
Computing the Strategy to
Commit To in Polymatrix Games

Giuseppe De Nittis, Alberto Marchesi, Nicola Gatti
Politecnico di Milano

Piazza Leonardo da Vinci, 32
Milano, Italy

{giuseppe.denittis, alberto.marchesi, nicola.gatti}@polimi.it

Abstract

Leadership games provide a powerful paradigm to model
many real-world settings. Most literature focuses on games
with a single follower who acts optimistically, breaking ties
in favour of the leader. Unfortunately, for real-world appli-
cations, this is unlikely. In this paper, we look for efficiently
solvable games with multiple followers who play either op-
timistically or pessimistically, i.e., breaking ties in favour or
against the leader. We study the computational complexity of
finding or approximating an optimistic or pessimistic leader-
follower equilibrium in specific classes of succinct games—
polymatrix like—which are equivalent to 2-player Bayesian
games with uncertainty over the follower, with interdepen-
dent or independent types. Furthermore, we provide an exact
algorithm to find a pessimistic equilibrium for those game
classes. Finally, we show that in general polymatrix games
the computation is harder even when players are forced to
play pure strategies.

Introduction

Leadership games have recently received a lot of attention in
the Artificial Intelligence literature, also thanks to their use
in many real-world applications, e.g., security and protec-
tion (Basilico, De Nittis, and Gatti 2017; Kar et al. 2017a;
2017b). In principle, the paradigm is simple—one or more
leaders commit to a potentially mixed strategy, the follow-
ers observe the commitments, and then they play their best-
responses—, but it can be declined in many different ways.
The crucial issue is the computational study of the problem
of finding the best leaders’ strategy. In this paper, we pro-
vide new computational complexity results and algorithms
for games with one leader and two or more followers.

Related works. In the 1-leader/1-follower case, we can
distinguish different scenarios according to how the fol-
lower breaks ties (in favour to the leader—optimistic—or
against—pessimistic) and the presence of uncertain infor-
mation (Bayesian games). When the follower behaves pes-
simistically, the expected utility of the leader may not ad-
mit any maximum, and the equilibrium corresponds to the
supremum of the utility (Von Stengel and Zamir 2010). In
this case, there is no leader’s strategy where the value of the
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supremum is attained, so a strategy providing an approxi-
mation of such value must be computed. While the litera-
ture has mainly focused on the optimistic case, it has been
recently showed that the pessimistic case is of extraordinary
importance in practice, since wrongly assuming the follower
to be optimistic may lead to an arbitrary loss. This sug-
gests that optimistic and pessimistic equilibria—being the
extremes in terms of utility for the leader—should be con-
sidered together aiming to make a robust commitment.

The computation of the equilibrium in the 1-leader/1-
follower case requires polynomial time both in the op-
timistic (Conitzer and Sandholm 2006) and pessimistic
case (Von Stengel and Zamir 2010). However, while the
computation of an optimistic equilibrium is conceptually
simple and can be done by solving a single linear pro-
gram (Conitzer and Korzhyk 2011), computing a pessimistic
equilibrium is much more involved and requires a non-
trivial theoretical study (Von Stengel and Zamir 2010). Con-
versely, in the presence of uncertainty, finding an optimistic
equilibrium when the follower can be of a non-fixed num-
ber of types and the utility of the leader depends on the
type of the follower (interdependent types) is Poly-APX-
complete (Letchford, Conitzer, and Munagala 2009). The
reduction does not apply to the simplified case in which the
types are independent and not even to the computation of a
pessimistic equilibrium, leaving these problems open.

The study of games with multiple followers is even
more challenging. On one side, the equilibrium-computation
problem is much more involved and largely unexplored. On
the other side, many practical scenarios present multiple in-
dependent followers (e.g., pricing, toll-setting, and security).
In this case, the followers’ game resulting from the leader’s
commitment can have different structures (e.g., followers
can play sequentially or simultaneously). In this paper, we
focus on games in which the followers play simultaneously,
reaching a Nash Equilibrium given the leader’s commitment.
The problem of computing an optimistic or pessimistic equi-
librium is not in Poly-APX even with two followers in poly-
matrix games (Basilico, Coniglio, and Gatti 2017). Further-
more, an optimistic equilibrium can be found using global
optimization tools, whereas it is not known whether there
is a finite mathematical programming formulation to find
a pessimistic one (Basilico et al. 2017). When restricting
the followers to play pure strategies in generic normal-form
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games, there is an efficient algorithm to compute an opti-
mistic equilibrium, while there is not for the pessimistic one
unless P “ NP (note that the hardness is not due to the
potential non-existence of the equilibrium) (Coniglio, Gatti,
and Marchesi 2017). These results suggest that, with multi-
ple followers, computing a pessimistic equilibrium may be
much harder than computing an optimistic one.

Original contributions. In this paper, we provide new re-
sults on the computation of leader-follower equilibria with
multiple followers. The motivation is to investigate whether
there are game classes admitting efficient exact or approx-
imation algorithms. We identify two subclasses of polyma-
trix games such that, once fixed the number of followers,
computing an optimistic or pessimistic equilibrium presents
the same complexity, namely polynomial. These classes are
of practical interest, e.g., for security games. Moreover,
these games are equivalent to Bayesian games with one
leader and one follower, where the latter may be of different
types (Howson Jr. and Rosenthal 1974). In particular, our
first game class is equivalent to Bayesian games with inter-
dependent types, while the second game class is equivalent
to Bayesian games with independent types (i.e., the leader’s
utility is independent of the follower’s type). Thus, every re-
sult for a class also holds for its equivalent class.

We study if the problem keeps being easy when the num-
ber of followers is not fixed. We show that there is not any
polynomial-time algorithm to compute a pessimistic equi-
librium, unless P “ NP, and we provide an exact algorithm
(conversely, to compute an optimistic equilibrium, one can
adapt the algorithm provided in (Conitzer and Sandholm
2006) for Bayesian games with an optimistic follower, by
means of our mapping). We also prove that, in all the in-
stances where the pessimistic equilibrium is a supremum but
not a maximum, an α-approximation of the supremum can
be found in polynomial time (also in the number of follow-
ers) for any α ą 0, where α is the additive loss. Furthermore,
we show that this problem is Poly-APX-hard, providing a
single reduction for the optimistic and pessimistic cases even
when the types are independent (this strengthens the result
already known for Bayesian games with an optimistic fol-
lower and interdependent types). We also provide a simple
approximation algorithm showing that these problems are in
Poly-APX class. This shows that, in Bayesian games with
uncertainty over the follower, computing a pessimistic equi-
librium is as hard as computing an optimistic equilibrium.

Finally, we investigate if general polymatrix games, in
case the followers are restricted to play pure strategies, ad-
mit approximation algorithms. We provide a negative an-
swer, showing that in the optimistic case the problem is not
in Poly-APX if the number of followers is not fixed unless
P “ NP.

Problem Formulation

We study scenarios with one player acting as the leader and
with two or more players acting as followers. Formally, let
N “ t1, 2, . . . , nu be the set of players, where the n-th
player is the leader and F “ Nztnu is the set of followers.
Each player p has a set of actions Ap “ ta1p, a2p, . . . , amp

p u,

being ajp the j-th action played by player p and mp “ |Ap|
the number of actions available to player p. Moreover, for
each player p, let us define her strategy vector (or strat-
egy, for short) as sp P r0, 1smp with

ř
apPAp

sppapq “ 1,
where sppapq is the probability with which action ap is
played by player p. We refer to the strategy space of player p,
which is the pmp ´ 1q-simplex, as Δp “ tsp P r0, 1smp :ř

apPAp
sppapq “ 1u. We say that a strategy is pure if only

one action is played with strictly positive probability, other-
wise it is called mixed. If all the strategies of the players are
pure, each agent playing one single action, we compactly
refer to the collection of all played actions, called action
profile, as a “ pa1, a2, . . . , anq, otherwise we denote with
s “ ps1, s2, . . . , snq the strategy profile.

We focus on classes of games with specific structures.

Definition 1 A Polymatrix Game (PG) is represented by a
graph G “ pN,Eq where:
• the players correspond to vertices of G;
• each player p P N plays against her neighbours, i.e., all

the players q such that pp, qq P E;
• the utility Up : A1 ˆ . . . ˆ An Ñ R of player p is sep-

arable, i.e., for each edge pp, qq P E, there is a game
between p and q such that Up,q, Uq,p : Ap ˆ Aq Ñ R

define the payoffs of p and of q, respectively, in that game,
and the total player’s utility is given by Uppa1, . . . , anq “ř
q:pp,qqPE

Up,qpap, aqq.1

Definition 2 A One-Level Tree Polymatrix Game (OLTPG)
is a PG where the graph G is a one-level tree composed of a
root and some leaves directly connected to the root.

Given an OLTPG, we call root-player that one associated
with the tree root and leaf-players the other players.

Definition 3 A Star Polymatrix Game (SPG) is an OLTPG
s.t. for every couple of leaf-players p, q P Nztru, where r P
N is the root-player, Ur,p “ Ur,q “ Ur, with all the leaf-
players sharing the same set of actions.

In the following, we always assume that the root-player
is n—the leader—, while the leaf-players are the players in
F—the followers. These special classes of games, OLTPGs
and SPGs, are special cases of polymatrix games and are
closely connected with many security scenarios. In fact, it
often happens that different Attackers, acting as followers,
do not influence each other’s payoffs, having different pref-
erences over the targets, e.g., when different groups of crim-
inals attack different spots in the same city. Moreover, we
can model security applications as OLTPGs or SPGs, de-
pending on the fact that the utility of the Defender, acting as
the leader, is affected or not by the identity of the Attacker
who performed the attack. From the Defender’s perspective,
it may be more important protecting the targets than know-
ing who committed the attack since the safety of people and
buildings is the priority, as shown in Example 1.

1In the rest of the paper, we assume that both Up,q and Uq,p are
defined over Ap ˆ Aq , where p smaller than q.
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Example 1 An airport a, a bank b and a church c are tar-
gets for two local gangs, A1 and A2. The buildings are pro-
tected by a guard D, who patrols among such locations. The
guard is the leader, who commits to a strategy by patrolling
among the buildings, while the gangs are the followers, mov-
ing after having observed the Defender’s commitment. All
the players have the same actions, namely a, b, c: if both
D and either A1 or A2 select the same location, the gang
is caught; otherwise the crime is successful. If D is con-
cerned with the type of gang she is facing, we can employ an
OLTPG (see Figure 1). Conversely, if the Defender is only
concerned about the protection of the buildings, her utility is
the same, independently of the gang that attacked, and, thus,
we can employ an SPG, as shown in Figure 2.

A1

a b c

D

a 9, 0 0, 4 0, 6

b 0, 8 5, 0 0, 6

c 0, 8 0, 4 7, 0

A2

a b c

D

a 3, 0 0, 8 0, 4

b 0, 6 1, 0 0, 4

c 0, 6 0, 8 2, 0

Figure 1: An instance of an OLTPG (the utility of D is dif-
ferent w.r.t. the Attacker she is facing).

A1

a b c

D

a 9, 0 0, 4 0, 6

b 0, 8 5, 0 0, 6

c 0, 8 0, 4 7, 0

A2

a b c

D

a 9, 0 0, 8 0, 4

b 0, 6 5, 0 0, 4

c 0, 6 0, 8 7, 0

Figure 2: An instance of an SPG (the utility of D is the same
in both games).

Furthermore, OLTPGs and SPGs are equivalent to special
Bayesian Games (BGs) with one leader and one follower,
where the follower can be of different types. More precisely,
OLTPGs are equivalent to BGs with interdependent types,
the utility of the leader depending on the type of the follower,
whereas SPGs are equivalent to BGs with independent types.
First, we provide the formal definition of the game classes.

Definition 4 A BG with interdependent types (int-BG) con-
sists of:
• two players, l (the leader) and f (the follower);
• a set of actions for each player, Al “ ta1l , . . . , aml

l u and
Af “ ta1f , . . . , amf

f u, respectively;
• a set of types for player f , Θf “ tθ1, . . . , θtu;
• players’ utility functions, Ulpal, af , θf q, Uf pal, af , θf q :

Al ˆ Af ˆ Θf Ñ R, which specify the payoff player l,
respectively f , gets when l plays action al, f plays action
af , and f is of type θf ;

• a probability distribution over types, where Ωpθpq denotes
the probability of θp P Θf .

Definition 5 A BG with independent types (ind-BG) is de-
fined as an int-BG, except for player l’s utility function, here
defined as Ulpal, af q : Al ˆ Af Ñ R.

The following theorem shows the equivalence among
game classes (the proof follows from (Howson Jr. and
Rosenthal 1974)).

Theorem 1 There is a polynomial-time-computable func-
tion mapping any int-BG (ind-BG) to an OLTPG (SPG) and
vice versa, where:
• player l in the int-BG (ind-BG) corresponds to the root-

player of the OLTPG (SPG);
• type t of player f in the int-BG (ind-BG) corresponds to

a leaf-player of the OLTPG (SPG);
such that, given any strategy profile, the expected utility of
each player in the OLTPG (SPG) and the corresponding
player/type in the int-BG (ind-BG) are the same.

A pure Nash Equilibrium (NE) consists of an action
profile a˚ “ pa1̊ , . . . , an̊q such that Uppa1̊ , . . . , an̊q ě
Uppa1, . . . , anq for every player p P N and action profile
a “ pa1, . . . , anq such that for all q P Nztpu, aq̊ “ aq and
ap̊ ‰ ap. In other words, no player can improve her util-
ity by unilaterally deviating from the equilibrium by playing
some other action ap ‰ ap̊ . A mixed Nash Equilibrium is a
strategy profile s˚ “ ps1̊ , . . . , sn̊q such that no player can
improve her utility by playing a strategy sp ‰ sp̊ , given
that the other players play as prescribed by the equilibrium.
We observe that a PG always admits at least one mixed NE,
while a pure NE may not exist (Howson Jr. 1972).

In this paper, we are concerned with the computation of
an equilibrium where the leader commits to a mixed strategy
and then the followers, after observing the leader’s commit-
ment, play a pure NE in the resulting game. Specifically, we
study two variants of this equilibrium concept: one in which
the followers play to maximize the leader’s utility, called
Optimistic Leader-Follower Equilibrium (O-LFE), and one
where the followers play to minimize it, which we refer to
as Pessimistic Leader-Follower Equilibrium (P-LFE). For-
mally, computing an O-LFE amounts to solve the following
problem:

max
snPΔn

max
pa˚

1 ,...,a˚
n´1

qP
A1ˆ...ˆAn´1

ÿ
anPAn

Unpa˚
1 , . . . , a

˚
n´1, anqsnpanq :

@p, a˚
p P argmax

apPAp

$&
%

ÿ
anPAn

Uppa˚
1 , . . . , ap, . . . , a

˚
n´1, anqsnpanq

,.
- ,

while computing a P-LFE amounts to solve this other bilevel
problem:

sup
snPΔn

min
pa˚

1 ,...,a˚
n´1

qP
A1ˆ...ˆAn´1

ÿ
anPAn

Unpa˚
1 , . . . , a

˚
n´1, anqsnpanq :

@p, a˚
p P argmax

apPAp

$&
%

ÿ
anPAn

Uppa˚
1 , . . . , ap, . . . , a

˚
n´1, anqsnpanq

,.
- .

Notice that, when restricting the attention to OLTPGs, an
outcome of the followers’ game is an NE if each follower
is best-responding to the leader’s commitment. Moreover,
w.l.o.g., we can safely assume that each follower plays a
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pure strategy since, once the leader’s strategy is fixed, the
follower’s utility function is linear in her strategy.

Let us observe that, since the equivalences in Theo-
rem 1 are direct, all the computational results—including
approximation results—holding for OLTPGs also hold for
int-BGs while the results holding for SPGs also hold for
ind-BGs, and vice versa. As a consequence, the computa-
tion of an optimistic equilibrium in OLTPGs is Poly-APX-
complete (Letchford, Conitzer, and Munagala 2009).

Finding an Exact Pessimistic Equilibrium

First, we state that computing a P-LFE in SPGs is NP-hard
and, a fortiori, it is hard also in OLTPGs and PGs. Moreover,
using the mappings in Theorem 1, the problem is NP-hard
also in int-BGs and ind-BGs. 2

Theorem 2 Computing a P-LFE in SPGs is NP-hard.

Now, we provide an exact algorithm for computing a P-
LFE in OLTPGs whose compute time is exponential in the
number of followers and polynomial in the number of ac-
tions of the players. The algorithm extends the procedure
given in (Von Stengel and Zamir 2010) to find a supremum
of the leader’s utility function with 2-player games, and it
also includes a procedure to compute a strategy that allows
the leader to achieve an α-approximation (in additive sense)
of the supremum when there is no maximum, for any α ą 0.

Algorithm 1 Exact-P-LFE
1: function EXACT-P-LFE(α)
2: for all a “ pa1, . . . , an´1q P AF do

3: for all p P F do

4: Tp :“ ta1
p P Ap | Uap

p “ U
a1
p

p u
5: εa :“ SOLVE-EMPTYNESS-CHECKptTpupPF , aq
6: if εa ą 0 then

7: pva, san, ζ
p

a1
p

q :“ SOLVE-MAX-MINptTpupPF , aq
8: βa :“ |tζp

a1
p

| ζp

a1
p

“ 0u| ą 0

9: a˚ :“ argmaxaPAF
va

10: if βa˚
then

11: return FIND-APXptTpupPF , a˚, va˚
, αq

12: return sa
˚

n

The algorithm is based on the enumeration of all the fol-
lowers’ action profiles, i.e., all the tuples pa1, . . . , an´1q be-
longing to the set AF “ Ś

pPF Ap, and, for each of them,
it computes the best strategy the leader can commit to (un-
der the pessimistic assumption) provided that ap is a best-
response for follower p, for every p P F . For ease of no-
tation, given ap P Ap with p P F , let Uap

p P R
|An| be a

vector whose components are defined as Up,npap, anq, for
an P An. The complete algorithm procedure is detailed in
Algorithm 1, where it is assumed that the game elements can
be accessed from any point, including sub-procedures, and
the parameter α defines the quality of the approximation of
the supremum, whenever a maximum does not exist.

2The result follows from a reduction of the maximum clique
problem. For details, please see the proof of Theorem 4.

At each iteration, the algorithm calls two sub-
procedures that solve two LP programs. Specifically,
SOLVE-EMPTYNESS-CHECKptTpupPF , aq computes the
optimum of the following program:

max
εě0

snPΔn

ε s.t.

ÿ
anPAn

Up,npap, anqsnpanq ´ ÿ
anPAn

Up,npa1
p, anqsnpanq ´ ε ě 0

@a1
p P ApzTp, @p P F ;

while SOLVE-MAX-MINptTpupPF , aq solves the following:

max
snPΔn

ÿ
pPF

vp s.t.

vp ´ ÿ
anPAn

Un,ppa1
p, anqsnpanq ď 0 @a1

p P Tp, @p P F

ÿ
anPAn

Up,npap, anqsnpanq ´ ÿ
anPAn

Up,npa1
p, anqsnpanq ´ ζ

p

a1
p

“ 0

@a1
p P ApzTp, @p P F

ζ
p

a1
p

ě 0 @a1
p P ApzTp, @p P F.

Finally, FIND-APXptTpupPF , a˚, va˚
, αq employs the fol-

lowing LP program to find a leader’s strategy providing an
α-approximation of the supremum:

max
εě0

snPΔn

ε s.t.

ÿ
pPF

vp ě v
a˚ ´ α

vp ´ ÿ
anPAn

Un,ppa1
p, anqsnpanq ď 0 @a1

p P Tp, @p P F

ÿ
anPAn

Up,npap, anqsnpanq ´ ÿ
anPAn

Up,npa1
p, anqsnpanq ´ ε ě 0

@a1
p P ApzTp, @p P F.

The following theorem shows that Algorithm 1 is correct.

Theorem 3 Given an OLTPG, Algorithm 1 finds a P-LFE,
and, whenever the leader’s utility function does not admit a
maximum, it returns an α-approximation of the supremum.

Proof. Before proving the statement, we introduce some
useful notation. Given ap P Ap, with p P F , let
Δnpapq be the region of the leader’s strategy space Δn

containing those strategies sn such that follower p’s best-
response to sn is ap, i.e., Δnpapq “ tsn P Δn |
ap P argmaxa1

pPAp

ř
anPAn

Up,npa1
p, anqsnpanqu. More-

over, given a followers’ action profile a “ pa1, . . . , an´1q P
AF , let Δnpaq “ Ş

pPF Δnpapq. We denote with Δo
np¨q the

interior of Δnp¨q relative to Δn, and we call Δnp¨q full-
dimensional if Δo

np¨q is not empty.
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In order to prove the result, we define the search problem
of computing a P-LFE, as follows:

max
aPAD

max
snPΔnpaq

min
a1PAF :

U
ap
p “U

a1
p

p

ÿ
pPF

ÿ
anPAn

Un,ppa1
p, anqsnpanq, (1)

where AD “ ta P AF | Δnpaq is full-dimensional u.
First, using a simple inductive argument, we derive a new

definition for Δn, which is as follows:

Δn “
ď

aPAD

Δnpaq (2)

Let us start noticing that Δn “ Ť
aPAF

Δnpaq. Then, take
a1 P AF zAD and define S “ Δnz Ť

aPAF zta1u Δnpaq. We
observe that S is a subset of Δnpa1q, and, thus, it is also a
subset of Δo

npa1q, which is empty since a1 R AD, so S is
empty. Therefore, we can write Δn “ Ť

aPAF zta1u Δnpaq,
which we use as new definition for Δn. Iterating in this man-
ner until all the elements in AF zAD have been considered,
we eventually obtain the result.

Second, we recall a result from (Von Stengel and Zamir
2010), i.e., for every ap, a

1
p P Ap, it holds:

sn P Δo
npapq ^ sn P Δnpa1

pq ùñ Uap
p “ U

a1
p

p . (3)

We are now ready to prove Equation (1), as follows:

V “ sup
snPΔn

min
a1PAF :

snPΔnpa1q

ÿ
pPF

ÿ
anPAn

Un,ppa1
p, anqsnpanq

“ max
aPAD

sup
snPΔnpaq

min
a1PAF :

snPΔnpa1q

ÿ
pPF

ÿ
anPAn

Un,ppa1
p, anqsnpanq,

where the first equality directly follows from the definition
of the problem, while the second one is obtained rewriting
Δn as given by (2). Restricting Δnpaq to Δo

npaq and us-
ing (3), we obtain:

V ě max
aPAD

sup
snPΔo

npaq
min

a1PAF :
snPΔnpa1q

ÿ
pPF

ÿ
anPAn

Un,ppa1
p, anqsnpanq

“ max
aPAD

sup
snPΔo

npaq
min

a1PAF :

U
ap
p “U

a1
p

p

ÿ
pPF

ÿ
anPAn

Un,ppa1
p, anqsnpanq

“ max
aPAD

sup
snPΔnpaq

min
a1PAF :

U
ap
p “U

a1
p

p

ÿ
pPF

ÿ
anPAn

Un,ppa1
p, anqsnpanq

ě max
aPAD

sup
snPΔnpaq

min
a1PAF :

snPΔnpa1q

ÿ
pPF

ÿ
anPAn

Un,ppa1
p, anqsnpanq “V,

where the last equality holds since the minimum is taken
over a finite set of linear functions and it is continuous, while
the last inequality comes from the fact that the minimum is
taken over a larger set of elements. Hence, all the inequali-
ties must hold as equalities, which proves Equation (1).

The algorithm exploits Equation (1) to compute a P-
LFE. Notice that, if Δnpaq is not full-dimensional, then
SOLVE-EMPTYNESS-CHECKptTpupPF , aq returns zero, as,

if there is no strategy sn P Δopaq, then there is always at
least one inequality in the LP program which can be satis-
fied only by setting ε “ 0. The algorithm iterates over all
the followers’ action profiles in AD, as every a P AF zAD

is discarded since εa “ 0. Then, for each remaining ac-
tion profile, it solves the max-min expression on the right of
Eq. (1), which can be done with the LP program solved by
SOLVE-MAX-MINptTpupPF , aq. Finally, the algorithm se-
lects the followers’ action profile associated with the highest
max-min expression value.

In conclusion, note that, given some a P AD, βa is true
if and only if san is such that there is at least one follower
p who has a best-response a1

p that is not in Tp, i.e., at least
one variable ζpa1

p
is zero. Thus, if βa˚

is true, the leader’s

utility function does not admit a maximum, since for sa
˚

n
there is some follower who can play a best-response which
is worse than the one played in a˚ in terms of leader’s util-
ity. If that is the case, FIND-APXptTpupPF , a˚, va˚

, αq finds
an α-approximation of the supremum va

˚
by looking for a

strategy sn P Δopa˚q, with the additional constraints impos-
ing that the leader’s utility (in the pessimistic case) does not
fall below va

˚ ´ α. Such approximation always exists since
Δopa˚q is non-empty and the leader’s utility is the minimum
of a finite set of affine functions. l

Discussion. Even though, as described next, one can
adopt the algorithm proposed in (Von Stengel and Zamir
2010) to find a P-LFE in an OLTPG, this would result in a
procedure that is more inefficient than Algorithm 1. Indeed,
one should first transform an OLTPG into an int-BG, by
means of the mapping provided in Theorem 1, and, then, cast
the resulting game in normal form. However, this would re-
quire the solution of an exponential number of LP programs,
each with an exponential number of constraints, since the
number of actions of the resulting normal-form game is ex-
ponential in the size of the original game. Conversely, Algo-
rithm 1 exploits the separability of players’ utilities, avoid-
ing the explicit construction of the normal form before the
execution of the algorithm. As a result, our algorithm still
requires the solution of an exponential number of LP pro-
grams, but each with a polynomial number of constraints.
Notice that avoiding the explicit construction of the normal
form also allows the execution of Algorithm 1 in an anytime
fashion, stopping the algorithm whenever the available time
is expired.

Experimental evaluation. We ran Algorithm 1 on a
testbed of OLTPGs, evaluating the running time as a func-
tion of the number of players n and the number of actions
per player m. Specifically, for each pair pn,mq, times are
averaged over 20 game instances, with n P t3, . . . , 10u and
m P t4, 6, . . . 10, 15, . . . , 70u. Game instances have been
randomly generated, with each payoff uniformly and inde-
pendently drawn from the interval r0, 100s. All experiments
are run on a UNIX machine with a total of 32 cores working
at 2.3 GHz, and equipped with 128 GB of RAM. Each game
instance is solved on a single core, within a time limit of
7200 seconds. The algorithm is implemented in Python 2.7,
while all LP programs are solved with GUROBI 7.0, using
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the Python interface. Figure 3 contains two plots of the aver-
age computing times, as a function of n and m, respectively.

Figure 3: Average computing times (in seconds), as a func-
tion of the number of players n (on the left), and as a func-
tion of the number of actions per player m (on the right).

We observe that, as expected, the computing time in-
creases exponentially in the number of players n, while,
once n is fixed, the growth is polynomial in the number of
actions m. Specifically, the algorithm is able to solve within
the time limit instances with 3 players, up to within m “ 65,
while, as the number of players increases, the scalability
w.r.t. m decreases considerably, e.g., with 10 players, the
algorithm can solve games with at most m “ 4.

Approximating a Pessimistic Equilibrium

Initially, we study the computational complexity of approx-
imating a pessimistic equilibrium.

Theorem 4 Finding a P-LFE in SPGs is Poly-APX-hard.

Proof. We employ an approximation-preserving reduction
from the maximum clique optimization problem, which is
known to be Poly-APX-hard (Zuckerman 2006).

Definition 6 (MAXIMUM-CLIQUE (MC)) Given an
undirected graph G “ pV,Eq, find a maximum clique of G,
i.e., a complete sub-graph of G with maximum size.

First, we provide a polynomial mapping from MC to
the problem of finding a P-LFE, reducing an arbitrary in-
stance of MC to an SPG, and, then, we prove that the cor-
respondence among instances is correct and the mapping
is approximation-preserving. Letting V “ tv1, . . . , vru,
for every vp P V , we introduce a follower p, i.e., N “
t1, . . . , r, nu with n “ r ` 1. Each follower has two ac-
tions, i.e., Ap “ ta0, a1u for all p P F , while the leader has
an action per vertex, i.e., An “ ta1n, . . . , arnu. Utilities are
defined as follows:
• Up,npa0, ainq “ 1 ` r2, for all pvp, viq R E;

• Up,npa0, ainq “ 1, for all pvp, viq P E;
• Up,npa1, apnq “ r, for all vp P V ;

• Up,npa1, ainq “ 0, for all vp, vi P V, with p ‰ i;

• Unpa0, ainq “ 0, for all vi P V ;
• Unpa1, ainq “ 1, for all vi P V .

Suppose that the graph G admits a clique C of size J .
W.l.o.g. we assume J ă r (the number of vertices of G),
since instances with a maximum clique of size r can be
safely ruled out as we can check if the graph is complete
in polynomial time. Consider a mixed strategy of the leader
such that each ain with vi P C is played with probability
equal to 1

J . Then, each follower p with vp P C plays a1: in
fact, playing a1, they get a utility of r

J ą 1, while playing
a0 they can only get 1, since no ain with pvp, viq R E is ever
played by the leader, being C a clique. Therefore, the leader
gets a utility of |C| “ J by playing such strategy.

Suppose that, in a P-LFE of the SPG, the leader gets a
utility equal to J and, thus, given the definition of the game,
there are exactly J followers who play action a1. Let us call
C the subset of vertices vp such that follower p plays a1:
we prove that C is a clique. In order for follower p to play
a1 instead of a0, the leader must play apn with probability
greater than or equal to 1

r , otherwise the follower would get
a higher utility by playing a0. Moreover, the leader cannot
play any action ain such that pvp, viq R E with probability at
least 1

r , because otherwise the follower would play a0, get-
ting a utility greater than or equal to 1` 1

r ¨r2 “ 1`r, which
is clearly strictly greater than r that is the maximum utility
she can get by playing action a1. Thus, the leader must play
all the J actions apn such that vp P C with probability at
least 1

r , and there is no pair of vertices vp, vi P C such that
pvp, viq R E. So, the vertices in C are completely connected,
meaning that C is a clique of size J .

The reduction is approximation-preserving since the
leader’s utility coincides with the cardinality of the clique.
Thus, given that MC is Poly-APX-hard, the result follows.
Notice that the reduction works in both the optimistic and
the pessimistic cases, as there is no follower who is indiffer-
ent among multiple best-responses. l

Now, we provide a polynomial-time approximation algo-
rithm for the P-LFE finding problem that guarantees an ap-
proximation factor polynomial in the size of the game, thus
showing that the problem belongs to the Poly-APX class.

Theorem 5 Computing a P-LFE in OLTPGs is in Poly-
APX.

Proof. To prove the result, we provide an algorithm A
working as follows. First, A makes the leader play a 2-
player leadership game against each follower independently.
Let Un,p be the utility the leader gets in the game played
against follower p P F . Then, the algorithm selects the
leader’s strategy which is played against a follower p such
that Un,p is maximum. The utility the leader gets adopting
the strategy computed by means of algorithm A is equal to
UAPX
n ě maxpPF Un,p, while the utility she would get in a

P-LFE is equal to UOPT
n ď pn ´ 1q ¨ maxpPF Un,p. Thus,

algorithm A guarantees an approximation factor equal to
UAPX

n

UOPT
n

ě maxpPF Un,p

pn´1q¨maxpPF Un,p
“ 1

n´1 “ 1
Opnq . l

The next result directly follows from Theorems 4 and 5.

Theorem 6 Computing a P-LFE in OLTPGs is Poly-APX-
complete.
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Equilibrium Approximation in General

Polymatrix Games

From the previous sections, we know that the problem of
computing an O/P-LFE is Poly-APX-complete when in-
stances are restricted to a specific class of games, namely
OLTPGs. In this section, we investigate the approximability
of the problem of computing an O-LFE in PGs, when the
followers are restricted to play pure strategies.

We prove that, when the number of followers is non-fixed,
computing an O-LFE in PGs is not in Poly-APX unless P =
NP, and, thus, there is no polynomial-time approximation
algorithm providing good (as the size of the input grows)
approximation guarantees.

Theorem 7 The problem of computing an O-LFE in PGs is
not in Poly-APX, unless P = NP.

Proof. We provide a reduction from 3-SAT.
Mapping. Given a 3-SAT instance, i.e., a set of vari-

ables V “ tv1, . . . , vru and a set of 3-literal clauses C “
tφ1, . . . , φsu, we build a PG with n “ s ` 1 players, as fol-
lows. The set of players is N “ t1, . . . , s, nu, where the first
s players, the followers, are associated with the clauses in C,
i.e., letting F “ t1, . . . , su, follower p P F corresponds to
φp P C. The leader (player n) has an action for each variable
in V , plus an additional one, i.e., An “ tav1 , . . . , avr , awu
(where w R V ). On the other hand, each follower has only
four actions, namely Ap “ ta0, a1, a2, a3u for every p P F .
For any clause φp P C, with φp “ l1 _ l2 _ l3, the payoffs
of the corresponding follower p are so defined:

• Up,npai, avq “ r ` 1 if v “ vpliq and li is positive, for
every i P t1, 2, 3u (where vpliq denotes the variable of li);

• Up,npai, avq “ 0 if v ‰ vpliq and li is positive, for every
i P t1, 2, 3u;

• Up,npai, avq “ 0 if v “ vpliq and li is negative, for every
i P t1, 2, 3u;

• Up,npai, avq “ r`1
r if v ‰ vpliq and li is negative, for

every i P t1, 2, 3u;

• Up,npa0, anq “ 0 for every an P An;

• Up,qpap, aqq “ 0 for ap P Apzta0u and aq P Aq , for
every q P F ztpu;

• Up,qpa0, aqq “ 1
s´1 for aq P Aqzta0u, for every q P

F ztpu;

• Up,qpa0, a0q “ r ` 1 for every q P F ztpu;

The leader’s payoffs are defined as follows:

• Un,ppap, anq “ 1
s for every an P An, ap P Apzta0u, and

p P F ;

• Un,ppa0, anq “ ε
s for every an P An,

where ε ą 0 is an arbitrarily small positive constant. In the
following, for ease of presentation and with abuse of no-
tation, we define Up,npap, snq as the utility follower p P
F expects to obtain by playing against the leader, when
the latter plays strategy sn P Δn, i.e., Up,npap, snq “ř

anPAn
Up,npap, anq snpanq. Furthermore, given a truth

assignment to the variables T : V Ñ t0, 1u, let us define
spT q as the set of leader’s strategies sn P Δn such that
snpavq ą 1

r`1 if T pvq “ 1, while snpavq ă 1
r`1 when-

ever T pvq “ 0. Clearly, no matter the truth assignment T ,
the set spT q is always non-empty, as one can make the prob-
abilities in the strategy sn sum up to one by properly choos-
ing snpawq. On the other hand, given a leader’s strategy
sn P Δn, we define T sn as the truth assignment in which
T snpvq “ 1 if snpavq ą 1

r`1 , while T snpvq “ 0 whenever
snpavq ă 1

r`1 (the case snpavq “ 1
r`1 deserves a differ-

ent treatment, although the proof can be easily extended to
take it into consideration, we omit it for simplicity). Finally,
without loss of generality, let us assume s ě 3.

Initially, we introduce the following lemma.

Lemma 8 For any leader’s strategy sn P Δn, there exists
an action ap P Apzta0u such that Up,npap, snq ą 1 if and
only if φp evaluates to true under T sn .

Proof. Suppose that T sn makes φp “ l1 _ l2 _ l3 true,
and let li be one of the literals that evaluate to true in φp (at
least one must exist). Clearly, given the definition of T sn ,
snpavq ą 1

r`1 if li is positive, whereas snpavq ă 1
r`1 when

li is negative. Two cases are possible. If li is positive, then
Up,npai, snq “ snpavq ¨ pr ` 1q ą 1, while, if li is negative
we have Up,npai, snq “ p1 ´ snpavqq ¨ r`1

r ą 1. Thus,
ai P Apzta0u is the action we are looking for.

Now, let us prove the other way around. Suppose ap P
Apzta0u is such that Up,npap, snq ą 1 and consider the case
in which ap “ ai and literal li is positive in φp (similar ar-
guments also hold for the case where li is negative). Letting
v “ vpliq, it easily follows that snpavq ¨ pr ` 1q ą 1, imply-
ing that snpavq ą 1

r`1 . Thus, given the definition of T sn ,
φp must evaluate to true. l

YES-instance. Suppose that the given 3-SAT instance has
a YES answer, i.e., there exists a truth assignment T that
satisfies all the clauses. We prove that, if this is the case,
then in an O-LFE the leader gets a utility of 1. Consider
a leader’s strategy sn P spT q and a followers’ action pro-
file a P Ś

pPF Ap where follower p’s action ap is such that
ap “ ai and literal li of φp evaluates to true under truth
assignment T . Clearly, the action profile is always well-
defined since T satisfies all the clauses. Moreover, when
there are many possible choices for action ap, we assume
that the follower plays the one providing her with the max-
imum utility given sn. Now, we prove that a is a pure NE
in the followers’ game resulting from the leader’s commit-
ment to sn. Let p P F be a follower. Clearly, the follower’s
expected utility in action profile a is Up,npap, snq since she
gets 0 by playing against the other followers. The follower
could deviate from ap in two different ways, either by play-
ing an action corresponding to a different literal in the clause
or by playing a0. In the first case, the follower cannot get
more than what she gets by playing ap, given the definition
of ap. In the second case, the follower gets ps´1q¨ 1

s´1 “ 1,
which is the utility obtained by playing against the other fol-
lowers. Observing that T is actually the same as T sn and
using Lemma 8, we conclude that Up,npap, snq ą 1 and no
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follower has an incentive to deviate from a, which makes it
a pure NE given sn. Finally, since we are in the optimistic
case, the followers always play a since it is the NE maximiz-
ing the leader’s utility, as, in it, the leader gains s ¨ 1

s “ 1,
which is the maximum payoff she can get. Moreover, for the
same reason, the leader’s utility in an O-LFE is 1.

NO-instance. Suppose the 3-SAT instance has a NO an-
swer, i.e., there is no truth assignment which satisfies all
the clauses. First, we prove that the followers’ action pro-
file a P Ś

pPF Ap in which all the followers play a0 is a
pure NE, no matter the leader’s strategy sn. In a, every fol-
lower gets a utility of ps´1q ¨ pr`1q which does not depend
on the leader’s strategy. Now, suppose that follower p P F
deviates from a by playing some action ap ‰ a0, then she
would get Up,npap, snq ď r ` 1, which is clearly strictly
less than r ¨ ps ´ 1q given the assumption s ě 3. Hence, a
is always a pure NE in the followers’ game and it provides
the leader with a utility of s ¨ ε

s “ ε. Finally, we show that,
for all leader’s strategies sn P Δn, there cannot be other
NEs in the followers’ game, and, thus, a is the unique NE
the followers can play. Let us start proving that all the action
profiles in which some followers play ap ‰ a0 and some
others play a0 cannot be NEs. Let p P F be a follower such
that ap ‰ a0. Clearly, p has an incentive to deviate by play-
ing a0 since Up,npap, snq ď r ` 1 ă 7i ¨ 1

s´1 ` 70 ¨ pr ` 1q
given that 70 ě 1, where 7i is the number of followers other
than p who are playing ap ‰ a0 and 70 is the number of
followers playing a0. In conclusion, it remains to prove that
the followers’ action profile in which they all play actions
ap ‰ a0 cannot be an NE. Let p P F be a follower such
that φp is false under truth assignment T sn (she must exist,
as, otherwise, the 3-SAT instance would have answer YES).
Clearly, p has incentive to deviate playing a0 since, using
Lemma 8, Up,npap, snq ă 1 “ ps ´ 1q ¨ 1

s´1 . Therefore, in
an O-LFE, the leader must get a utility of ε.

Contradiction. Suppose there exists a polynomial-time
approximation algorithm A with approximation factor r “

1
fpnq , where fpnq is any polynomial function of n. More-
over, let us fix ε “ 1

2n (notice that the polynomiality of
the reduction is preserved, as ε can still be represented with
a number of bits polynomial in n). If the 3-SAT instance
has answer YES, then A, when applied to the corresponding
polymatrix game, must return a solution with value greater
than or equal to 1

fpnq ą ε. Instead, if the answer is NO, A
must return a solution of value ε

fpnq ă ε. Thus, the existence
of A would imply that 3-SAT is solvable in polynomial time
(the answer is YES if and only if the returned solution has
value greater than ε), which is an absurd, unless P = NP. l

Conclusions and Future Works

In this paper, we study the computational complexity of
computing an O/P-LFE in two classes of polymatrix games
that are of practical interest for security scenarios. We show
that the problem is Poly-APX-complete and provide an ex-
act algorithm to find a P-LFE for those game classes. These
results can be extended to 2-player Bayesian games with un-
certainty over the follower. Finally, we show that in general

polymatrix games computing an equilibrium is harder, even
when players are forced to play pure strategies. In fact, in
the optimistic case the problem is not in Poly-APX when
the number of followers is non-fixed.

Future works may develop along three directions. First,
we will study the approximability of the problem of find-
ing a P-LFE in general polymatrix games. Then, we could
enhance our enumeration algorithm with a branch-and-
bound scheme, following the approach of (Jain, Kiekintveld,
and Tambe 2011), which can only compute an O-LFE in
Bayesian games. Finally, we could extend our results to
other classes of succinct games, e.g., congestion games.
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