
Effective Heuristics for Committee Scoring Rules

Piotr Faliszewski
AGH University
Krakow, Poland

faliszew@agh.edu.pl

Martin Lackner
TU Wien

Vienna, Austria
lackner@dbai.tuwien.ac.at

Dominik Peters
University of Oxford

Oxford, UK
dominik.peters@cs.ox.ac.uk

Nimrod Talmon
Weizmann Institute of Science

Rehovot, Israel
nimrodtalmon77@gmail.com

Abstract

Committee scoring rules form an important class of multiwin-
ner voting rules. As computing winning committees under
such rules is generally intractable, in this paper we investigate
efficient heuristics for this task. We design two novel heuristics
for computing approximate results of multiwinner elections
under arbitrary committee scoring rules; notably, one of these
heuristics uses concepts from cooperative game theory. We
then provide an experimental evaluation of our heuristics (and
two others, known from the literature): we compare the scores
of the committees output by our algorithms to the scores of
the optimal committees, and also use the two-dimensional
Euclidean domain to compare the visual representations of the
outputs of our algorithms.

Introduction

The goal of a multiwinner election is to choose a fixed-size
subset of items (a committee of candidates) based on the
preferences of a group of agents (the voters). Multiwin-
ner elections are a natural model for various tasks, rang-
ing from shortlisting (Barberà and Coelho 2008), through
numerous business applications (Lu and Boutilier 2011;
2015; Skowron, Faliszewski, and Lang 2016; Faliszewski
et al. 2016a), to tasks involving proportional representa-
tion, such as parliamentary elections (Aziz et al. 2017;
Brill, Laslier, and Skowron 2017).

While different applications call for different multiwinner
voting rules with specific properties, the class of committee
scoring rules—multiwinner analogues of single-winner scor-
ing rules (introduced by Elkind et al. 2017b)—appears to
be rich enough to contain suitable rules for essentially all
the settings considered so far in the literature: Faliszewski et
al. (2016a; 2016b) map the internal structure of that class and
show how to design specific rules for particular applications.

Briefly put, under a committee scoring rule each voter as-
signs a score to each committee (based on the positions of the
committee members in that voter’s preference order), and a
winning committee is one with the maximum total score, com-
puted as the sum of individual voters’ scores. Unfortunately,
for almost all committee scoring rules it is NP-hard to find a
winning committee (Procaccia, Rosenschein, and Zohar 2008;

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Lu and Boutilier 2011; Skowron, Faliszewski, and Lang 2016;
Aziz et al. 2015; Faliszewski et al. 2016b; 2017a) and,
thus, one has to resort to exact algorithms with super-
polynomial running times (e.g., parameterized algorithms,
Betzler, Slinko, and Uhlmann 2013) or to polynomial-time
algorithms and heuristics that produce approximate results.
While approximately optimal committees may not be ac-
ceptable in political scenarios, they may still be useful in
business-related settings (see the discussion provided by Fal-
iszewski et al. 2016c).

The goal of this paper is to experimentally evaluate several
heuristic algorithms for computing committee scoring rules.
As we identify certain flaws with two main heuristics that
appear in the literature (the classic greedy algorithm and
simulated annealing), we develop two novel heuristics. One
of these is based on viewing a given election as a cooperative
game and using game-theoretic solution concepts.

Motivation. There are two main heuristics presented in the
literature for computing approximate winning committees
under various committee scoring rules: the classic greedy al-
gorithm (Lu and Boutilier 2011; Faliszewski et al. 2016a) and
simulated annealing (Faliszewski et al. 2017a).1 The greedy
algorithm starts with an empty committee and then adds
candidates one-by-one, greedily maximizing the committee
score at each step, until k candidates are selected (where k
is the desired committee size). Simulated annealing starts
by selecting a random initial committee and then proceeds
by randomly replacing committee members, keeping a new
committee either if it has a higher score than the current one,
or with a probability decaying with the algorithm’s progress.

Unfortunately, both of these heuristics are somewhat prob-
lematic. The main issue with simulated annealing is that it
is inherently randomized. While it performs very well in
practice (as confirmed by our work), it would be difficult
to use it in settings where candidates are competing agents
with a preference for being selected. For example, consider a
funding agency that has to choose k research proposals (the
candidates) to be funded, based on the opinions of a group
of experts (the voters). If the agency used a randomized algo-

1These references regard committee scoring rules. The greedy
algorithm was already analyzed by Nemhauser et al. (1978) and
simulated annealing was proposed by Kirkpatrick et al. (1983).

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

1023

rithm, then researchers whose proposals were rejected could
challenge the fairness of the process (e.g., by questioning if
the algorithm’s random choices were truly random). We note,
however, that simulated annealing is perfectly acceptable for
other tasks, such as, e.g., selecting a number of items for an
Internet store to put on its homepage.

Thus, the agency would prefer a deterministic algorithm,
such as the greedy one. However, the quality of its output
is typically notably worse than that of simulated annealing
(again, as confirmed by our work) and it has a built-in, struc-
tural bias against certain candidates (which is very visible in
our experiments). To see why this is the case, note that in a
given election the greedy heuristic always chooses the same
candidate in the first iteration, irrespective of the desired
committee size. For example, when computing an approxi-
mate Chamberlin–Courant (1983) winning committee, the
greedy heuristic always starts by selecting a candidate c with
the highest Borda score (see the Preliminaries for formal
definitions), even though in later iterations it may choose
candidates that (jointly) dominate c.
Our Contribution. There is a need for deterministic al-
gorithms that perform as well as simulated annealing while
avoiding the biases of the greedy algorithm. We address this
need as follows:

1. We propose two new heuristic algorithms for (a large sub-
class of) committee scoring rules. The first one is based on
the idea of representing multiwinner elections as coopera-
tive games and using appropriate game-theoretic solution
concepts to guide the process of selecting members of
the winning committee. We hope that this new conceptual
perspective can be usefully exploited in other contexts.
The second heuristic can be seen as the inverse of the
greedy algorithm: It starts with the set of all candidates
and removes the least useful candidate at each step, until k
candidates remain. A similar idea was used in the context
of computing proportional rankings (Skowron et al. 2017).

2. We evaluate all our heuristics experimentally on synthetic
data, generated using the impartial culture model and the
two-dimensional Euclidean model. As our test case, we use
the t-Borda family of committee scoring rules (Faliszewski
et al. 2017a), which includes the Chamberlin–Courant rule
and the k-Borda rule. We find that the greedy algorithm
performs relatively poorly, but simulated annealing shows
very good performance in all our settings. Our two new
heuristics avoid most of the issues of these algorithms
while producing high-quality committees.

As a further contribution, we confirm (for the case of the
t-Borda family of rules) that committees computed using
simulated annealing have visual representations that are very
similar to those for optimal committees. Faliszewski et al.
(2017a) already used simulated annealing for computing such
representations, and our results are in agreement with their
observations (they only provided intuitive justifications).

Preliminaries

An election is a pair E = (C, V), where C = {c1, . . . , cm}
is a set of candidates and V = (v1, . . . , vn) is a collection

of voters. Each voter v is associated with a preference order
�v, i.e., with a ranking of the candidates in C (from best to
worst). A multiwinner voting ruleR is a function that, given
an election E = (C, V) and a positive integer k, k ≤ |C|,
returns a family of size-k committees (i.e., size-k subsets of
candidates) that tie as winners.2 Before we discuss committee
scoring rules, we first introduce single-winner scoring rules.
For a positive integer t, we denote the set {1, . . . , t} by [t].
Single-Winner Scoring Rules. Consider an election with
m candidates. For a candidate c and a voter v, we write
posv(c) to denote the position of c in v’s preference order (the
top candidate has position 1, the next one has position 2, and
so on). A single-winner scoring function γm for m candidates,
γm : [m] → R, is a non-increasing function that associates
each possible position in a vote with a score. For example,
βm(i) = m− i is the Borda scoring function and αt(i), the
function that is equal to 1 if i ≤ t and to 0 otherwise, is the
t-Approval scoring function. Given a family γ = (γm)m∈N

of scoring functions (with one function for each number of
candidates), we define the γ-score of candidate c in elec-
tion E = (C, V) as γ-scoreE(c) =

∑
v∈V γ|C|(posv(c)).

A single-winner scoring ruleRγ is a function that, given an
election, outputs the set of all candidates that have the highest
γ-score (as the set of tied γ-winners of the election).
Committee Scoring Rules. Elkind et al. (2017b) extend
the idea of single-winner scoring rules to the multiwinner
setting. For a voter v in an election (C, V) with |C| = m and
a committee S, |S| = k, the position of S is the sequence
resulting from sorting the set {posv(c) | c ∈ S} in increasing
order. We write [m]k to denote the set of all length-k increas-
ing sequences of numbers from [m]. For two committee po-
sitions I = (i1, . . . , ik) and J = (j1, . . . , jk), I, J ∈ [m]k,
we say that I dominates J if i1 ≤ j1, . . . , ik ≤ jk.

A committee scoring function fm,k for m candidates and
committee size k, fm,k : [m]k → R, is a function that asso-
ciates each committee position with a score in such a way
that if some committee position I dominates some committee
position J , then it holds that fm,k(I) ≥ fm,k(J).
Definition 1 (Elkind et al. (2017b)). Let f = (fm,k)k≤m

be a family of committee scoring functions. The committee
scoring ruleRf is the multiwinner rule that, given an election
E = (C, V) and a committee size k, outputs the committees
S that maximize f -scoreE(S) =

∑
v∈V f|C|,k

(
posv(S)

)
.

t-Borda Family of Rules. We use the t-Borda family of
committee scoring rules as the test cases for our algorithms.
Rules in this family are interesting as they form a “path” be-
tween the classic k-Borda and Chamberlin–Courant (CC)
rules (they were studied in this context by Faliszewski et
al. 2017a). The k-Borda rule outputs committees of candi-
dates with the highest individual Borda scores (i.e., it selects
individually-excellent candidates), whereas CC chooses di-
verse committees, where each voter can find an appealing
representative.3 Formally, these rules are defined via the fol-

2In practice, it is necessary to have a tie-breaking scheme.
Throughout the paper we disregard the tie-breaking issue.

3See the chapter of Faliszewski et al. (2017b) for an in-depth
discussion of various types of goals for multiwinner voting rules.

1024

lowing scoring functions:

fk-Borda
m,k (i1, . . . , ik) = βm(i1) + · · ·+ βm(ik),

fCC
m,k(i1, . . . , ik) = βm(i1).

For the case of CC, a voter’s most preferred committee mem-
ber (i.e., the one associated with i1 in the committee position)
is referred to as the voter’s representative.

An ordered weighted average (OWA) operator for commit-
tees of size k is a sequence Λk = (λk

1 , . . . , λ
k
k) ∈ R

k. Given
a family Λ = (Λk)k∈N of OWA operators for all committee
sizes, the Λ-Borda rule is the committee scoring rule with
scoring functions fΛ-Borda

m,k (i1, . . . , ik) =
∑k

t=1 λ
k
t βm(it).

For each positive integer t, the t-best OWA operator consists
of t ones followed by zeros: for instance, the 2-best operators
are of the form (1, 1, 0, . . .). The t-Borda rule is simply the
Λ-Borda rule defined through the family of t-best operators.
In this terminology, CC is the 1-Borda rule and, if the com-
mittee size is a fixed constant k, then by taking t = k, we
obtain the k-Borda rule as a member of the t-Borda family.

OWA-based committee scoring rules were introduced by
Skowron et al. (2016), and were studied in a slightly differ-
ent model by Aziz et al. (2017) and Lackner and Skowron
(2017). Skowron et al. have shown that if t is a fixed constant
independent of k, t-Borda rules are NP-hard to compute.
Decomposable Committee Scoring Rules. A committee
scoring rule is decomposable (Faliszewski et al. 2016a) if it
can be defined via scoring functions of the form:

fm,k(i1, . . . , ik) = γ
(1)
m,k(i1) + · · ·+ γ

(k)
m,k(ik),

where γ = (γ
(t)
m,k)1≤t≤k≤m is a family of single-winner scor-

ing functions. Decomposable rules are a superset of OWA-
based rules; we need them for technical reasons.

Algorithms

Below we describe our four heuristics. The first two are
known in the literature and the latter two are due to this paper.
We assume that we are given an election E = (C, V) with
|C| = m, and a target committee size k ≤ m.
Simulated Annealing (SA). This is a classic metaheuristic
used for many combinatorial problems (see, e.g., the survey
of Suman and Kumar 2006). We use the version tailored for
committee scoring rules by Faliszewski et al. (2017a).

Let fm,k be the given committee scoring function. The
algorithm uses parameters p, q and T , 0 < p, q < 1, T ∈ N.
First, we sample a random committee S0 and then we per-
form T iterations. In iteration i we compute committee S′

i
by replacing a random member of Si−1 with a random candi-
date in C \ Si−1. If fm,k-scoreE(S′

i) > fm,k-scoreE(Si−1)
then we set Si = S′

i. Otherwise, with probability pqi we set
Si = S′

i and with probability 1− pqi we set Si = Si−1. We
output a committee Sj , j ∈ [T], with the highest fm,k-score.

We use the same parameters as Faliszewski et al. (2017a);
we run T = 2000 iterations with p = 0.02 and q = 0.999.
Note that p is the initial probability of accepting a committee
worse than the current one, and q models the speed at which
this probability decays with the iteration number.

Greedy. This algorithm is an instantiation of the classic
heuristic analyzed by Nemhauser et al. (1978) for optimizing
submodular set functions. In the context of committee scoring
rules, it was first used by Lu and Boutilier (2011) to compute
approximate results of the Chamberlin–Courant rule. While
all our deterministic heuristics could be called greedy, in
the context of multiwinner elections only this algorithm is
traditionally referred to as the greedy algorithm.

Given a family f = (fm,k)k≤m of committee scoring
functions, the algorithm proceeds as follows. First, we set
S0 = ∅ and then we execute k iterations. In the i-th iteration
we identify a candidate c that maximizes the fm,i-score of
Si−1 ∪ {c},4 and set Si = Si−1 ∪ {c}. We output Sk.

An important property of the greedy algorithm is commit-
tee monotonicity (Elkind et al. 2017b): if for a given election
we compute two committees W1 and W2 with |W1| < |W2|,
then W1 ⊂W2 (we ignore tie-breaking issues here). While
in some settings this is a useful feature (Skowron et al. 2017),
often it is a flaw. In particular, for each t-Borda rule, in the
first iteration the greedy algorithm chooses a candidate with
the highest Borda score. This is particularly problematic for
the case of CC, where in extreme cases it may happen that
the Borda winner is not a representative of any voter.

On the positive side, for the t-Borda rules, the algorithm
guarantees 1 − 1/e approximation ratio with respect to the
score of an optimal committee (Skowron, Faliszewski, and
Lang 2016).
Removal. The removal algorithm is in some sense an in-
verse of the greedy one. It starts with the set of all candidates
and iteratively removes the candidate that makes the small-
est contribution to the score, until it obtains a committee of
size k; a similar heuristic is used by Skowron et al. (2017).
The difficulty in implementing this idea is that it is not clear
which rule should be chosen to evaluate committees of size
k + 1, . . . ,m. Below we describe the algorithm customized
for the case of Λ-Borda rules; it can be extended to general
scoring functions but focusing on the OWA-based rules leads
to significantly better performance.

Fix a Λ-Borda rule and let Λk be the OWA operator for
committees of size k. The algorithm is as follows:

1. Compute a sequence Λk,Λk+1, . . . ,Λm of OWA operators
(e.g., one could define Λi+1, k ≤ i < m, by appending
0 to Λi, but below we propose a different approach). We
refer to this sequence as the OWA schedule.

2. Let Sm = C. Then in iteration i, i = m− 1, . . . , k+ 1, k,
we identify a candidate c such that the Λi-Borda score of
Si+1 \ {c} is as high as possible, and let Si = Si+1 \ {c}.
We output Sk.

Intuitively, the motivation behind the algorithm is that we are
less likely to make a serious mistake when removing a candi-
date from a large committee than when adding a candidate to
a small one (as in the greedy algorithm).

It turns out that for the removal algorithm to perform well,
we need to choose the OWA schedule wisely. For example,

4If there is more than one such candidate, then our implementa-
tion chooses one randomly. If a fully deterministic algorithm were
needed, then this decision could be done in some other simple way.

1025

the 0-appending schedule suggested above gave acceptable re-
sults in our initial experiments, but the following one worked
much better (this is particularly surprising for the case of CC).
Let Λk = (λ1, . . . , λk) be the OWA operator for committees
of size k. For each m′ = k, . . . ,m we let Λm′

consist of m′
/k

entries with value λ1, followed by m′
/k entries with value λ2,

and so on, until the final m′
/k entries with value λk. If k does

not divide m′ evenly, then we round m′
/k in a natural way;

we omit the details as they have little impact on the results.
It is plausible that even better OWA schedules are possible

and we discuss this issue later. Yet, even with the above
schedule our algorithm demonstrates excellent performance.
Banzhaf. Our final heuristic is a variant of the greedy one,
but with a game-theoretic criterion for choosing the candi-
dates to be included in the committee.

A cooperative game G = (C, ν) consists of a set of players
C = {c1, . . . , cm} and a characteristic function ν : 2C → R

such that ν(∅) = 0. Intuitively, for each subset C ′ of players,
ν(C ′) is the joint payoff that the players in C ′ receive for
working together. We refer to subsets of players as coalitions.
We use the notion of the Banzhaf value of a player (Banzhaf
1965; Dubey and Shapley 1979), a classic solution concept
for cooperative games, but we modify its definition to focus
on coalitions of a given size, that are required to contain
specific players.
Definition 2. Given a cooperative game G = (C, ν), an
integer k, k ≤ |C|, and a coalition W , |W | ≤ k − 1, we
define the k|W -restricted Banzhaf value of player ci ∈ C as

BG(ci, k,W) =
∑

S⊆C:W⊆S,|S|=k−1

ν(S ∪ {ci})− ν(S). (1)

The classic Banzhaf value of player ci is defined as
BG(ci) =

1
2m−1

∑m
k=1 BG(ci, k, ∅). Intuitively, it is the ex-

pected marginal contribution of a player to a randomly se-
lected coalition and, thus, it can be seen as a measure of a
player’s importance. The k|W -restricted Banzhaf value mea-
sures players’ importance provided that we need to form a
size-k coalition containing the players from set W .

To use Banzhaf values in our algorithms, we express the
task of evaluating committee scores as a cooperative game.
Definition 3. Let E = (C, V) be an election with C =
{c1, . . . , cm} and let Rf be a committee scoring rule. We
define the game G(E,Rf) = (C, ν) so that ν(∅) = 0 and
for each nonempty coalition S of candidates (players) we
have ν(S) = f -scoreE(S).

In words, the players in our game are the candidates and the
payoff of a coalition S is simply the score that this coalition—
interpreted as a committee—would obtain in the underlying
election. Thus, we use the terms committee and coalition
interchangeably.

We are now ready to describe our heuristic (which we
refer to as Banzhaf). Let E = (C, V) be an election, let
k be the committee size, and let Rf be a committee scor-
ing rule, where f = (fm,k)k≤m is the associated family of
committee scoring functions. Let G be the game G(E,Rf).
We proceed exactly as in the greedy algorithm, except that
in the i-th iteration we choose a candidate from the set

argmaxc∈C\Si−1
BG(c, k, Si−1). That is, we pick a candidate

with the highest k|Si−1-restricted Banzhaf value in G and
set Si = Si−1 ∪ {c}. Intuitively, in each step we extend the
committee so as to maximize the expected increase in score
due to the presence of the added candidate, assuming that the
rest of the committee will be chosen uniformly at random.
The algorithm was inspired by analogous reasoning in the
context of network analysis (Michalak et al. 2015)).

For many types of cooperative games, computing the
Banzhaf values is NP-hard; see, e.g., the works of Prasad
and Kelly (1990) or Bachrach and Rosenschein (2009). For-
tunately, for election-based games that use decomposable
committee scoring rules, (restricted) Banzhaf values can
be computed in polynomial time. To see this, we first note
that we can compute them vote-by-vote, since the Banzhaf
value is additive. For an election E = (C, V) and game
G = G(E,Rf), where Rf is a committee scoring rule,
we write G(vj) to denote the game G with the voter set
restricted to vj only. For each candidate ci, each integer
k, k ≤ |C|, and each set W ⊆ C, |W | < k, we have
BG(ci, k,W) =

∑n
j=1 BG(vj)(ci, k,W). To compute the

values BG(vj)(ci, k,W), we use the following lemma.

Lemma 1. Let f = (fm,k)k≤m be a family of decomposable
committee scoring rules defined via polynomial-time com-
putable single-winner scoring functions, let E = (C, V) be
an election, let k be the committee size, and let G = (Rf , E)
be the game associated withRf and E. Then for each voter
v in V , each candidate c ∈ C, and each set W such that
W ⊆ C \ {c} and |W | < k, the value BG(v)(c, k,W) can
be computed in polynomial time.

Proof. Let m = |C|. Let γ(1)
m,k, . . . , γ

(t)
m,k be the polynomial-

time computable single-winner scoring functions such that
fm,k(i1, . . . , ik) = γ

(1)
m,k(i1) + · · ·+ γ

(k)
m,k(ik). We partition

W into two sets, WA and WB , such that v ranks all the
candidates in WA before c and all the candidates in WB

after c. Our goal is to compute the sum in (1), which defines
BG(v)(c, k,W), by rewriting it as a sum over candidates:

BG(v)(c, k,W) = Δ(c) +
∑

d∈C\{c} Δ(d), (2)

where we will define the Δ-terms below.
For each candidate d ∈ C \ {c} and each t ∈ [k], we let

C(d, t) denote the set of coalitions S such that: (a) W ⊆ S;
(b) |S| = k − 1; (c) d ∈ S; and (d) d is voter v’s t-th most
desirable member of S. We define r(d) to be 0 if v ranks d
ahead of c, and 1 otherwise. Further, we define Δ(d) to be∑k

t=1

∑
S∈C(d,t)

(
γ
(t)
m,k(posv(d))− γ

(t+r(d))
m,k−1 (posv(d))

)
=

∑k
t=1 |C(d, t)| ·

(
γ
(t)
m,k(posv(d))− γ

(t+r(d))
m,k−1 (posv(d))

)
.

We define Δ(c) in a similar (but not identical) way. For
each t ∈ [k], we let C(c, t) be the set of coalitions S such that
W ⊂ S, |S| = k − 1 and c is voter v’s t-th most preferred
candidate in S ∪ {c}. Then set

Δ(c) =
∑k

t=1

∑
S∈C(c,t) γ

(t)
m,k(posv(c))

=
∑k

t=1 |C(c, t)| · γ(t)
m,k(posv(c)).

1026

It is easy to see that (2) holds with these definitions.
To complete the proof, it suffices to note that, for each

candidate c ∈ C and each t ∈ [k], the value |C(c, t)| can be
computed in polynomial time. E.g., for t > |WA| we have:

|C(c, t)|=
(
posv(c)− 1− |WA|

t− 1− |WA|
)
·
(
m− posv(c)− |WB |

t− k − |WB |
)

The idea behind the formula above is as follows. For c to be
ranked in the t-th position among the candidates in S ∪ {c},
S has to contain exactly t− 1 candidates that v ranks ahead
of c. S has to contain all members of W , so it contains the
|WA| members of W ranked ahead of t, and it suffices to
add the missing t− 1− |WA| candidates in an arbitrary way
(altogether there are posv(c)− 1− |WA| candidates that do
not belong to W and that v ranks ahead of c). The number
of ways in which we can choose members of S that v ranks
after c is calculated in a similar manner.

Lemma 1 immediately implies the following theorem.

Theorem 2. For each decomposable committee scoring rule
Rf defined via polynomial-time computable single-winner
scoring functions, there is a polynomial-time algorithm that
computes the (restricted) Banzhaf values for each candidate
in a given election.

We leave the question of whether there are natural com-
mittee scoring rules for which computing restricted Banzhaf
values is NP-hard as interesting future work.

Experimental Evaluation

We performed two sets of experiments to evaluate our algo-
rithms. In the first one, we tested how the performance of our
heuristics for the t-Borda family of rules changes with t. In
the second one, we focused on the CC rule and checked how
the size of the committee influences the results.
Experimental Setup. We consider synthetically generated
elections with m = 100 candidates and n = 100 voters. We
generate voters’ preferences as follows:

1. In the impartial culture (IC) model, for each voter we draw
her preference order uniformly at random from the set of
all possible linear orders.

2. In the 2D uniform square (2D) model, each candidate and
each voter is associated with a point drawn uniformly at
random from the square [−3, 3]× [−3, 3] (these points are
called the ideal points of the respective candidates and
voters). Each voter forms her ranking by sorting the can-
didates in order of increasing Euclidean distances of their
ideal points from her own ideal point. This distribution is
an example of the two-dimensional Euclidean model and
is used, e.g., in the experiments of Elkind et al. (2017a).

Let v be a voter in some election with m candidates, and let
S be a committee of size k, such that posv(S) = (i1, . . . , ik).
For each t ∈ [k], the t-Borda score that v assigns to S is
βm(i1)+ · · ·+βm(it) = mt− i1− i2− · · ·− it. We define
the reverse t-Borda score that v assigns to S to be i1+· · ·+it.
The reverse t-Borda score of S in the full election is the sum
of the reverse t-Borda that it gets from the voters.

(a) Impartial Culture Distribution

1.0

1.05

1.1

1.15

1 2 3 4 5 6 7 8 9 10

ap
pr

ox
im

at
io

n
ra

tio

parameter t for t-Borda

Simulated Annealing
Banzhaf
Removal

Greedy

(b) 2D Uniform Square Distribution

1.0

1.05

1.1

1.15

1.20

1 2 3 4 5 6 7 8 9 10
ap

pr
ox

im
at

io
n

ra
tio

parameter t for t-Borda

Simulated Annealing
Banzhaf
Removal

Greedy

Figure 1: Ratios of average reverse t-Borda scores computed
by our heuristics to those computed using the exact ILP-
based algorithm for our two preference generation models
(m = 100, n = 100, k = 10).

In this section we focus on reverse t-Borda scores instead
of the standard ones because reverse scores are far more ro-
bust. For example, consider an election E with m candidates
and n voters, and a committee W . If we formed an election
E′ by adding m new candidates to E, all ranked below the
original ones, then the t-Borda score of W in E′ would ex-
ceed its score in E by nmt points. On the other hand, the
reverse t-Borda scores of W would be the same in E and E′.
Further, reverse scores have a very natural interpretation. For
example, the average reverse 1-Borda score (i.e., the average
reverse CC score) that voters assign to a committee is the av-
erage position in which the voters rank their representatives.
Thus we feel that reverse t-Borda scores are better suited for
experimental comparisons than the standard scores.

To compute the true outputs of our voting rules, we formu-
lated them as integer linear programs (ILPs) (such formula-
tions can be found in the work of Skowron et al. (2016)) and
solved these ILPs using the CPLEX ILP solver.

Experiments Regarding t-Borda. In this series of exper-
iments we fixed the committee size to be k = 10 and we
evaluated how our heuristics perform with respect to the t-
Borda rules, with t ranging from 1 to 10. For each heuristic
(as well as for the exact ILP-based algorithm), each t ∈ [10],
and each of the preference generation models, we generated
5000 elections and computed results using the t-Borda scor-
ing function. Then, for each t and for each algorithm, we

1027

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

E
xa

ct
Si

m
.A

nn
.

B
an

zh
af

R
em

ov
al

G
re

ed
y

Figure 2: Histograms showing frequency of including candidates from given areas of the [−3, 3]× [−3, 3] square in the winning
committees, depending on the algorithm and the value of t (2D uniform square distribution, m = 100, n = 100, k = 10).

computed the average reverse t-Borda score of the result-
ing committees. In Figure 1 we present the ratios of these
scores to those of the optimal committees. For example, ratio
≈1.18 for the greedy algorithm with 3-Borda scoring, for
the 2D uniform square distribution, means that on average
the greedy algorithm produced committees whose reverse
3-Borda scores were 18% higher than the optimal scores.

Following Elkind et al. (2017a), for the 2D uniform square
distribution we also generated histograms showing how often
candidates from given areas of the [−3, 3]× [−3, 3] square
are included in the winning committee, depending on the
value of t and the algorithm used. Specifically, we partitioned
the square into 120× 120 equal-sized cells, and for the com-
mittees computed by each of the algorithms we calculated
how many of their members fall into each cell. We present
the results of these computations as histograms on Figure 2
(the darker a given cell is, the more candidates fell into it;
we used the formula of Elkind et al. (2017a) for translating
numerical values into colors).

Figures 1 and 2 indicate that simulated annealing (SA)
performs very well; in particular, its histograms are prac-
tically indistinguishable from those for the actual rule. In
contrast, the greedy algorithm is the weakest performer. In-
deed, it consistently achieves the worst approximation ratios
and its histograms visibly show the bias that comes from
selecting the Borda winner in the first iteration (see the dark
blue spots in the centers of the histogram for t ∈ {1, . . . , 5};
importantly, these spots are not present in the histograms
computed using the exact algorithm). From Figure 1 we
can also conclude that both the removal algorithm and the
Banzhaf algorithm perform very well: their approximation
error never exceeds 10% and declines rapidly with t. In fact,
for the IC model the Banzhaf algorithm achieves the best
approximation ratios, and the removal algorithm performs as

well as SA. Intuitively, the good performance of the Banzhaf
algorithm in this setting is to be expected: when selecting a
committee member, it assumes that the remaining members
would be chosen uniformly at random, which matches the
spirit of the IC model. For the 2D uniform square model,
the removal algorithm outperforms the Banzhaf algorithm by
some margin (the advantage is not huge, but noticeable).

It is interesting to compare the histograms generated by
the algorithms. SA generates essentially the same histograms
as the exact algorithm, and the greedy algorithm has a clear
bias (as argued above). The Banzhaf and removal algorithms
produce histograms very similar to those of the exact algo-
rithm for t ∈ {1, 2, 3} ∪ {8, 9, 10}. For the remaining values,
removal tends to focus too much on the “outer ring”, whereas
the Banzhaf algorithm focuses too much on the “inner disc”.
It is remarkable that these methods make different kinds of er-
rors. Thus, deciding which algorithm to prefer should depend
on the application. For instance, for the funding agency ex-
ample mentioned in the introduction, when choosing k = 10
proposals using 5-Borda, the Banzhaf algorithm would likely
be superior to the removal one; the proposals from the “inner
disc” are those that are individually ranked highly (they have
the highest individual Borda scores), but the algorithm also
selects some more diverse proposals from the “outer ring”.
Arguably, in this case the Banzhaf algorithm might even be
more appealing than the original 5-Borda voting rule.

Experiments Regarding Chamberlin–Courant. Our
second set of experiments focuses on the CC rule for varying
committee sizes. Besides the four heuristics, we evaluated
the Ranging algorithm,5 designed specifically for the CC rule

5Ranging is a variant of Algorithm P of Skowron et al. (2015)
due to Elkind et al. (2017a), and forms the basis of a PTAS for the
CC rule. Given an election, the algorithm considers each � ∈ [m]

1028

(a) Impartial Culture Distribution

1

1.05

1.1

1.15

1.2

2 5 10 15 20 25 30

ap
pr

ox
im

at
io

n
ra

tio

committee size

Sim. Ann.
Banzhaf
Removal

Greedy
Ranging

(b) 2D Uniform Square Distribution

1

1.05

1.1

1.15

1.2

1.25

2 5 10 15 20 25 30

ap
pr

ox
im

at
io

n
ra

tio

committee size

Sim. Ann.
Banzhaf
Removal

Greedy
Ranging

Figure 3: Ratios of average reverse CC scores (average posi-
tions of the voters’ representatives) computed by our heuris-
tics to those computed using the exact algorithm for our two
preference generation models (m = 100, n = 100).

and known to provide the strongest theoretically-established
approximation guarantee for this rule.

For each of the algorithms, each committee size k ∈
{2, . . . , 30}, and each model of preferences, we generated
1000 elections and computed the winning committees. In
Figure 3 we present the ratios of the achieved average reverse
CC scores to those computed using the exact algorithm (re-
call that for the case of CC, the reverse scores are simply the
average positions of the voters’ representatives).

The results in Figure 3 are quite intriguing. We see that
the greedy algorithm is the worst performer for k ≤ 20, but
then the ranging algorithm becomes the worst, even though
it has the strongest theoretical guarantees. On the other hand,
the removal algorithm offers excellent performance for all
committee sizes and both preference models. The Banzhaf
algorithm also performs very well, especially for larger com-
mittees. For the IC model, where we expect the Banzhaf
algorithm to do well, its performance is indeed better than
that of the removal algorithm for most cases, but even there
the removal algorithm is sometimes marginally better.

and greedily finds a size-k committee such that as many voters
as possible rank some committee member in the top � positions.
Among these committees, it selects one with the highest CC score.

Performance of SA. Notably, for the case of CC, the
Banzhaf and removal algorithms outperform SA for a range
of committee sizes. This is due to our choice of parameters
p, q and T ; SA would perform better if we executed more
iterations or re-ran the algorithm a few times for each elec-
tion. However, even with the current parameters SA produces
histograms that are very close to those for the actual rules
(for the t-Borda experiments),6 which indicates that this vari-
ant of SA is a reasonable benchmark. It is thus remarkable
that polynomial-time computable deterministic rules, such as
removal or the Banzhaf algorithm, can beat this benchmark.
OWA Schedules for Removal. One of our most intriguing
results is the performance of the removal algorithm, which
strongly relies on the specific OWA schedule that we used.
We also performed initial experiments with the 0-appending
schedule (which, for example, would always use OWAs of
the form (1, 0, . . . , 0) for the CC rule), and the results were
notably worse. For example, for the 2D uniform square dis-
tribution, CC rule, and committee size k = 10, the average
position of a representative computed using our current re-
moval algorithm is, on average, only 3% further from the top
than the optimal one, whereas for the 0-appending schedule
the average error is 10%. It may be possible to design even
better OWA schedules for the removal algorithm, and we
view this as as an interesting direction for future studies.
Running Times. So far, we have mostly disregarded the
running times of our algorithms. There are two reasons for
that. First, all our algorithms are sufficiently fast that they
can be executed on practically relevant election instances.
Second, when one computes election results, the quality of
the results is far more important than the running times of the
algorithms (provided they are not prohibitive). Nevertheless,
to give the reader some idea of the relative running times of
our algorithms, we mention that, to compute the results for
100 candidates, 100 voters, and committee size k = 10 (on
an office machine with Intel i5 760 CPU and 8GB of RAM),
the general Banzhaf algorithm requires about 24s, removal
requires about 10s, SA requires about 1s, and greedy requires
about 0.5s. For the case of CC, however, we designed an
optimized Banzhaf algorithm, which runs under 1s. We defer
more detailed analysis to the full version of the paper.

Conclusions
We have evaluated four algorithms for approximately com-
puting committee scoring rules: simulated annealing, which
is randomized, and greedy, removal, and Banzhaf algorithms,
which are deterministic. We have shown that simulated an-
nealing performs very well in essentially all settings and
provides visual representations of results that match the exact
ones nearly perfectly. The greedy algorithm usually performs
worst, but the other two algorithms often match or outper-
form simulated annealing (and are also deterministic). This
is very relevant from a practical point of view, as randomized
voting rules are unacceptable in many settings.

Our work leaves several directions for future research. For
example, it would be interesting to consider further heuris-

6This confirms that the histograms computed by Faliszewski et
al. (2017a), using SA with the same parameters, are meaningful.

1029

tics and metaheuristics, hopefully enlarging the subclass of
committee scoring rules which can be efficiently solved in
practice. Further, viewing our heuristics as voting rules on
their own could yield an interesting axiomatic analysis.
Acknowledgments. Dominik Peters was supported by ERC
grant 639945 (ACCORD). Martin Lackner was supported by
ERC grant 639945 (ACCORD) and by the Austrian Science
Foundation FWF, grant P25518 and Y698. Piotr Faliszewski
was supported by the National Science Centre, Poland, under
project 2016/21/B/ST6/01509. We thank Edith Elkind for
useful discussions, and the reviewers for helpful feedback.

References

Aziz, H.; Gaspers, S.; Gudmundsson, J.; Mackenzie, S.; Mat-
tei, N.; and Walsh, T. 2015. Computational aspects of multi-
winner approval voting. In Proceedings of the 14th Inter-
national Conference on Autonomous Agents and Multiagent
Systems, 107–115.
Aziz, H.; Brill, M.; Conitzer, V.; Elkind, E.; Freeman, R.; and
Walsh, T. 2017. Justified representation in approval-based
committee voting. Social Choice and Welfare 48(2):461–485.
Bachrach, Y., and Rosenschein, J. S. 2009. Power in threshold
network flow games. Autonomous Agents and Multi-Agent
Systems 18(1):106–132.
Banzhaf, J. 1965. Weighted voting doesn’t work: A mathe-
matical analysis. Rutgers Law Review 19:317–343.
Barberà, S., and Coelho, D. 2008. How to choose a non-
controversial list with k names. Social Choice and Welfare
31(1):79–96.
Betzler, N.; Slinko, A.; and Uhlmann, J. 2013. On the
computation of fully proportional representation. Journal of
Artificial Intelligence Research 47:475–519.
Brill, M.; Laslier, J.; and Skowron, P. 2017. Multiwinner
approval rules as apportionment methods. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence, 414–420.
Chamberlin, B., and Courant, P. 1983. Representative delib-
erations and representative decisions: Proportional represen-
tation and the Borda rule. American Political Science Review
77(3):718–733.
Dubey, P., and Shapley, L. 1979. Mathematical properties
of the Banzhaf power index. Mathematics of Operations
Research 4(2):99–131.
Elkind, E.; Faliszewski, P.; Laslier, J.; Skowron, P.; Slinko,
A.; and Talmon, N. 2017a. What do multiwinner voting
rules do? An experiment over the two-dimensional Euclidean
domain. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence, 494–501. Full version available at
http://home.agh.edu.pl/˜faliszew/2d.pdf.
Elkind, E.; Faliszewski, P.; Skowron, P.; and Slinko, A. 2017b.
Properties of multiwinner voting rules. Social Choice and
Welfare 48(3):599–632.
Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon, N.
2016a. Committee scoring rules: Axiomatic classification
and hierarchy. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence, 250–256.

Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon, N.
2016b. Multiwinner analogues of the plurality rule: Ax-
iomatic and algorithmic views. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence, 482–488.
Faliszewski, P.; Slinko, A.; Stahl, K.; and Talmon, N. 2016c.
Achieving fully proportional representation by clustering
voters. In Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems, 296–304.
Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon, N.
2017a. Multiwinner rules on paths from k-Borda to
Chamberlin–Courant. In Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence, 192–198.
Faliszewski, P.; Skowron, P.; Slinko, A.; and Talmon, N.
2017b. Multiwinner voting: A new challenge for social choice
theory. In Endriss, U., ed., Trends in Computational Social
Choice. AI Access.
Kirkpatrick, S.; Gelatt, Jr., C.; and Vecchi, M. 1983. Opti-
mization by simulated annealing. Science 220(4598):671–
680.
Lackner, M., and Skowron, P. 2017. Consistent
approval-based multi-winner rules. Technical Report
arXiv:1704.02453 [cs.GT], arXiv.org.
Lu, T., and Boutilier, C. 2011. Budgeted social choice: From
consensus to personalized decision making. In Proceedings
of the 22nd International Joint Conference on Artificial Intel-
ligence, 280–286.
Lu, T., and Boutilier, C. 2015. Value-directed compression
of large-scale assignment problems. In Proceedings of the
29th AAAI Conference on Artificial Intelligence, 1182–1190.
Michalak, T.; Rahwan, T.; Skibski, O.; and Wooldridge, M.
2015. Defeating terrorist networks with game theory. IEEE
Intelligent Systems 30(1):53–61.
Nemhauser, G.; Wolsey, L.; and Fisher, M. 1978. An analysis
of approximations for maximizing submodular set functions.
Mathematical Programming 14(1):265–294.
Prasad, K., and Kelly, J. 1990. NP-completeness of some
problems concerning voting games. International Journal of
Game Theory 19(1):1–9.
Procaccia, A.; Rosenschein, J.; and Zohar, A. 2008. On the
complexity of achieving proportional representation. Social
Choice and Welfare 30(3):353–362.
Skowron, P.; Lackner, M.; Brill, M.; Peters, D.; and Elkind,
E. 2017. Proportional rankings. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, 409–
415.
Skowron, P.; Faliszewski, P.; and Lang, J. 2016. Finding a
collective set of items: From proportional multirepresentation
to group recommendation. Artificial Intelligence 241:191–
216.
Skowron, P.; Faliszewski, P.; and Slinko, A. 2015. Achiev-
ing fully proportional representation: Approximability result.
Artificial Intelligence 222:67–103.
Suman, B., and Kumar, P. 2006. A survey of simulated
annealing as a tool for single and multiobjective optimization.
Journal of the Operational Research Society 57(10):1143–
1160.

1030

