
Equilibrium Computation and Robust Optimization
in Zero Sum Games with Submodular Structure

Bryan Wilder
Department of Computer Science and Center for Artificial Intelligence in Society

University of Southern California
bwilder@usc.edu

Abstract

We define a class of zero-sum games with combinatorial
structure, where the best response problem of one player is
to maximize a submodular function. For example, this class
includes security games played on networks, as well as the
problem of robustly optimizing a submodular function over
the worst case from a set of scenarios. The challenge in com-
puting equilibria is that both players’ strategy spaces can be
exponentially large. Accordingly, previous algorithms have
worst-case exponential runtime and indeed fail to scale up on
practical instances. We provide a pseudopolynomial-time al-
gorithm which obtains a guaranteed (1− 1/e)2-approximate
mixed strategy for the maximizing player. Our algorithm only
requires access to a weakened version of a best response ora-
cle for the minimizing player which runs in polynomial time.
Experimental results for network security games and a robust
budget allocation problem confirm that our algorithm deliv-
ers near-optimal solutions and scales to much larger instances
than was previously possible.

Introduction

Submodular functions are ubiquitous due to wide-spread ap-
plications ranging from machine learning, to viral market-
ing, to mechanism design. Intuitively, submodularity cap-
tures diminishing returns (formalized later). In this paper, we
use techniques rooted in submodular optimization to solve
previously intractable zero-sum games. We then show how
to instantiate our algorithm for two specific games, includ-
ing the robust optimization of a submodular objective.

As an example, consider the network security game intro-
duced by Tsai et al. (2010). A defender can place check-
points on k edges of a graph. An attacker aims to travel
from a source node to any one of several targets without be-
ing intercepted. Each player has an exponential number of
strategies since the defender may choose any set of k edges
and the attacker may choose any path. Hence, previous ap-
proaches to computing the optimal defender strategy were
either heuristics with no approximation guarantee, or else
provided guarantees but ran in worst-case exponential time
(Jain et al. 2011; Iwashita et al. 2016).

However, this game has useful structure. The defender’s
best response to any attacker mixed strategy is to select the

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

edges which are most likely to intersect the attacker’s cho-
sen path. Computing this set is a submodular optimization
problem (Jain, Conitzer, and Tambe 2013). We give a gen-
eral algorithm for computing approximate minimax equilib-
ria in zero-sum games where the maximizing player’s best
response problem is a monotone submodular function. Our
algorithm obtains a (1 − 1

e)
2−approximation (modulo an

additive loss of ε) to the maximizing player’s minimax strat-
egy. This algorithm runs in pseudopolynomial time even
when both action spaces are exponentially large given ac-
cess to a weakened form of a best response oracle for the
adversary. Pseudopolynomial means that the runtime bound
depends polynomially on largest value of any single item
(which we expect to be a constant for most cases of inter-
est). Our algorithm approximately solves a non-convex, non-
smooth continuous relaxation and then rounds the solution
to a pure strategy in a randomized fashion. To our knowl-
edge, no subexponential algorithm was previously known
for this problem with exponentially large strategy spaces.
Our framework has a wide range of applications, corre-
sponding to the ubiquitous presence of submodular func-
tions in artificial intelligence and algorithm design.

One prominent application is robust submodular opti-
mization. A decision maker is faced with a set of submodular
objectives f1...fm. They do not know which objective is the
true one, and so would like to find a decision maximizing
mini fi. Robust submodular optimization has many appli-
cations because uncertainty is so often present in decision-
making. We start by studying the randomized version of
this problem, where the decision maker may select a dis-
tribution over actions such that the worst case expected per-
formance is maximized (Krause, Roper, and Golovin 2011;
Chen et al. 2017; Wilder et al. 2017). This is equivalent to
computing the minimax equilibrium for a game where one
player has a submodular best response. Our techniques for
solving such games also yield an algorithm for the determin-
istic robust optimization problem, where the decision maker
must commit to a single action. Specifically, we obtain bicri-
teria approximation guarantees analogous to previous work
(Krause et al. 2008) under significantly more general condi-
tions.

We make three contributions. First, we define the class of
submodular best response (SBR) games, which includes the
above examples. Second, we introduce the EQUATOR algo-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1274

rithm to compute approximate equilibrium strategies for the
maximizing player. Third, we give example applications of
our framework to problems with no previously known ap-
proximation algorithms. We start out by showing that net-
work security games (Tsai et al. 2010) can be approximately
solved using EQUATOR. We then introduce and solve the
robust version of a classical submodular optimization prob-
lem: robust maximization of a coverage function (which in-
cludes well-known applications such as budget allocation
and sensor placement). Finally, we experimentally validate
our approach for network security games and robust budget
allocation. We find that EQUATOR produces near-optimal
solutions and easily scales to instances that are too large for
previous algorithms to handle.

All proofs can be found in the full version of the paper
(Wilder 2017), which also makes two further contributions.
First, we extend our techniques to obtain bicriteria guaran-
tees for deterministic robust submodular optimization. Sec-
ond, we show that when a stronger form of best response
oracle is available for the adversary, EQUATOR’s approxi-
mation guarantee can be improved to (1− 1/e).

Problem description

Formulation: Let X be a set of items with |X| = n. A
function f : 2X → R is submodular if for any A ⊆ B and
i ∈ X \ B, f(A ∪ {i}) − f(A) ≥ f(B ∪ {i}) − f(B).
We restrict our attention to functions that are monotone, i.e.,
f(A∪ {i})− f(A) ≥ 0 for all i ∈ X,A ⊂ X . Without loss
of generality, we assume that f(∅) = 0 and hence f(S) ≥
0 ∀S. Let F = {f1...fm} be a finite set of submodular func-
tions on the ground set X . m may be exponentially large.
Let Δ(S) denote the set of probability distributions over the
elements of any set S. Oftentimes, we will work with inde-
pendent distributions over X , which can be fully specified
by a vector x ∈ Rn

+. xi gives the marginal probability that
item i is chosen. Denote by pIx the independent distribution
with marginals x. Let I be a collection of subsets of X . For
instance, we could have I = {S ⊆ X : |S| ≤ k}. We
would like to find a minimax equilibrium of the game where
the maximizing player’s pure strategies are the subsets in I,
and the minimizing player’s pure strategies are the functions
in F . The payoff to the strategies S ∈ I and fi ∈ F is
fi(S). We call a game in this form a submodular best re-
sponse (SBR) game. For the maximizing player, computing
the minimax equilibrium is equivalent to solving

max
p∈Δ(I)

min
f∈F

E
S∼p

[f(S)] (1)

where S ∼ p denotes that S is distributed according to p.
Example: network security games. To make the setting

more concrete, we now introduce one of our example do-
mains, the network security game of Tsai et al. (2010). There
is a graph G = (V,E). There is a source vertex s (which
may be a supersource connected to multiple real sources)
and a set of targets T . An attacker wishes to traverse the net-
work starting from the source and attack a target. Each target
tj has a value τj . The attacker picks a s − tj path for some
tj ∈ T . The defender attempts to catch the attacker by pro-
tecting edges of the network. The defender may select any k

edges, and the attacker is caught if any of these edges lies on
the chosen path. We use the normalized utilities defined by
Jain et al. (2013), which give the defender utility τj > 0 if an
attack on tj is intercepted and 0 if the attack succeeds. Thus,
each path P from s to tj for the attacker induces an objec-
tive function fP for the defender: for any set of edges S,
fP (S) = τj if S ∩ P = ∅, otherwise fP (S) = 0. fP is eas-
ily seen to be submodular (Jain, Conitzer, and Tambe 2013).
Hence, we have a SBR game with I = {S ⊆ E : |S| ≤ k}
and F = {fP : P is a path from s to T}.

Allowable pure strategy sets: Our running example is
when the pure strategies I of the maximizing player are all
size k subsets: I = {S ⊆ X : |S| ≤ k}. In general, our al-
gorithm works when I is any matroid; this example is called
the uniform matroid. We refer to Korte and Vygen (2012) for
more details on matroids. Here, we just note that matroids
are a class of well-behaved constraint structures which are
of great interest in combinatorial optimization. A useful fact
is that any linear objective can be exactly optimized over
a matroid by the greedy algorithm. For instance, consider
the above uniform matroid. If each element j has a weight
wj , the highest weighted set of size k is obtained simply
by taking the k items with highest individual weights. Let
k = maxS∈I |S| be the size of the largest pure strategy.
E.g., in network security games k is the number of defender
resources. In general, k is the rank of the matroid.

We now introduce some notation for the continuous ex-
tension of the problem. Let 1S be the indicator vector of the
set S (i.e., an n-dimensional vector with 1 in the entries of
elements that are in S and 0 elsewhere). Let P be the convex
hull of {1S : S ∈ I}. Note that P is a polytope.

Best response oracles: A best response oracle for one
player is a subroutine which computes the pure strategy with
highest expected utility against a mixed strategy for the other
player. We assume that an oracle is available for the minimz-
ing player. However, we require only a weaker oracle, which
we call an best response to independent distributions oracle
(BRI). A BRI oracle is only required to compute a best re-
sponse to mixed strategies which are independent distribu-
tions, represented as the marginal probability that each item
in X appears. Given a vector x ∈ Rn

+, where xi is the prob-
ability that element i ∈ X is chosen, a BRI oracle computes
argminfi∈F ES∼pI

x
[fi(S)]. We use S ∼ x to denote that S

is drawn from the independent distribution with marginals
x. As we will see later, sometimes a BRI oracle is readily
available even when the full best response is NP-hard.

Robust optimization setting: One prominent application
of SBR games is robust submodular optimization. Robust
optimization models decision making under uncertainty by
specifying that the objective is not known exactly. Instead,
it lies within an uncertainty set U which represents the pos-
sibilities that are consistent with our prior information. Our
aim is to perform well in the worst case over all objectives in
U . We can view this as a zero sum game, where the decision
maker chooses a distribution over actions and nature adver-
sarially chooses the true objective from U . A great deal of
recent work has been devoted to the setting of randomized
actions, both because randomization can improve worst-case
expected utility (Delage, Kuhn, and Wiesemann 2016), and

1275

because the randomized version often has much better com-
putational properties (Krause, Roper, and Golovin 2011;
Orlin, Schulz, and Udwani 2016). Randomized decisions
also naturally fit a problem setting where the decision maker
will take several actions and wants to maximize their total
reward. Any single action might perform badly in the worst
case; drawing the actions from a distribution allows the de-
cision maker to hedge their bets and perform better overall.

Previous work

We discuss related work in two areas. First, solving zero-
sum games with exponentially large strategy sets. Efficient
algorithms are known only for limited special cases. One ap-
proach is to represent the strategies in a lower dimensional
space (the space of marginals). We elaborate more below
since our algorithm uses this approach. For now, we just
note that previous work (Ahmadinejad et al. 2016; Xu 2016;
Chan et al. 2016) requires that the payoffs be linear in
the lower dimensional space. Linearity is a very restrictive
assumption; ours is the first algorithm which extends the
marginal-based approach to general submodular functions.
This requires entirely different techniques.

In practice, large zero sum games are often solved via
the double oracle algorithm (McMahan, Gordon, and Blum
2003; Bosansky et al. 2014; Halvorson, Conitzer, and Parr
2009). Double oracle starts with each player restricted to
only a small number of pure strategies and repeatedly adds a
new strategy for each player until an equilibrium is reached.
The new strategies are chosen to be each player’s best re-
sponse to the other’s current mixed strategy. This technique
is appealing when equilibria have sparse support, and so
only a few iterations are needed. However, it is easy to give
examples where every pure strategy lies in the support of the
equilibrium, so double oracle will require exponential run-
time. Our algorithm runs in guaranteed polynomial time.

Second, we give more background on robust submodular
optimization. Krause et al. (2008) introduced the problem of
maximizing the minimum of submodular functions, which
corresponds to Problem 1 with the maximizing player re-
stricted to pure strategies. They show that the problem is
inapproximable unless P = NP. They then relax the prob-
lem by allowing the algorithm to exceed the budget con-
straint (a bicriteria guarantee). Our primary focus is on the
randomized setting, where the algorithm respects the bud-
get constraint but chooses a distribution over actions instead
of a pure strategy. This randomized variant was studied by
Wilder et al. (2017) for the special case of influence maxi-
mization. Krause et al. (2011) and Chen et al. (2017) studied
general submodular functions using very similar techniques:
both iterate dynamics where the adversary plays a no-regret
learning algorithm and the decision maker plays a greedy
best response. This algorithm maintains a variable for every
function in F and so is only computationally tractable when
F is small. By contrast, we deal with the setting where F
is exponentially large. However, we lose an extra factor of
(1− 1/e) in the approximation ratio.

In the full version of the paper, we extend our algorithm
to obtain bicriteria guarantees for the deterministic problem

(where we select a single feasible set). Our guarantees ap-
ply under significantly more general conditions than those
of Krause et al. (2008): our algorithm generalizes from car-
dinality constraints to arbitrary matroid constraints and only
needs BRI oracle access to F instead of explicitly enu-
merating the objectives. The size of the set returned scales
as log |F|, which is the optimal dependence on |F| un-
der complexity-theoretic assumptions (Krause et al. 2008).
However, the size also depends on a precision parameter ε.

Preliminaries

We now introduce techniques our algorithm builds on.
Multilinear extension: We can view a set function f as

being defined on the vertices of the hypercube {0, 1}n. Each
vertex is the indicator vector of a set. A useful paradigm
for submodular optimization is to extend f to a continuous
function over [0, 1]n which agrees with f at the vertices. The
multilinear extension F is defined as

F (x) =
∑
S⊆X

f(S)
∏
j∈S

xj

∏
j �∈S

1− xj .

Equivalently, F (x) = ES∼x[f(S)]. That is, F (x) is the ex-
pected value of f on sets drawn from the independent distri-
bution with marginals x. F can be evaluated using random
sampling (Calinescu et al. 2011) or in closed form for spe-
cial cases (Iyer, Jegelka, and Bilmes 2014). Note that for any
set S and its indicator vector 1S , F (1S) = f(S). One cru-
cial property of F is up-concavity (Calinescu et al. 2011).
That is, F is concave along any direction u � 0 (where �
denotes element-wise comparison). Formally, a function F
is up-concave if for any x and any u � 0, F (x + ξu) is
concave as a function of ξ.

Correlation gap: A useful property of submodular func-
tions is that little is lost by optimizing only over independent
distributions. Agrawal et al. (2010) introduced the concept
of the correlation gap, which is the maximum ratio between
the expectation of a function over an independent distribu-
tion and its expectation over a (potentially correlated) dis-
tribution with the same marginals. Let D(x) be the set of
distributions with marginals x. The correlation gap κ(f) of
a function f is defined as

κ(f) = max
x∈[0,1]n

max
p∈D(x)

ES∼p[f(S)]

ES∼pI
x
[f(S)]

.

For any submodular function κ ≤ e
e−1 . This says that,

up to a loss of a factor 1 − 1/e, we can restrict ourselves to
independent distributions when solving Problem 1.

Swap rounding: Swap rounding is an algorithm devel-
oped by Chekuri et al. (2010) to round a fractional point in
a matroid polytope to an integral point. We will use swap
rounding to convert the fractional point obtained from the
continuous optimization problem to a distribution over pure
strategies. Swap rounding takes as input a representation of
a point x ∈ P as a convex combination of pure strategies.
It then merges these sets together in a randomized fash-
ion until only one remains. For any submodular function f
and its multilinear extension F , the random set R satisfies

1276

E[f(R)] ≥ F (x). I.e., swap rounding only increases the
value of any submodular function in expectation.

Algorithm for SBR games
In this section, we introduce the EQUATOR (EQUilibrium
via stochAsTic frank-wOlfe and Rounding) algorithm for
computing approximate equilibrium strategies for the maxi-
mizing player in SBR games. Since the pure strategy sets can
be exponentially large, it is unclear what it even means to
compute an equilibrium: representing a mixed strategy may
require exponential space. Our solution to this dilemma is
to show how to efficiently sample pure strategies from an
approximate equilibrium mixed strategy. This suffices for
the maximizing player to implement their strategy. Alter-
natively, we can build an approximate mixed strategy with
sparse support by drawing a polynomial number of samples
and outputing the uniform distribution over the samples. In
order to generate these samples, EQUATOR first solves a
continuous optimization problem, which we now describe.

The marginal space: A common meta-strategy for solv-
ing games with exponentially large strategy sets is to work
in the lower-dimensional space of marginals. I.e., we keep
track of only the marginal probability that each element in
the ground set is chosen. To illustrate this, let p be a dis-
tribution over the pure strategies I, and x ∈ P denote a
vector giving the marginal probability of selecting each el-
ement of X in a set drawn according to p. Note that x is
n-dimensional while p could have dimension up to 2n. Pre-
vious work has used marginals for linear objectives. A lin-
ear function with weights w satisfies ES∼p

[∑
j∈S wj

]
=∑n

j=1 wjPr[j ∈ S] =
∑n

j=1 wjxj , so keeping track of only
the marginal probabilities x is sufficient for exact optimiza-
tion. However, submodular functions do not in general sat-
isfy this property: the utilities will depend on the full dis-
tribution p, not just the marginals x. We will treat a given
marginal vector x as representing an independent distribu-
tion where each j is present with probability xj (i.e., x
compactly represents the full distribution pIx). The expected
value of x under any submodular function is exactly given
by its multilinear extension, which is a continuous function.

Continuous extension: Let G = mini Fi be the point-
wise minimum of the multilinear extensions of the func-
tions in F . Note that for any marginal x, G(x) is ex-
actly the objective value of pIx for Problem 1. Hence, op-
timizing G over all x ∈ P is equivalent to solving Prob-
lem 1 restricted to independent distributions. Via the cor-
relation gap, this restriction only loses a factor (1 − 1/e):
if the optimal full distribution is pOPT , then the indepen-
dent distribution with the same marginals as pOPT has at
least (1 − 1/e) of of pOPT ’s value under any submod-
ular function. Previous algorithms (Calinescu et al. 2011;
Bian et al. 2017) for optimizing up-concave functions like
G do not apply because G is nonsmooth (see below). We
introduce a novel Stochastic Frank-Wolfe algorithm which
smooths the objective with random noise. Its runtime does
not depend directly on |F| at all; it only uses BRI calls.

Rounding: Once we have solved the continuous problem,
we need a way of mapping the resulting marginal vector x

Algorithm 1 EQUATOR(BRI, FO,LO, u, c,K, r)

1: x0 ← u1
2: //Stochastic Frank-Wolfe algorithm
3: for � = 1...K do
4: for t = 1...c do
5: Draw z ∼ μ(u)
6: Ft ← BRI(x�−1 + z)
7: ∇̃�

t ← FO(Ft,x
�−1 + z)

8: end for
9: ∇̃� ← 1

c

∑m
t=1 ∇̃�

t

10: v� ← LO(∇̃�)
11: x� ← x�−1 + 1

Kv�

12: end for
13: xfinal ← xK − u1
14: //Sample from equilibrium mixed strategy
15: Return r samples of SwapRound(xfinal)

to a distribution over the pure strategies I. Notice that if
we simply sample items independently according to x, we
might end up with an invalid set. For instance, in the uniform
matroid which requires |S| ≤ k, an independent draw could
result in more than k items even if

∑
i xi ≤ k. Hence, we

sample pure strategies by running the swap rounding algo-
rithm on x. In order to implement the maximizing player’s
equilibrium strategy, it suffices to simply draw a sample
whenever a decision is required. If a full description of
the mixed strategy is desired, we show that it is sufficient
to draw Θ

(
1
ε3 (log |F|+ log 1

δ)
)

independent samples via
swap rounding and return the uniform distribution over the
sampled pure strategies.

Solving the continuous problem

The linchpin of our algorithmic strategy is solving the op-
timization problem maxx∈P G(x). In this section, we pro-
vide the ingredients to do so.

Properties of G: We set the stage with four important
properties of G. First, while G is not in general concave, it
is up-concave:

Lemma 1. If F1...Fm are up-concave functions, then G =
mini Fi is up-concave as well.

Up-concavity of G is the crucial property that enables ef-
ficient optimization.

Second, G is Lipschitz. Specifically, let M =
maxi,j fi({j}) be the maximum value of any single item.
It can be shown that ||∇Fi||∞ ≤ M ∀i since (intuitively),
the gradient of Fi is related to the marginal gain of items
under fi. From this we derive

Lemma 2. G is M -Lipschitz in the �1 norm.

Third, G is not smooth. For instance, it is not even dif-
ferentiable at points where the minimizing function is not
unique. This complicates the problem of optimizing G and
renders earlier algorithms inapplicable.

Fourth, at any point x where the minimizing function Fi is
unique, ∇G(x) = ∇Fi(x). Hence, we can compute ∇G(x)
by calling the BRI to find Fi, and then computing ∇Fi(x).

1277

In general, ∇Fi(x) can be computed by random sampling
(Calinescu et al. 2011), and closed forms are known for par-
ticular cases (Iyer, Jegelka, and Bilmes 2014).

Randomized smoothing: We will solve the continuous
problem maxx∈P G(x). Known strategies for optimizing
up-concave functions (Bian et al. 2017) rely crucially on
G being smooth. Specifically, ∇G must be Lipschitz con-
tinuous. Unfortunately, G is not even differentiable every-
where. Even between two points x and y where G is dif-
ferentiable, ∇G(x) and ∇G(y) can be arbitrarily far apart
if argmini Fi(x) = argmini Fi(y). No previous work ad-
dresses nonsmooth optimization of an up-concave function.

To resolve this issue, we use a carefully calibrated amount
of random noise to smooth the objective. Let μ(u) be the
uniform distribution over the �∞ ball of radius u. We de-
fine the smoothed objective Gμ(x) = Ez∼μ(u) [G(x+ z)]
which averages over the region around x. This (and similar)
techniques have been studied in the context of convex opti-
mization (Duchi, Bartlett, and Wainwright 2012). We show
that Gμ is a good smooth approximator of G.

Lemma 3. Gμ has the following properties:

• Gμ is up-concave.

• |Gμ(x)−G(x)| ≤ Mnu
2 ∀x.

• Gμ is differentiable, with ∇Gμ(x) = E[∇G(x+ z)].

• ∇Gμ is M
μ −Lipschitz continuous in the �1 norm.

Hence, we can use Gμ as a better-behaved proxy for G
since it is both smooth and close to G everywhere in the do-
main. The main challenge is that Gμ and its gradients are not
available in closed form. Accordingly, we randomly sample
values of the perturbation z and average over the value of G
(or its gradient) at these sampled points.

Stochastic Frank-Wolfe algorithm (SFW)

We propose the SFW algorithm (Algorithm 1) to optimize
Gμ. SFW generates a series of feasible points x0...xK ,
where K is the number of iterations. Each point is gener-
ated from the last via two steps. First, SFW estimates the
gradient of Gμ. Second, it takes a step towards the point in
P which is furthest in the direction of the gradient. To carry
out these steps, SFW requires three oracles. First, a linear
optimization oracle LO which, given an objective w, returns
argmaxv∈P w�v. In the context of our problem, LO out-
puts the indicator vector of the set S ∈ I which maximizes
the linear objective w. S can be efficiently found via the
greedy algorithm. The other two oracles concern gradient
evaluation. One is the BRI oracle discussed earlier. The other
is a stochastic first-order oracle FO which, for any function
Fi and point x, returns an unbiased estimate of ∇Fi(x).

The algorithm starts at x0 = 0. At each iteration �, it aver-
ages over c calls to FO to compute a stochastic approxima-
tion ∇̃� to ∇Gμ(x

�−1) (Lines 4-9). For each call, it draws a
random perturbation z ∼ μ(u) and uses the BRI to find the
minimizing F at x�−1 + z. It then queries FO for an esti-
mate of ∇F (x�−1+z). Lastly, it takes a step in the direction
of v� = LO(∇̃�) by setting x� = x�−1 + 1

Kv� (Lines 10-
11). Since x� at each iteration is a combination of vertices of

P , the output is guaranteed to be feasible. The intuition for
why the algorithm succeeds is that it only moves along non-
negative directions (since v� is always nonnegative). This
is in contrast to gradient-based algorithms for concave op-
timization, which move in the (possibly negative) direction
v� − x�. As an up-concave function, Gμ is concave along
all nonnegative directions. By moving only in such direc-
tions we inherit enough of the nice properties of concave
optimization to obtain a (1− 1/e)− approximation.

A small technical detail is that adding random noise z
could result in negative values, for which the multilinear ex-
tension is not defined. To circumvent this, we start the algo-
rithm at x0 = u1 (i.e., with small positive values in every
entry) and then return xfinal = xK − u1 (Line 13).

Theoretical bounds

Let T1 be the runtime of the linear optimization oracle and
T2 be the runtime of the first-order oracle. We prove the fol-
lowing guarantee for SFW:
Theorem 1. For any ε, δ > 0, there are parameter settings
such that SFW finds a solution xK satisfying G(xK) ≥ (1−
1
e)OPT − ε with probability at least 1 − δ. Its runtime is

Õ
(
T1

M2k2n
ε2 + T2

k4M4n
ε4 log 1

δ

)
1.

We remark that T1 is small since linear optimization over
P can be carried out by a greedy algorithm. For instance,
the runtime is T1 = O (n log n) for the uniform matroid,
which covers many applications. T2 is typically dominated
by the runtime of the BRI since it is known how to efficiently
compute the gradient of a submodular function (Calinescu et
al. 2011; Iyer, Jegelka, and Bilmes 2014).

Based on this result, we show the following guarantee on
a single randomly sampled set that EQUATOR returns after
applying swap rounding to the marginal vector xfinal.
Theorem 2. With r = 1, EQUATOR outputs a set S ∈ I
such that mini E[fi(S)] ≥ (1− 1

e)
2OPT−ε with probability

at least 1− δ. Its time complexity is the same as SFW.

Proof. Suppose that pOPT is the distribution achieving the
optimal value for Problem 1. Let x∗ be the optimizer for the
problem maxx∈P G(x). That is, x∗ can be interpreted as the
marginals of the independent distribution which maximizes
mini ES∼pI

x∗ [fi(S)]. With slight abuse of notation, let pIOPT

be the independent distribution with the same marginals as
pOPT . By applying the correlation gap to each fi ∈ F and
taking the min, we have

min
fi∈F

E
S∼pOPT

[fi(S)] ≤ e

e− 1
min
fi∈F

E
S∼pI

OPT

[fi(S)].

By definition of x∗, G(x∗) ≥ minfi∈F ES∼pI
OPT

[fi(S)].
Hence, G(x∗) ≥ (1 − 1/e)mini ES∼pI

x∗ [fi(S)] = (1 −
1/e)OPT . Via Theorem 1, the marginal vector x that our
algorithm finds satisfies G(x) ≥ (1− 1

e)G(x∗)− ε ≥ (1−
1
e)

2OPT − ε. Lastly, Chekuri et al. (2010) show that swap
rounding outputs an independent set S satisfying E[fi(S)] ≥
Fi(S) for any fi ∈ F , which completes the proof.

1The Õ notation hides logarithmic terms

1278

This guarantee is sufficient if we just want to implement
the maximizing player’s strategy by sampling an action.
We also prove that if a full description of the maximizing
player’s mixed strategy is desired, drawing a small number
of independent samples via swap rounding suffices:

Theorem 3. Draw r = O (
1
ε3

(
log |F|+ log 1

δ

))
samples

using independent runs of randomized swap rounding. The
uniform distribution on these samples is a (1 − 1

e)
2 − ε

approximate equilibrium strategy for the maximizing player
with probability at least 1− δ. The runtime is O

(
rk2M2n

ε

)
.

Applications

We now give several examples of domains that our algorithm
can be applied to. In each of these cases, we obtain the first
guaranteed polynomial time constant-factor approximation
algorithm for the problem. The key part of both applications
is developing a BRI (the first order oracle is easily obtained
in closed form via straightforward calculus).

Network security games: Earlier, we formulated net-
work security games in the SBR framework. All we need to
solve it using EQUATOR is a BRI oracle. The full attacker
best response problem is known to be NP-hard (Jain et al.
2011). However, it turns out the best response to an indepen-
dent distribution is easily computed. Index the set of paths
and let Pi be the ith path, ending at a target with value τi. Let
P (tj) be the set of all paths from the (super)source s to tj .
Let fi be the corresponding submodular objective. Given a
defender mixed strategy x, the attacker best response prob-
lem is to find mini ES∼x[fi(S)]. We can rewrite this as

min
i

E
S∼x

[fi(S)] = min
i

E
S∼x

[τi1[S ∩ Pi = ∅]]
= min

tj∈T
τj min

P∈P (tj)
E

S∼x
[1[S ∩ P = ∅]]

= min
tj∈T

τj min
P∈P (tj)

1−
∏
e∈P

[1− xe]

We can now solve a separate problem for each target tj
and then take the one with lowest value. For each tj , we
solve a shortest path problem. We aim to find a s − tj path
which maximizes the product of the the weights 1 − xe

on each edge. Taking logarithms, this is equivalent to find-
ing the path which minimizes −∑

e∈P log(1 − xe) =∑
e∈P log 1

1−xe
. This is a shortest path problem in which

each edge has nonnegative weight log 1
1−xe

, and so can be
solved via Dijkstra’s algorithm. With the attacker BRI in
hand, applying EQUATOR yields the first subexponential-
time algorithm for network security games.

Robust coverage and budget allocation: Many
widespread applications of submodular functions concern
coverage functions. A coverage function takes the following
form. There a set of items U , and each j ∈ U has a
weight wj . The algorithm can choose from a ground set
X = {a1...an} of actions. Each action ai covers a set
Ai ⊆ U . The value of any set of actions is the total value of
the items that those actions cover: f(S) =

∑
j∈⋃

i∈S Ai
wj .

We can also consider probabilistic extensions where action

ai covers each j ∈ Ai independently with probability
pij . This framework includes budget allocation, sensor
placement, facility location, and many other common sub-
modular optimization problems. Here we consider a robust
coverage problem where the weights w are unknown. For
concreteness, we focus on the budget allocation problem,
but all of our logic applies to general coverage functions.

Budget allocation models an advertiser’s choice of how to
divide a finite budget B between a set of advertising chan-
nels. Each channel is a vertex on the left hand side L of
a bipartite graph. The right hand R consists of customers.
Each customer v ∈ R has a value wv which is the adver-
tiser’s expected profit from reaching v. The advertiser allo-
cates their budget in integer amounts among L. Let y(s) de-
note the amount of budget allocated to channel s ∈ L. The
advertiser solves the problem

max
y:||y||1≤B

fw(y) =
∑
v∈R

wv

[
1−

∏
s∈L

(1− psv)
y(s)

]

where psv is the probability that one unit of advertising on
channel s will reach customer v. This a probabilistic cov-
erage problem where the action set X contains B copies2

of each s ∈ L and the feasible decisions I are all size B
subsets of X . Choosing b copies of node s corresponds to
setting y(s) = b. Budget allocation has been the subject of a
great deal of recent research (Alon, Gamzu, and Tennenholtz
2012; Soma et al. 2014; Miyauchi et al. 2015).

In the robust optimization problem, the profits w are not
exactly known. Instead, they belong to a polyhedral uncer-
tainty set U . This is very realistic: while an advertiser may
be able to estimate the profit for each customer from past
data, they are unlikely to know the true value for any par-
ticular campaign. We remark that Staib and Jegelka (2017)
also considered a robust budget allocation problem, but their
problem has uncertainty on the probabilities pst, not the
profits w. Further, they consider a continuous problem with-
out the complication of rounding to discrete solutions.

As an example uncertainty set, consider the D-norm un-
certain set, which is common in robust optimization (Bertsi-
mas, Pachamanova, and Sim 2004; Staib and Jegelka 2017).
The uncertainty set is defined around a point estimate ŵ as

U ŵ
γ = {w : ∃c ∈ [0, 1]|R|, wi = (1− ci)ŵi, ||c||1 ≤ γ}.
This can be thought of as allowing an adversary to scale

down each entry of ŵ with a total budget of γ. In our case,
ŵ is the advertiser’s best estimate from past data, and they
would like to perform well for all scenarios within U ŵ

γ . γ
defines the advertiser’s tolerance for risk. The problem we
want to solve is maxp∈Δ(I) minw∈Uŵ

γ
Ey∼p[fw(y)], which

we recognize as an instance of Problem 1. For any fixed dis-
tribution p, we have by linearity of expectation

E
y∼p

[fw(y)] =
∑
v∈R

wv E
y∼p

[
1−

∏
s∈L

(1− psv)
y(s)

]
.

2We use this formulation for simplicity, but it is possible to use
only logB copies of each node (Ene and Nguyen 2016).

1279

20 40 60 80 100

n

0

20

40

60

80

U
ti
lit
y

a

EQUATOR

SNARES

0 250 500 750 1000

n

100

101

102

103

104

R
un
ti
m
e
(s
)

b

EQUATOR

SNARES

5 10 15 20

sources/targets

0

20

40

60

80

100

U
ti
lit
y

c
EQUATOR

SNARES

5 10 15 20

sources/targets

100

101

102

103

104

R
un
ti
m
e
(s
)

d
EQUATOR

SNARES

Figure 1: Experimental results for network security games.

0 200 400 600 800 1000

n

0

25

50

75

100

W
or
st
ca
se
pr
ofi
t

a
EQUATOR

DO

Greedy

0 200 400 600 800 1000

n

10−1

101

103

R
un
ti
m
e
(s
)

b EQUATOR

DO

Greedy

0 200 400 600 800 1000

|L|
0

5

10

15

W
or
st
ca
se
pr
ofi
t

c

EQUATOR

DO

Greedy

0 200 400 600 800 1000

n

100

101

102

103

104

R
un
ti
m
e
(s
)

d
EQUATOR

DO

Greedy

Figure 2: Experimental results for budget allocation.

Note that the inner expectation (which is the total proba-
bility that each v ∈ R is reached) is constant with respect
to w. Hence, the adversary’s best response problem of com-
puting minw∈U Ey∼p[fw(y)] is a linear program and can be
easily solved. We remark that the coefficients of this LP (the
inner expectation in the above sum) can easily be computed
exactly for any independent distribution. Further, since any
LP has an optimal solution among the vertices of U ŵ

γ , we
can without loss of generality restrict the adversary’s pure
strategies to a finite (though exponentially large) number.

Experiments

We now show experimental results from applying EQUA-
TOR to two different domains.

Network security games: We first study the network se-
curity game defined above. We compare EQUATOR to the
SNARES algorithm (Jain, Conitzer, and Tambe 2013) which
is the current state of the art algorithm with guaranteed solu-
tion quality. SNARES uses a double oracle approach to find
a globally optimal solution. However, it incorporates sev-
eral domain-specific heuristics which substantially improve
its runtime over a standard implementation of double ora-
cle. We note that Iwashita et al. (2016) proposed a newer
double-oracle style algorithm which first preprocesses the
graph to remove unnecessary edges. We do not compare to
this approach because the preprocessing step can be applied
equally well to either EQUATOR or double oracle. We use
random geometric graphs, which are commonly used to as-
sess algorithms for this domain due to their similarity to
real world road networks (Jain, Conitzer, and Tambe 2013;
Iwashita et al. 2016). As in Jain et al. (2013), we use density
d = 0.1 with the value of each target drawn uniformly at ran-
dom in [0, 100]. We set k to be one percent of the number of
edges. Each data point averages over 30 random instances.
EQUATOR was run with K = 100, c = 60, u = 0.1.

Figure 1 shows the results. Figures 1(a) and 1(b) vary the
network size n with three randomly chosen source and tar-

get nodes. Figure 1(a) plots utility (i.e., how much loss is
averted by the defender’s allocation) as a function of n. Er-
ror bars show one standard deviation. We see that EQUA-
TOR obtains utility within 6% of SNARES, which computes
a global optimum. Figure 1(b) shows runtime (on a logarith-
mic scale) as a function of n. SNARES was terminated after
10 hours for graphs with 250 nodes, while EQUATOR eas-
ily scales to 1000 nodes. Next, Figures 1(c) and 1(d) show
results as the number of sources and targets grows. As ex-
pected, utility decreases with more sources/targets since the
number of resources is constant and it becomes harder to
defend the network. EQUATOR obtains utility within 4% of
SNARES. However, SNARES was terminated after 10 hours
for just 5 source/targets, while EQUATOR runs in under 25
seconds with 20 source/targets.

Robust budget allocation: We compare three algorithms
for robust budget allocation. First, EQUATOR. Second, dou-
ble oracle. We use the greedy algorithm for the defender’s
best response (which is a (1−1/e)-approximation) since the
exact best response is intractable. For the adversary’s best re-
sponse, we use the linear program discussed in the section
on robust coverage. Third, we compare to “greedy”, which
greedily optimizes the advertiser’s return under the point es-
timate ŵ. Greedy was implemented with lazy evaluation
(Minoux 1978) which greatly improves its runtime at no
cost to solution value. We generated random bipartite graphs
with |L| = |R| = n where each potential edge is present
with probability 0.2 and for each edge (u, v), pu,v is draw
uniformly in [0, 0.2]. ŵ was randomly generated with each
coordinate uniform in [0.5, 1.5]. Our uncertainty set is the
D-norm set around ŵ with γ = 1

2n, representing a substan-
tial degree of uncertainty. The budget was B = 5 + 0.01 · n
since the problem is hardest when B is small relative to n.
EQUATOR was run with K = 20, c = 10, u = 0.1.

Figure 2 shows the results. Each point averages over 30
random problem instances (error bars would be hidden un-
der the markers). Figure 2(a) plots the profit obtained by
each algorithm when the true w is chosen as the worst case

1280

in U ŵ
γ , with n increasing on the x axis. Figure 2(b) plots the

average runtime for each n. We see that double oracle pro-
duces highly robust solutions. However, for even n = 500,
its execution was halted after 10 hours. Greedy is highly
scalable, but produces solutions that are approximately 40%
less robust than double oracle. EQUATOR produces solution
quality within 7% of double oracle and runs in less than 30
seconds with n = 1000.

Next, we show results on a real world dataset from Yahoo
webscope (Yahoo 2007). The dataset logs bids placed by ad-
vertisers on a set of phrases. We create a budget allocation
problem where the phrases are advertising channels and the
accounts are targets; the resulting problem has |L| = 1000
and |R| = 10, 394. Other parameters are the same as before.
We obtain instances of varying size by randomly sampling
a subset of L. Figures 2(c-d) show results (averaging over
30 random instances). In Figure 2(c), we see that both dou-
ble oracle and EQUATOR find highly robust solutions, with
EQUATOR’s solution value within 8% of that of double or-
acle. By contrast, greedy obtains no profit in the worst case
for |L| > 20, validating the importance of robust solutions
on real problems. In Figure 2(d), we observe that double ora-
cle was terminated after 10 hours for n = 500 while EQUA-
TOR scales to n = 1000 in under 40 seconds. We conclude
that EQUATOR is empirically successful at finding highly
robust solutions in an efficient manner, complementing its
theoretical guarantees.

Acknowledgments: Wilder was supported by a NSF
Graduate Fellowship and thanks Shaddin Dughmi for help-
ful conversations.

References

Agrawal, S.; Ding, Y.; Saberi, A.; and Ye, Y. 2010. Correlation
robust stochastic optimization. In SODA.
Ahmadinejad, A.; Dehghani, S.; Hajiaghayi, M.; Lucier, B.;
Mahini, H.; and Seddighin, S. 2016. From duels to battlefields:
Computing equilibria of Blotto and other games. In AAAI.
Alon, N.; Gamzu, I.; and Tennenholtz, M. 2012. Optimizing budget
allocation among channels and influencers. In WWW, 381–388.
Bertsimas, D.; Pachamanova, D.; and Sim, M. 2004. Robust linear
optimization under general norms. Operations Research Letters
32(6):510–516.
Bian, A. A.; Mirzasoleiman, B.; Buhmann, J. M.; and Krause, A.
2017. Guaranteed non-convex optimization: Submodular maxi-
mization over continuous domains. In AISTATS.
Bosansky, B.; Kiekintveld, C.; Lisy, V.; and Pechoucek, M. 2014.
An exact double-oracle algorithm for zero-sum extensive-form
games with imperfect information. Journal of Artificial Intelli-
gence Research 51:829–866.
Calinescu, G.; Chekuri, C.; Pál, M.; and Vondrák, J. 2011. Maxi-
mizing a monotone submodular function subject to a matroid con-
straint. SIAM Journal on Computing 40(6):1740–1766.
Chan, H.; Jiang, A. X.; Leyton-Brown, K.; and Mehta, R. 2016.
Multilinear games. In WINE.
Chekuri, C.; Vondrak, J.; and Zenklusen, R. 2010. Dependent ran-
domized rounding via exchange properties of combinatorial struc-
tures. In FOCS.
Chen, R.; Lucier, B.; Singer, Y.; and Syrgkanis, V. 2017. Robust
optimization for non-convex objectives. In NIPS.

Delage, E.; Kuhn, D.; and Wiesemann, W. 2016. dice-sion mak-
ing under uncertainty: When can a random decision reduce risk?
Technical Report EPFL-ARTICLE-220662.
Duchi, J. C.; Bartlett, P. L.; and Wainwright, M. J. 2012. Ran-
domized smoothing for stochastic optimization. SIAM Journal on
Optimization 22(2):674–701.
Ene, A., and Nguyen, H. L. 2016. A reduction for optimizing lat-
tice submodular functions with diminishing returns. arXiv preprint
arXiv:1606.08362.
Halvorson, E.; Conitzer, V.; and Parr, R. 2009. Multi-step multi-
sensor hider-seeker games. In IJCAI.
Iwashita, H.; Ohori, K.; Anai, H.; and Iwasaki, A. 2016. Simpli-
fying urban network security games with cut-based graph contrac-
tion. In AAMAS.
Iyer, R. K.; Jegelka, S.; and Bilmes, J. A. 2014. Monotone closure
of relaxed constraints in submodular optimization: Connections be-
tween minimization and maximization. In UAI.
Jain, M.; Korzhyk, D.; Vaněk, O.; Conitzer, V.; Pěchouček, M.; and
Tambe, M. 2011. A double oracle algorithm for zero-sum security
games on graphs. In AAMAS.
Jain, M.; Conitzer, V.; and Tambe, M. 2013. Security scheduling
for real-world networks. In AAMAS.
Korte, B., and Vygen, J. 2012. Combinatorial optimization.
Springer.
Krause, A.; McMahan, H. B.; Guestrin, C.; and Gupta, A. 2008.
Robust submodular observation selection. Journal of Machine
Learning Research 9(Dec):2761–2801.
Krause, A.; Roper, A.; and Golovin, D. 2011. Randomized sensing
in adversarial environments. In IJCAI.
McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Planning in
the presence of cost functions controlled by an adversary. In ICML.
Minoux, M. 1978. Accelerated greedy algorithms for maximizing
submodular set functions. Optimization Techniques 234–243.
Miyauchi, A.; Iwamasa, Y.; Fukunaga, T.; and Kakimura, N. 2015.
Threshold influence model for allocating advertising budgets. In
ICML, 1395–1404.
Orlin, J. B.; Schulz, A. S.; and Udwani, R. 2016. Robust monotone
submodular function maximization. In IPCO.
Soma, T.; Kakimura, N.; Inaba, K.; and Kawarabayashi, K.-i. 2014.
Optimal budget allocation: Theoretical guarantee and efficient al-
gorithm. In ICML, 351–359.
Staib, M., and Jegelka, S. 2017. Robust budget allocation via con-
tinuous submodular functions. In ICML.
Tsai, J.; Yin, Z.; Kwak, J.-y.; Kempe, D.; Kiekintveld, C.; and
Tambe, M. 2010. Urban security: Game-theoretic resource allo-
cation in networked physical domains. In National Conference on
Artificial Intelligence (AAAI).
Wilder, B.; Yadav, A.; Immorlica, N.; Rice, E.; and Tambe, M.
2017. Uncharted but not uninfluenced: Influence maximization
with an uncertain network. In AAMAS.
Wilder, B. 2017. Equilibrium computation and robust optimiza-
tion in zero sum games with submodular structure. arXiv preprint
arXiv:1710.00996.
Xu, H. 2016. The mysteries of security games: Equilibrium com-
putation becomes combinatorial algorithm design. In EC.
Yahoo. 2007. Yahoo! webscope dataset ydata-ysm-advertiser-bids-
v1 0. http://research.yahoo.com/Academic Relations.

1281

