation. Given the input of 64 days of training samples and
predicted target t output by the network, the number of fake
transactions a seller carries out on the next day is t/4.

Neural Network Structure We have tested two types of
neural networks, using conventional Convolutional layers
and ResNet blocks. As general techniques for boosting, the
activation function is set as Rectified Linear Unit (ReLU)
and a dropout rate (Srivastava et al. 2014) of 0.5 is enabled
for fully-connected layers. The cross entropy loss function is
used for the classification tasks and the squared loss is used
for regression. Adam boost (Kingma and Ba 2014) is used
for training with learning rate auto-adjusted according to the
validation accuracy.

For the conventional Convolution network, the input prod-
uct record tensor propagates through 6 convolutional layers,
and 3 max pools of window size (1, 2) are added for every
two convolutional layers. For each such layer, the kernel size
varies from (1, 7) to (1, 5) through (1, 3), with each output
channel size set as 32. We concatenate the output with 5 fea-
tures and send them all to 2 fully-connected layers which
are added, with output dimension 128, following a fully-
connected layer with label size output, and finally a softmax
layer for probability prediction. Similar deep convolutional
neural networks on time series data like we have here were

3We have checked the total transaction volume of items of price
less than 3RMB and their effect on the total revenue is negligible.

464 is chosen because we have 3 months of data, and 64 is the
closest power of 2 we can reach for convenience of the CNN layers.

Table 1: Typical Performance for each structure
Network classification validation accuracy
3FC two-class 0.5
Conv two-class 0.82
ResNet two-class 0.82
Conv-blind two-class 0.8
ResNet-blind two-class 0.8
ResNet-blind three-class 0.79
ResNet-blind four-class 0.76

also used in (Yang et al. 2015).
The ResNet structure utilizes ResBlocks with the same

implementation as in (He et al. 2015), each with 256 chan-
nels. We stack 10 ResBlocks on top of each other, and per-
form a max pooling on the channel for each 5 blocks. Fi-
nally, the output consists of a fully-connected layer along
with a softmax output.

For the sake of comparison, we have also implemented
a naive 3 fully-connected layer to verify the effectiveness
of our convolutional network and perform regression with
these networks. We transform the prediction target y from
a specific label to the value ln(1 + y) for regression using
squared loss. The intuition for the regressor is the following:
we hope it may work on small cases as accurately as possi-
ble, but for much bigger cases, knowing an amount roughly
is enough for further treatment. Interestingly, in a “blind”
training setting where the input channel size is changed to 3,
with the fake history data part intentionally excluded, Table
1 shows that the accuracy in fact does not decrease too much,
which implies that the fraudulent sellers have discernible
patterns compared to “clean” users.

We demonstrate the validation accuracy of the different
networks in Table 1. With a two-class classification (whether
the seller will perform fake transactions or not) the valida-
tion accuracy exceeds 0.8, compared against the 0.5 accu-
racy of a random guess. For more levels of classification
(whether the seller fakes more or less than a certain amount
of transactions), the accuracy is still relatively high. Note
that the ResNet and the conventional Convolution networks
achieve similar accuracy, which can be interpreted by the
small dimension of the dataset, which does not allow for the
deep neural network to be fully utilized.

Experimental Setup

The general process that we will adopt for the experiments
is the following. Given the history of all the items within 64
days, including the number of transactions (real and fake),
the number of impressions and an allocation algorithm, we
generate data for each item and each seller.

In each day 64 + t, with 1 ≤ t ≤ 20, the generation5

process contains the following steps.

1. We set the total number of buyer impressions to the total
number of buyer impressions of day 64+ t of the dataset.

520 is chosen relatively to 64 as we can then compare our results
(64+20=84) to the real data (3 months) which helps with validation.
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2. For each seller i, we predict the number of fake transac-
tions ai(t) by Convolution networks presented in last sec-
tion, we estimate the price pi(t) of the associated product,
as well as the seller’s real conversion rate cri(t) and the
feigned conversion rate fcri(t), i.e. the conversion rate
calculated based on the number of total transactions (real
and fake).

3. We run an allocation algorithm A to allocate the impres-
sions to the sellers, and then sample the real transaction
revenue of each seller using the real conversion rate, to
calculate the real revenue of the algorithm.

Heuristic allocation algorithms

For the choice of A, we will consider three different alloca-
tion algorithms, which are either intuitive heuristics or have
been presented in the related literature. The first algorithm is
of a greedy nature; at each round t, it simply sorts the sell-
ers by order of feigned conversion rates and then greedily
allocates the impressions based on this order.
Algorithm GREEDY Sort sellers in decreasing order of
fcri(t − 1). For i = 1, . . . ,m according to that ordering,
let ni(t) = min(ci, n

t −∑i−1
j=1 nj(t)).

The other two algorithms that we will consider (which we
will refer to as CVR and MIXED respectively) were presented
in (Cai et al. 2016), and were termed as “Mechanism 3”
and “Mechanism 2” respectively. These algorithms are truth-
ful under perfect rationality assumptions and assuming that
the cost functions of the sellers are known to the designer.
We will evaluate their performance in our seller rationality
framework. In the interest of space, we will omit the descrip-
tions of the algorithms here, the interested reader is referred
to (Cai et al. 2016) for the definitions.

Note that the algorithms require knowledge of the sell-
ers’ prices. We explain how to estimate the prices from our
dataset.

Estimator of prices: Although prices might be adjusted
everyday, we observe that in our dataset, the prices do not
fluctuate much. Therefore, after excluding such extreme
cases, we can obtain a good estimation of each seller’s price.
We treat the price as a random variable drawn from a Gaus-
sian distribution; we extract prices from the records contain-
ing the number and the turnover of transactions and we cal-
culate the mean and the standard deviation. Then, we filter
those items for which the standard deviation of the price is
0.5 times larger than the mean, which implies a huge price
fluctuation. The quality of our estimation is verified in Fig-
ure 1. The revenue of the curve for each day is the sum of
products of the number of real transactions and the estimated
prices. As the figure shows, the revenue is really close to the
one given by the real prices in each day. To be concise, we
let “history” stand for the platform’s allocation algorithm in
all figures.

Experimental comparison of the algorithms

In this section, we evaluate and compare the performance of
these different heuristic algorithms. We remark that in Algo-
rithms CVR and MIXED, the number of buyer impressions is

Figure 1: Comparison between real and estimated prices.

treated as a real number. For this reason, we transform those
allocation vectors to a discretized allocation by randomly
sampling impressions with the given probability scaled by
the weight for each impression to obtain integer allocations.
Additionally, we implement a “max-impression estimator”
to avoid assigning more impressions that the seller limit
supply ci allows. More specifically, the maximum num-
ber of impressions that each seller j can get in a round is
(n̄65

j )+ασ(n65
j ), where (i) n65

j denotes the number of buyer
impressions seller j gets in rounds 1, ..., 64, (ii) n̄65

j denotes
the mean of the vector n65

j , (iii) σ is the standard deviation
of n65

j and (iv) α is a positive unknown factor. The value of
α controls the maximum number of impressions that each
seller can be allocated.

We simulate GREEDY, CVR, MIXED and the uniform al-
gorithm, in which each seller gets an even split of the total
number of buyer impressions. We concentrate on two objec-
tives that we care about in the process: the real total revenue
(total number of transactions multiplied by prices), which
is the main desideratum of e-commerce platforms and the
revenue of fake transactions, which quantifies the degree to
which sellers fake orders. We consider two cases:

1. We fix the value of α (at some reasonable value such as
2) and compare GREEDY, CVR, MIXED, the uniform al-
gorithm and the algorithm that the platform employs.

2. We explore the effect of different values of α and compare
the different algorithms.

For the first case, in order to perform an accurate compar-
ison, we use the same total impression value and the same

Figure 2: The real revenue per day.
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Figure 3: The fake revenue per day.

α in the simulation for all algorithms. We run the simula-
tion for a period of 20 days and we evaluate the real rev-
enue in Figure 2, which shows that CVR is just slightly bet-
ter than the uniform algorithm, and both algorithms per-
form worse than the platform’s implementation. On the other
hand, GREEDY and MIXED both outperform the platform’s
algorithm and GREEDY performs best among all algorithms.

As it can be seen in Figure 3, the revenue due to fake
trades of all algorithms is lower than the platform’s algo-
rithm, while the uniform algorithm performs the best as ex-
pected, as the uniform algorithm maintains a low rate of the
“black trade” transactions, since reputation is ignored in the
allocation. From day 1 to day 10, CVR and MIXED perform
better than GREEDY, which can be explained by the fact that
they are designed to incorporate the rationality of the sellers
and although the rationality here is imperfect, it is still better
than not taking it at all into account. GREEDY also outper-
forms the platform’s implementation for the fake revenue
objective, since the parameter α restricts the largest number
of buyer impressions each seller can get. Thus by choosing
a small α like 2, GREEDY performs relatively well. In all,
MIXED performs well across both objectives, while the plat-
form’s algorithm is outperformed by GREEDY and CVR.

When considering the effect of α, which acts as an im-
plicit upper bound of the number of impressions that each
seller receives, we can see how those algorithms actually
perform as α changes. The results for the real revenue can be
seen in Figure 4. GREEDY is mostly affected by the param-
eter; as α becomes larger, its real revenue increases quickly.
For CVR and the uniform algorithm, α has almost no effect
because the allocation rules of these algorithms are too pro-
portional to achieve the upper limits on the number of buyer
impressions. For MIXED, the revenue increases when α in-
creases, because it follows a best-one-first strategy, and it
also gives the sellers with lower conversion rates a chance to
be displayed.

Optimizing by deep reinforcement learning

In this section, we explain how to employ deep reinforce-
ment learning to obtain better performance. Given the be-
havioural model of the sellers, one can design an allocation
algorithm to “fit” this behaviour by first modelling the prob-
lem appropriately as a Markov Decision Process (MDP) and

Figure 4: Average real revenue with varying α.

then solving the MDP using deep reinforcement learning.

MDP formulation: For each day t we have a state
St = (v1(t), n1(t), p1(t), ..., vm(t), nm(t), pm(t)), where
for each seller i = 1, . . . ,m, vi(t) is the number of total
transactions(real and fake) that seller i carries out, ni(t) is
the number of buyer impressions that seller i gets allocated
and pi(t) is the price that the seller selects. Additionally,
for every possible allocation of the nt impressions to the m
sellers, we have a corresponding action. The payoff of an
action from a state is the revenue of the corresponding im-
pression allocation for that day, assuming a specific class for
the seller.

Note that given that there are millions of buyer impres-
sions to be allocated, the action space is very large and
increases exponentially with the number of sellers; in fact
if we model the impression allocation problem as division
of a continuous resource6 similarly to (Cai et al. 2016;
2017), then the action space is actually continuous. For that
reason, we will use an implementation of the Deep Deter-
ministic Policy Gradient (DDPG) algorithm (Lillicrap et al.
2015), a deterministic actor-critic policy gradient algorithm,
designed to handle continuous and high dimensional state
and action spaces. We highlight the major implementation
details below. For more information on actor-critic algo-
rithms and deep reinforcement learning, the reader is re-
ferred to (Sutton and Barto 1998; Li 2017).

Training Setup: In the implementation of DDPG, the ac-
tor network uses four fully-connected layers with ReLU as
the activation function and a softmax function at the output
layer. The critic network inputs the (action, state) pair and
outputs the estimation of the Q-value also with four fully-
connected layers7. For different values of α ranging from 1
to 10, we train the DDPG algorithm separately. We use 1000
episodes with 1000 days in each episode for training and we
randomly sample 500 sellers from the dataset. This is due to
runtime limitations, as the computational overhead for more
sellers increases drastically. The number is high enough to

6That is, to say, that a huge number of impressions can be suf-
ficiently well approximated by a divisible impression unit.

7The original implementation of DDPG uses two-layer fully-
connected networks in the actor and critic networks, but we find
that more layers result in higher performance for our problem.
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Figure 5: Revenue of training

correspond to many settings of interest; impression alloca-
tion among 500 sellers is very common in smaller platforms
but also in larger platforms for more specialized items of-
fered by a smaller number of sellers.

The size of the replay buffer is 107, the discount factor is
0.99, and the rate of update of the target network is 10−3.
The actor network and the critic network are trained via the
Adam algorithm (Kingma and Ba 2014) and the learning
rates of these two networks are 10−3. Following the same
idea as in (Lillicrap et al. 2015), we add Gaussian noise to
the action output by the actor network, with the mean of the
noise decaying with the number of episodes for the explo-
ration. We record the parameters and the revenue of training
for each day and we set the parameters of the actor and the
critic network as the parameters that achieve the maximum
revenue at the training phase. Figure 5 shows the graph of
the real revenue (welfare) of the algorithm with the number
of days in the process of training with α = 2; the gray band
shows the variance in revenue.

Inferring the platform’s implementation: As we have
only 90 days of transaction data, if we aim to compare with
the platform’s algorithm for any number of days, we can
not directly compare our algorithms with the results of the
dataset, like we did in the previous section. For that reason,
we will predict the algorithm employed by the platform us-
ing the data. We use the same dataset (except that the predic-
tion target is set to the sum of number of impressions each
seller gets allocated over 4 days) and the same structure of
Convolutional networks that we did for predicting the num-
ber of fake transactions. We also apply the square loss; the
square loss of the trained networks over testing data is 0.45.
Using this network, one can predict the number of buyer im-
pressions each seller will get in the platform’s algorithm and
then run the algorithm for any number of days.

Testing results: We test the DDPG algorithm, GREEDY,
MIXED and the platform’s inferred algorithm and evaluate
and compare their performance in terms of the total rev-
enue.8 With the value of α ranging from 1 to 10, we test the
algorithms for 500 sellers and 10000 days. Figure 6 illus-
trates the comparison between the revenue (welfare) of the

8The performance of CVR and the uniform algorithm is infe-
rior and is not shown.

Figure 6: Testing revenue for α = 2.

algorithms as the number of days increases in testing with
α = 2. As we can see, the performance of DDPG is by far
superior to any of the heuristics or the platform’s algorithm.

Figure 7: Testing average revenue for different values of α.

In Figure 7, we show the average revenue of the algorithms
over different values of α. We can see that the performance
of both heuristic algorithms and the DDPG algorithm in-
creases as α increases and DDPG is mostly affected by the
parameter in a positive way, since its performance increases
drastically with the increase of α.

Conclusion

In this paper, we employed the principles of reinforcement
mechanism design to tackle the problem of sellers’ fraud-
ulent behaviour in the impression allocation problem, one
of the major challenges in e-commerce. Our contribution is
two-fold; first, we design a rationality model for the sellers
which infers their behaviour within a complex system from
data and then we use this behavioural model to solve the
problem efficiently using deep reinforcement learning.

Our “learning rationality from data”-based framework can
in principle be used in other related problems in mechanism
design for which we have sufficient data, substituting the
perfect rationality assumptions or complementing the online
learning approaches that have been proposed in the mecha-
nism design literature more recently (Nekipelov, Syrgkanis,
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and Tardos 2015); this would be worth exploring in the fu-
ture.
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