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Abstract

We develop a model of multiwinner elections that combines
performance-based measures of the quality of the commit-
tee (such as, e.g., Borda scores of the committee members)
with diversity constraints. Specifically, we assume that the
candidates have certain attributes (such as being a male or a
female, being junior or senior, etc.) and the goal is to elect a
committee that, on the one hand, has as high a score regard-
ing a given performance measure, but that, on the other hand,
meets certain requirements (e.g., of the form “at least 30%
of the committee members are junior candidates and at least
40% are females”). We analyze the computational complexity
of computing winning committees in this model, obtaining
polynomial-time algorithms (exact and approximate) and NP-
hardness results. We focus on several natural classes of voting
rules and diversity constraints.

1 Introduction

We study the problem of computing committees (i.e., sets
of candidates) that, on the one hand, are of high quality
(e.g., consist of high-performing individuals) and that, on the
other hand, are diverse (as specified by a set of constraints).
The following example shows our problem in more concrete
terms.

Consider an organization that wants to hold a research
meeting on some interdisciplinary topic such as, e.g., “AI and
Economics.” The meeting will take place in some secluded
location and only a certain limited number of researchers can
attend. How should the organizers choose the researchers to
invite? If their main criterion were the number of highly influ-
ential AI/economics papers that each person published, then
they would likely end up with a very homogeneous group of
highly-respected AI professors. Thus, while this criterion def-
initely should be important, the organizers might put forward
additional constraints. For example, they could require that
at least 30% of the attendees are junior researchers, at least
40% are female, at least a few economists are invited (but
only senior ones), the majority of attendees work on AI, and
the attendees come from at least 3 continents and represent
at least 10 different countries.1 In other words, the organizers
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1For example, the Leibniz-Zentrum für Informatik that runs
Dagstuhl Seminars gives similar suggestions to event organizers.

would still seek researchers with high numbers of strong pub-
lications, but they would give priority to making the seminar
more diverse (indeed, junior researchers or representatives
of different subareas of AI can provide new perspectives;
it is also important to understand what people working in
economics have to say, but the organizers would prefer to
learn from established researchers and not from junior ones).

The above example shows a number of key features of
our committee-selection model. First, we assume that there
is some function that evaluates the committees (we refer to
it as the objective function). In the example it was (implic-
itly) the number of high-quality papers that the members of
the committee published. In other settings (e.g., if we were
shortlisting job candidates) these could be aggregated opin-
ions of a group of voters (the recruitment committee, in the
shortlisting example).

Second, we assume that each prospective committee mem-
ber (i.e., each researcher in our example) has a number of
attributes, which we call labels. For example, a researcher
can be junior or senior, a male or a female, can work in AI
or in economics or in some other area, etc. Further, the way
in which labels are assigned to the candidates may have a
structure on its own. For example, each researcher is either
male or female and either junior or senior, but otherwise these
attributes are independent (i.e., any combination of gender
and seniority level is possible). Other labels may be inter-
dependent and may form hierarchical structures (e.g., every
researcher based in Germany is also labeled as representing
Europe). Yet other labels may be completely unstructured;
e.g., researchers can specialize in many subareas of AI, irre-
spective how (un)related they seem.

Third, we assume that there is a formalism that specifies
when a committee is diverse. In principle, this formalism
could be any function that takes a committee and gives an
accept/reject answer. However, in many typical settings it
suffices to consider simple constraints that regard each label
separately (e.g., “at least 30% of the researchers are junior”
or “the number of male researchers is even”). We focus on
such independent constraints, but studying more involved
ones, that regard multiple labels (e.g., “all invited economists
must be senior researchers”) would also be interesting.

Our goal is to find a committee of a given size k that is
diverse and has the highest possible score from the objective
function. While similar problems have already been consid-
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ered (see the Related Work section), we believe that our paper
is the first to systematically study the problem of selecting
a diverse committee, where diversity is evaluated with re-
spect to candidate attributes. We provide the following main
contributions:
1. We formally define the general problem of selecting a

diverse committee and we provide its natural restrictions.
Specifically, we focus on the case of submodular objective
functions (with the special case of separable functions),
candidate labels that are either layered or laminar,2 and
constraints that specify sets of acceptable cardinalities for
each label independently (with the special case of specify-
ing intervals of acceptable values).

2. We study the complexity of finding a diverse committee
of a given size, depending on the type of the objective
function, the type of the label structure, and the type of
diversity constraints. While in most cases we find our
problems to be NP-hard (even if we only want to check if
a committee meeting diversity constraints exists; without
optimizing the objective function), we also find practically
relevant cases with polynomial-time algorithms (e.g., our
algorithms would suffice for the research-meeting example
restricted to the constraints regarding the seniority level
and gender). We provide approximation algorithms for
some of our NP-hard problems.

3. We study the complexity of recognizing various types
of label structures. For example, given a set of labeled
candidates, we ask if their labels have laminar or layered
structure. It turns out that recognizing structures with three
independent sets of labels is NP-hard, whereas recognizing
up to two independent sets is polynomial-time computable.

Our main results are presented in Table 1. A more complete
version of this paper including proof details is available as a
preprint (Bredereck et al. 2017).

2 The Model

For i, j ∈ N, we write [i, j] to denote the set {i, i+1, . . . , j}.
We write [i] as an abbreviation for [1, i]. For a set X , we write
2X to denote the family of all of its subsets. We first present
our model in full generality and then describe the particular
instantiations that we focus on in our analysis.

General Model Let C = {c1, . . . , cm} be a set of candi-
dates and let L be a set of labels (such as junior, senior, etc.).
Each candidate is associated with a subset of these labels
through a labeling function λ : C → 2L. We say that a candi-
date c has label � if � ∈ λ(c), and we write C� to denote the
set of all candidates that have label �.

A diversity specification is a function that given a com-
mittee (i.e., a set of candidates), the set of labels, and the
labeling function provides a yes/no answer specifying if the

2If we restricted our example to labels regarding gender and
seniority level, we would have 2-layered labels (because there are
two sets of labels, {male, female} and {junior , senior}, and each
candidate has one label from each set. On the other hand, hierar-
chical labels, such as those regarding countries and continents, are
1-laminar (see description of the model for more details).

committee is diverse. If a committee is diverse with respect
to diversity specification D, then we say that it is D-diverse.

An objective function f : 2C → R is a function that asso-
ciates each committee with a score. We assume that f(∅) = 0
and that the function is monotone (i.e., for each two commit-
tees A and B such that A ⊆ B, it holds that f(A) ≤ f(B)).
In other words, an empty committee has no value and extend-
ing a committee cannot hurt it.

Our goal is to find a committee of a given size k that meets
the diversity specification and that has the highest possible
score according to the objective function.
Definition 1 (DIVERSE COMMITTEE WINNER DETERMI-
NATION (DCWD)). Given a set of candidates C, a set of
labels L, a labeling function λ, a diversity specification D, a
desired committee size k, and an objective function f , find
a committee W ⊆ C with |W | = k that achieves the maxi-
mum value f(W ) among all D-diverse size-k committees.

The set of candidates, the set of labels, and the labeling
function are specified explicitly (i.e., by listing all the can-
didates with all their labels). The encoding of the diversity
specification and the objective function depends on a particu-
lar case (see discussions below). To consider the problem’s
NP-hardness, we take its decision variant, where instead of
asking for a D-diverse committee with the highest possible
value of the objective function we ask if there exists a D-
diverse committee with objective value at least T (where the
threshold T is a part of the input).

We also consider the DIVERSE COMMITTEE FEASIBILITY
(DCF) problem, which takes the same input as the winner
determination problem, but where we ask if any D-diverse
committee of size k exists, irrespective of its objective value.
In other words, the feasibility problem is a special case of
the decision variant of the winner determination problem,
where we ask about a D-diverse committee with objective
value greater or equal to 0. Thus if the feasibility problem is
NP-hard, then the analogous winner determination problem
is NP-hard as well (and if the winner determination problem
is polynomial-time computable, so is the feasibility problem).

The model, as specified above, is far to general to obtain
any sort of meaningful computational results. Below we spec-
ify its restrictions that we study.

Objective Functions An objective function is submodular
if for each two committees S and S′ such that S ⊆ S′ ⊆ C
and each c ∈ C \ S′ it holds that f(S ∪ {c}) − f(S) ≥
f(S′ ∪ {c}) − f(S′). For two sets of candidates X and S,
we write f(X|S) to denote the marginal contribution of the
candidates from X with respect to those in S. Formally, we
have f(X|S) = f(S∪X)−f(S). Submodular functions are
very common and suffice to express many natural problems.
We assume all our objective functions to be submodular.
Example 1. Consider the following voting scenario. We have
a set of candidates C = {c1, . . . , cm} and a set of voters
V = {v1, . . . , vn}, where each voter ranks all the candidates
from best to worst. We write posvi

(c) to denote the position
of candidate c in the ranking of voter vi (the best candidate
is ranked on position 1, the next one on position 2, and so
on). The Borda score associated with position i (among m
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possible ones) is βm(i) = m − i. Under the Chamberlin–
Courant rule (CC), the score of a committee S is defined by
objective function fCC(S) =

∑n
i=1 βm(min{posvi

(c) | c ∈
S}). Intuitively, this function associates each voter with her
representative (the member of the committee that the voter
ranks highest) and defines the score of the committee as the
sum of the Borda scores of the voters’ representatives. It is
well-known that this function is submodular (Lu and Boutilier
2011). The CC rule outputs those committees (of a given size
k) for which the CC objective function gives the highest
value (and, intuitively, where each voter is represented by a
committee member that the voter ranks highly).

As a special case of submodular functions, we also con-
sider separable functions. A function is separable if for every
candidate c ∈ C there is a weight wc such that the value of a
committee S is given as f(S) =

∑
c∈S wc. While separable

functions are very restrictive, they are also very natural.

Example 2. Consider the setting from Example 1, but with
objective function fkB(W ) =

∑n
i=1

(∑
c∈W βm(posvi

(c)
)
.

This function sums Borda scores of all the committee mem-
bers from all the voters and models the k-Borda voting rule
(the committee with the highest score is selected). The func-
tion is separable as for each candidate c it suffices to take
wc = fk-Borda({c}). It is often argued that k-Borda is a
good rule when our goal is to shortlist a set of individually
excellent candidates (Faliszewski et al. 2017).

Together, Examples 1 and 2 show that our model suf-
fices to capture many well-known multiwinner voting sce-
narios. Many other voting rules, such as Proportional Ap-
proval Voting, or many committee scoring rules, can be ex-
pressed through submodular objective functions (Skowron,
Faliszewski, and Lang 2016; Faliszewski et al. 2016).

Diversity Specifications We focus on diversity specifica-
tions that regard each label independently. In other words,
the answer to the question if a given committee S is diverse
or not depends only on the cardinalities of the sets C� ∩ S.

Definition 2. For a set of candidates C, a set of labels L, and
a labeling function λ, we say that a diversity specification D
is independent (consists of independent constraints) if and
only if there is a function b : L → 2[|C|] (referred to as the
cardinality constraint function) such that a committee S is
diverse exactly if for each label � it holds that |S∩C�| ∈ b(�).

If we have m candidates then specifying independent con-
straints requires providing at most m+ 1 numbers for each
label. Thus independent constraints can easily be encoded in
the inputs for our algorithms.

Independent constraints are quite expressive. For example,
they are sufficient to express conditions such as “the commit-
tee must contain an even number of junior researchers” or,
since our committees are of a given fixed size, conditions of
the form “the committee must contain at least 40% females.”
Indeed, the conditions of the latter form are so important that
we consider them separately.

Definition 3. For a set of candidates C, a set of labels L, and
a labeling function λ, we say that a diversity specification D

a b c d e

(a) 1-laminar labeling

r

R1 R2

r1 r2 r3 r4

(b) Tree representation

Figure 1: Illustration of a 1-laminar labeling structure.

is interval-based (consists of interval constraints) if and only
if there are functions b1, b2 : L → 2[|C|] (referred to as the
lower and upper interval constraint functions) such that a
committee S is diverse if and only if for each label � it holds
that b1(�) ≤ |S ∩ C�| ≤ b2(�).

Label Structures In principle, our model allows each can-
didate to have an arbitrary set of labels. In practice, there
usually are some dependencies between the labels and these
dependencies can have strong impact in the complexity of our
problem. We focus on labels that are arranged in independent,
possibly hierarchically structured, layers.

Let C be a set of candidates, let L be a set of labels, and
let λ be a labeling function. We say that λ has 1-layered
structure (i.e., we have a 1-layered labeling) if for each two
distinct labels x, y it holds that Cx ∩ Cy = ∅ (i.e., each
candidate has at most one of these labels). For example, if
we restricted the example from the introduction to labels
regarding the seniority level (junior or senior), then we would
have a 1-layered labeling.

More generally, we say that a labeling is 1-laminar if for
each two distinct labels x, y we have that either (a) Cx∩Cy =
∅ or (b) Cx ⊆ Cy or (c) Cy ⊆ Cx. In other words, 1-laminar
labellings allow the labels to be arranged hierarchically.
Example 3. Consider a set C = {a, b, c, d, e} of five can-
didates and labels that encode the countries and continents
where the candidates come from. Specifically, there are four
countries r1, r2, r3, r4, and two continents R1 and R2. The
candidates are labeled as follows:

λ(a) = {r1, R1}, λ(b) = {r1, R1}, λ(c) = {r2, R1},
λ(d) = {r3, R2}, λ(e) = {r4, R2}.

Figure 1a illustrates the 1-laminar inclusion-wise relations
between the labels (there can be more levels of the hierarchy;
for example, for each country there could be labels specifying
local administrative division).

Every 1-laminar labeling, together with the set of candi-
dates, can be represented as a rooted tree T in the follow-
ing way: For a pair of distinct labels x, y we create an arc
from x to y if Cx � Cy and there is no label z such that
Cx � Cz � Cy. We add a root label r and we impose that
each candidate has this label; we add an arc from r to each
label without an incoming arc. The resulting digraph T is
clearly a rooted tree. See Figure 1b for an illustration.

For each positive integer t, we say that a labeling is t-
layered (respectively, t-laminar) if the set L of labels can
be partitioned into sets L1, L2, . . . , Lt such that for each
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i ∈ [t], the labeling restricted to the labels from Li is 1-
layered (respective, 1-laminar).
Example 4. In the example from the introduction, restricting
our attention to candidates’ gender and seniority levels, we
get a 2-layered labeling structure. If we also consider labels
regarding countries and continents, then we get a 3-laminar
structure (however, only the geographic labels would be using
the full power of laminar labellings).

We assume that when we are given a t-layered (t-laminar)
labeling structure, we are also given the partition of the set
of labels that defines this structure (in Section 5 we analyze
the problem of recognizing such structures algorithmically).

Balanced Committee Model As a very natural special
case of our model we considered the problem of comput-
ing balanced committees. In this case there are only two
labels (e.g., male and female), each candidate has exactly one
label, and the constraint specification is that we need to select
exactly the same number of candidates with either label (thus,
by definition, the committee must be of an even size).

Computing balanced committees is a very natural problem.
For example, seeking gender balance is a common require-
ment in many settings. In this paper, we seek exact balance
(that is, we seek exactly the same number of candidates with
either label) but allowing any other proportion would lead to
similar results.

3 Separable Objective Functions

Separable objective functions form a simple, but very impor-
tant special case of our setting. Indeed, such functions are
very natural in shortlisting examples, where diversity con-
straints are used to implement, e.g., affirmative actions or
employment-equity laws. We organize our discussion with
respect to the type of constraint specifications.

Independent Constraints It turns out that independent
constraints are quite difficult to work with. If the labels are
1-laminar then polynomial-time algorithms exist (both for de-
ciding if feasible committees exist and for computing optimal
ones), but with 2-layered labellings our problems become
NP-hard (recall that t-layered labellings are a special case of
t-laminar ones). Our polynomial-time algorithms proceed via
dynamic programming and hardness proofs use reductions
from EXACT 3 SET COVER (X3C).
Theorem 4. Let D be a diversity specification of independent
constraints. Suppose that λ is 1-laminar and f is separable.
Then, DCWD can be solved in O(|L|2k2+|C| log |C|)) time.
Moreover, DCF can be solved in O(|L|2k2) time. If the λ
function is 2-layered then both problems are NP-hard (even
if each candidate has at most two labels, and each label is
associated to at most three candidates).

Given the above hardness results, it is immediate to ask
about the parametrized complexity of our problems because
in many settings the label structures are very limited (for
example, the 2-layered gender/seniority labeling from the in-
troduction contains only 4 labels and already is very relevant
for practical applications). Unfortunately, for independent

constraints our problems remain hard when parametrized by
the number of labels.

Theorem 5. Both DCF and DCWD problems are W [1]-
hard with respect to the number of labels |L|, even if D is a
diversity specification of independent constraints.

However, not all is lost and sometimes brute-force algo-
rithms are sufficiently effective. For example, if we have a
t-layered labeling (where t is a small constant) then each
candidate has at most t different labels and it suffices to con-
sider each size-t labeling separately. A brute-force algorithm
based on this idea suffices, e.g., for the example from the se-
niority/specialty labels from the introduction (it would have
O(|C|4) running time, because there are 4 combinations of la-
bels {junior , senior} and {AI , economics}; the algorithm
could also deal with non-independent constraints).

Interval constraints Interval constraints are more restric-
tive than general independent ones, but usually suffice for
practical applications and are more tractable. For example,
for the case of 1-laminar labellings we give a linear-time
algorithm for recognizing if a feasible committee exists (for
independent constraints, our best algorithm for this task is
quadratic).

Theorem 6. Let D be a diversity specification of interval
constraints. If λ is 1-laminar, then DCF can be solved in
O(|C|+ |L|) time.

For the case of computing the winning committee we no
longer obtain a significant speedup from focusing on interval
constraints, but we do get a much better structural understand-
ing of the problem. In particular, we can use a greedy algo-
rithm instead of relying on dynamic programming. Briefly
put, our algorithm (presented as Algorithm 1) starts with an
empty committee and performs k iterations (k is the desired
committee size), in each extending the committee with a
candidate that increases the score maximally, while ensuring
that the committee can still be extended to one that meets
the diversity constraints. To show that this greedy algorithm
is correct and that it can be implemented efficiently, we use
some notions from the matroid theory.

Formally, a matroid is an ordered pair (C, I), where C
is some finite set and I is a family of its subsets (referred
to as the independent sets of the matroid). We require that
(I1) ∅ ∈ I , (I2) if S ⊆ T ∈ I , then S ∈ I , and (I3) if S, T ∈
I and |S| > |T |, then there exists s ∈ S \ T such that T ∪
{s} ∈ I. The family of maximal (with respect to inclusion)
independent sets of a matroid is called its basis. Many of
our arguments use results from matroid theory, but often
used in very different contexts than originally developed. In
particular, the next theorem, in essence, translates the results
of Yokoi (2017) to our setting.

Theorem 7. Let D be a diversity specification of interval
constraints. Suppose that λ is a 1-laminar, and f is a sepa-
rable function given by a weight vector w : C → R. Then,
DCWD can be solved in O(k2|C||L|+ |C| log |C|) time.

Proof. Let KD be the set of D-diverse committees of size k,
and assume that KD is nonempty. For a family of subsets K
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Algorithm 1: Greedy Algorithm 1

notation :KD 
= ∅ is the set of D-diverse, size-k
committees, KD is its lower extension.

input :f : 2C → R: the objective function,
k: the size of the committee.

output :W ∈ KD

1 set W = ∅;
2 while |W | < k do
3 choose a candidate y ∈ C \W such that

W ∪ {y} ∈ KD with the maximum
improvement f({c}|W );

4 set W ← W ∪ {y};

of a finite set C, we define its lower extension to be

K = {T | ∃S ∈ K : T ⊆ S }.
It follows from the work of Yokoi (2017) that if the con-
straints are given by intervals and KD 
= ∅, then the lower
extension KD of KD forms a family of independent sets of
some matroid.3 Thus Algorithm 1 finds an optimal solution
W ∈ argmaxW ′∈KD

f(W ′) (see, e.g., Chapter 13 of Korte
and Vygen (2006)).

Let W be the committee produced by Algorithm 1. Since
W contains k elements, it must belong to KD (because all
size-k subsets of KD are elements of KD). For the same
reason, since W maximizes the score among the sets from
KD, it must be the case that W ∈ argmaxW ′∈KD

f(W ′) and,
so, W is a winning committee. Further, Yokoi (2017) showed
that checking whether a set W ∪ {y} belongs to KD can be
efficiently done by maintaining a set B ∈ KD with W ⊆ B
and, so, the greedy algorithm runs in polynomial time.

Unfortunately, the greedy algorithm does not work for
more involved labeling structures, but for 2-laminar labellings
we can compute winning committees by reducing the prob-
lem to the matroid intersection problem (Edmonds 1979).
For more involved labeling structures our problems become
NP-hard.

Theorem 8. Let D be a diversity specification of interval
constraints. Suppose that λ is 2-laminar and f is separable.
Then, DCF can be solved in O(k2|C|3|L|) time, and DCWD
can be solved in O(k|C|3 + k3|C|2|L|) time.

The bound on the number of layers turns out to be neces-
sary: the following theorem shows that finding a D-diverse
committee is intractable even with 3-layers.

Theorem 9. DCF is NP-hard even if D is a diversity speci-
fication of interval constraints and λ is 3-layered.

3These independent sets form a relaxed version of our con-
straints. However, taking the lower extension does not necessarily
ignore the lower bounds. For instance, consider a setting where we
want to select a committee of size 5 such that there are exactly three
female candidates and at most two male candidates; the correspond-
ing lower extension KD only includes the sets of female candidates
of size at most 3, whereas a male-only committee of size 2 sat-
isfies the upper bounds on the respective number of female/male
candidates.

Proof. We reduce from 3-DIMENSIONAL MATCHING (3-
DM). Given three disjoint sets X,Y, Z of size n and a set
T ⊆ X×Y ×Z of ordered triplets, 3-DM asks whether there
is a set of n triplets in T such that each element is contained
in exactly one triplet.

Given an instance ((X,Y, Z), T ) of 3-DM, we create one
candidate ti = (xi, yi, Bi) for each ti ∈ T . The set of labels
is given by L = X ∪ Y ∪ Z. Each candidate ti has exactly
three labels λ(ti) = {xi, yi, Bi}. The lower bound b1(�) and
the upper bound b2(�) of each label � ∈ L are set to be 1.
Lastly, we set k = n. It can be easily verified that W ⊆ T is
a desired solution for 3-DM if and only if W is a D-diverse
committee of size k, namely, |W | = k, and (i) |Cx ∩W | = 1
for each x ∈ X , (ii) |Cy ∩ W | = 1 for each y ∈ Y , and
(iii) |Cz ∩W | = 1 for each z ∈ Z.

Nevertheless, if the number of labels is small (i.e., is taken
as the parameter from the point of view of parametrized com-
plexity theory) we can compute optimal diverse committees
efficiently. The next theorem expresses this formally (note
that interval diversity specifications can be phrased as linear
programs, but this language allows also some more involved
constraints, such as, “at the research meeting the number of
senior researchers should be larger than the number of junior
ones, but without taking the PhD students into account”).
Theorem 10. Let f be separable objective function and let
D be a diversity specification which can be expressed through
a linear program LP with the set of variables {x� : � ∈ L}
such that d ∈ D if and only if LP instantiated with variables
x� giving the numbers of committee members with labels � is
feasible. Then, DCWD is in FPT with respect to |L|.

4 Submodular Objective Functions
The case of submodular objective functions is computa-
tionally far more difficult than that of separable ones. In-
deed, even without diversity constraints computing a winning
Chamberlin–Courant committee (specified through a sub-
modular objective function) is NP-hard (Lu and Boutilier
2011) and, in general, the best polynomial-time approxi-
mation algorithm for submodular functions is the classic
greedy algorithm (Nemhauser, Wolsey, and Fisher 1978;
Feige 1998), which achieves the 1− 1/e ≈ 0.63 approxima-
tion ratio. 4 Adding diversity constraints makes our problems
even more difficult. Nonetheless, we provide a polynomial-
time 1/2-approximation algorithm for the case of interval
constraints and 1-laminar labellings.
Theorem 11. Let D be a diversity specification of interval
constraints. If λ is 1-laminar and f is a monotone submodu-
lar function, then Algorithm 1 gives 1

2 -approximation algo-
rithm for DCWD.

Balanced Committees For the balanced committee model
it is possible to achieve notably stronger results. Since the
balanced case is practically relevant from practical standpoint,
we provide its simpler definition, renaming it as BCWD.

4This algorithm starts with an empty committee and extends
it with candidates one-by-one, always choosing the candidate that
increases the objective function maximally.
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Algorithm 2: Greedy Algorithm for BCWD

input :f : 2C → R, A ⊆ C and B ⊆ C where
A ∩B = ∅, |A| ≥ k′ and |B| ≥ k′

output :W ⊆ C where |W ∩A| = |W ∩B| = k′
1 while |W | < 2k′ do
2 choose a pair e = {a, b} where a ∈ A \W and

b ∈ B \W with maximum improvement
f(e|W );

3 set W ← W ∪ e;

Definition 12 (BCWD). Given a set of candidates C, two
subsets A,B ⊆ C such that A ∩ B = ∅ and A ∪ B = C, a
desired committee size k = 2k′, and an objective function
f , find a committee W ⊆ C that maximizes f(W ) and that
satisfies |W ∩A| = |W ∩B| = k′.

For the case of BCWD, we provide a polynomial-time
1− 1/e approximation algorithm. Since this is the best pos-
sible approximation ratio for general submodular functions
without diversity constraints, it is also the best one for the
balanced setting (formally, the results without diversity con-
straints translate because we could assume that all the candi-
dates with one of the labels have no influence on the objective
value and use the remaining ones to model an unconstrained
submodular optimization problem). Our algorithm (presented
as Algorithm 2) is very similar to the classic greedy algorithm,
but it considers candidates in pairs.

Theorem 13. Let f be a monotone submodular function. Al-
gorithm 2 gives (1− 1

e )-approximation algorithm for BCWD.
We note that Theorem 13 is a special case of a much more

general result on approximating the Multidimensional Knap-
sack problem (Kulik, Shachnai, and Tamir 2013), which gives
the same approximation ratio even for maximizing monotone
submodular functions subject to interval constraints consist-
ing only of upper bounds. Yet, our algorithm is simpler and
faster than this general approach.

Theorem 13 applies to all submodular functions. However,
for some special cases it is possible to achieve much stronger
results. For example, for the Chamberlin–Courant function
we find a polynomial-time approximation scheme (PTAS).

Theorem 14. For each Chamberlin–Courant function there
exists a PTAS for BCWD.

The main idea behind the proof is to use the PTAS of
Skowron et al. (2015) to compute a committee of size k′
and then to complement it so that it satisfies the diversity
constraints. The specific nature of the algorithm of Skowron
et al. makes it possible to do this efficiently and effectively.

Theorem 14 also extends to the case of the constant number
of labels �1, �′1, �2, �

′
2, . . . , �p, �

′
p which satisfy the following

two conditions: (i) all the constraints have the following form:
for i ∈ [p] we require the same number of candidates with
label �i as those with label �′i, (ii) for each combination of
labels (r1, r2, . . . , rp) with ri ∈ {�i, �′i} for each i ∈ [p],
there exist at least k candidates having all labels r1, . . . , rp.

5 Recognizing Structure of the Labels

In this section we ask how difficult it is to recognize a given
labeling structure if it is not provided with the problem. While
in most cases it is natural to assume that the structure would
be provided (as it would be a common knowledge of the
society for which we would want to compute the committee),
it is interesting to be able to derive it automatically.

In the previous sections we have seen that there usually are
polynomial-time algorithms for computing winning commit-
tees for 1-laminar labellings and, sometimes, there are such
algorithms for 2-laminar ones. However, 3-laminar labellings
always lead to NP-hardness results. The same holds for the
label-structure recognition problem. There are algorithms
that decide if given labellings are 1- or 2-laminar, but recog-
nizing 3-layered ones is NP-hard. In the labeling-recognition
problem we are given a set of candidates C, a set of labels
L, and a labeling function λ. Our goal is to recognize if λ is
t-laminar (or t-layered), for a given t.
Proposition 15. For t ∈ {1, 2} there exists a polynomial-
time algorithm for deciding if a given labeling λ is t-laminar.
The problem of deciding if a given labeling λ is 3-layered is
NP-hard.

6 Related Work

Our work touches upon many concepts and, thus, is related
to many pieces of research. In this section we briefly mention
some of the most relevant ones.

Lang and Skowron (2016) considered a model of diversity
requirements that closely resembles our interval constraints.
There are two main differences between their work and ours:
(i) they do not consider objective functions and (ii) their input
consists of “ideal points” instead of intervals for each label;
since there might not exist a committee satisfying such “exact”
constraints, they focus on finding committees minimizing a
certain distance to the ideal diversity distributions.

If the labels denote party affiliations of the candidates, the
diversity constraints are one-layered and form instances for
the apportionment problem, where seats in the parliament
should be distributed among the parties (see the book of Balin-
ski and Young (1982) for an overview of the apportionment
problems). Bi-apportionment (Balinski and Demange 1989a;
1989b) can be viewed as an extension of the traditional ap-
portionment to the case when the diversity constraints are
two-layered. However, in all these settings there is no ob-
jective functions, and the goal is only to find a committee
satisfying certain label-based constraints. For this reason our
paper is even closer the work of Brams (1990), who intro-
duces a specific method based on approval voting that takes
diversity constraints into account, which are expressed as
quotas for each possible tuple of labels; Potthoff (1990) and
Straszak et al. (1993) formulated an ILP for this method.

Optimization of a given objective functions due to con-
straints is a classic problem studied extensively in the litera-
ture. For a review of this literature we refer the reader to the
book of Korte and Vygen (2006). More specifically, Krause
and Golovin (2012) provide a comprehensive survey for the
case when the optimized function is submodular. For submod-
ular functions different types of general constraints are con-
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sidered, including matroid and knapsack constraints (Chekuri,
Vondrk, and Zenklusen 2014). A particularly related case is
when the constraints are given for the size of the committee
(see e.g., the works of Qian et al. (2017) and the references
inside)—interestingly, this case can be represented in our
model, when we assume that there is a single label assigned
to each candidate, and the constraints are given for the num-
ber of occurrences of this label in the elected committee.
Candidates having positive synergies may induce supermod-
ular (instead of submodular) objective functions. We note
that constrained maximization of a supermodular function
is equivalent to constrained minimization of a submodular
function, known to be NP-hard (Iwata and Nagano 2009).

Our model is related to the Multidimensional Knapsack
problem with submodular objective functions (Fréville 2004;
Sviridenko 2004; Lee et al. 2009; Florios, Mavrotas, and
Diakoulaki 2010; Puchinger, Raidl, and Pferschy 2010;
Kulik, Shachnai, and Tamir 2013), but differs in a few im-
portant aspects. The two biggest differences are: (i) Multidi-
mensional Knapsack has constraints of the form “no more
than value D on dimension i” (dimensions correspond to
labels in our work), whereas our constraints can have more
structure (specific quantities of a given label, or upper and
lower bounds), (ii) Multidimensional Knapsack has items
that can contribute more than a unit weight to a particular di-
mension, whereas our candidates only have 0/1 contributions.
Thus, our problem is more general regarding the constraint
specification, but less general regarding the structure of the
weights of items.

The complexity of selecting an optimal committee with-
out constraints has been studied extensively. For a general
overview of this literature, we point the reader to a chapter by
Faliszewski et al. (2017). Perhaps the most attention was ded-
icated to the study of the Chamberlin–Courant rule (1983).
For instance, it is known that this rule is NP-hard to com-
pute (Procaccia, Rosenschein, and Zohar 2008). The problem
of finding a winning Chamberlin–Courant committee under
restricted domains of voters’ preferences was further stud-
ied by Betzler et al. (2013), Yu et al. (2013), Elkind and
Lackner (2015), Skowron et al. (2015), and Peters and Lack-
ner (2017). Parametrized complexity of the problem was
studied by Betzler et al. (2013) and its approximability by
Lu and Boutilier (2011), Skowron et al. (2015) and Skowron
and Faliszewski (2015).

Finally, we note that Celis, Huang, and Vishnoi (2017) very
recently and independently introduced a model for diversity
constraints (in their paper refered to as fairness constraints)
that is similar to our model. Their paper contains algorithmic
results, which are also applicable in our setting.

7 Conclusion
We studied the problem of selecting a committee of a given
size that, on the one hand, would be diverse (according to a
given diversity specification) and, on the other hand, would
obtain as high an objective value as possible. We present our
results in Table 1. We find that in general our problem is
computationally hard, but there are many tractable special
cases, especially for separable objective functions (which are
very useful for shortlisting tasks, where diversity constraints

Label Interval Independent
Rule Structure Constraints Constraints

separable 1-laminar P P
2-laminar P NP-hard
3-layer NP-hard NP-hard
few labels FPT W[1]-hard

submodular 1-laminar 0.5-approx. ?
balanced 0.63-approx. —

CC balanced PTAS —

Table 1: The complexity of computing winning committees
for rules of a given type, for the case of candidates with par-
ticular label structures, and particular diversity specifications.
The complexity results for the problem of testing if a fea-
sible committee exists are the same as those for computing
winning committees. “Balanced” label structure refers to the
problem of computing balanced committees (thus the case of
independent constraints is not defined for this setting).

are particularly relevant) and for up to 2-laminar label struc-
tures (which means that dealing with two sets of independent,
hierarchically arranged labels, is feasible). Our work leads
to many open problems. In particular, we barely scratched
the surface regarding approximation of our problems, or their
parametrized complexity. Experimental studies would be very
desirable as well.
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