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Abstract

We study the problem of allocating indivisible goods among
n agents in a fair manner. For this problem, maximin share
(MMS) is a well-studied solution concept which provides a
fairness threshold. Specifically, maximin share is defined as
the minimum utility that an agent can guarantee for herself
when asked to partition the set of goods into n bundles such
that the remaining (n−1) agents pick their bundles adversar-
ially. An allocation is deemed to be fair if every agent gets a
bundle whose valuation is at least her maximin share.
Even though maximin shares provide a natural benchmark for
fairness, it has its own drawbacks and, in particular, it is not
sufficient to rule out unsatisfactory allocations. Motivated by
these considerations, in this work we define a stronger no-
tion of fairness, called groupwise maximin share guarantee
(GMMS). In GMMS, we require that the maximin share
guarantee is achieved not just with respect to the grand bun-
dle, but also among all the subgroups of agents. Hence, this
solution concept strengthens MMS and provides an ex-post
fairness guarantee. We show that in specific settings, GMMS
allocations always exist. We also establish the existence of
approximate GMMS allocations under additive valuations,
and develop a polynomial-time algorithm to find such alloca-
tions. Moreover, we establish a scale of fairness wherein we
show that GMMS implies approximate envy freeness.
Finally, we empirically demonstrate the existence of GMMS
allocations in a large set of randomly generated instances. For
the same set of instances, we additionally show that our algo-
rithm achieves an approximation factor better than the estab-
lished, worst-case bound.

1 Introduction

In recent years, the topic of fair division of indivisible goods
has received significant attention in the computer science,
mathematics, and economics communities, see, for instance,
Chapter 12 in (Brandt et al. 2016). A central motivation be-
hind this thread of research is the fact that classical notions
of fairness—such as envy freeness (EF)1 and proportional-
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1An allocation is called envy free if every agent values her bun-
dle at least as much she values any other agent’s bundle (Foley
1967; Varian 1974; Stromquist 1980).

ity2—which were developed for divisible goods (that can be
fractionally allocated), do not translate well to the indivis-
ible case. For instance, if there is a single indivisible good
and two agents, then no allocation can guarantee EF or pro-
portionality. But, given that a number of real-world settings
(such as budgeted course allocations (Budish 2011), division
of inheritance, and partitioning resources in a cloud com-
puting environment) entail allocation of discrete/indivisible
goods, it is essential to define and study solution concepts
which are applicable for a fair division of indivisible goods.

Classically, the applicability of solution concepts is stud-
ied via existence results. Understanding if and when a
solution concept is guaranteed to exist is of fundamen-
tal importance in microeconomics and other related fields.
Such existence results have been notably complemented
by research—in algorithmic game theory and artificial
intelligence—that has focused on computational issues sur-
rounding the underlying solution concepts. Broadly, our re-
sults contribute to these key themes by establishing both ex-
istential and algorithmic results for a new notion of fairness.

In the context of fair division, the focus on developing ef-
ficient algorithms is motivated, in part, by websites such as
Spliddit3 (Goldman and Procaccia 2015) and Adjusted Win-
ner4 (Brams and King 2005), which offer fair solutions for
dividing goods. Spliddit has attracted more than fifty thou-
sand users and, among other services, it computes alloca-
tions which are fair with respect to the standard notions of
fairness. One of the solution concepts considered by Spliddit
is the maximin share guarantee (MMS).

The MMS solution concept was defined in the notable
work of (Budish 2011), and it deems an allocation to be fair
if each agent gets a bundle of value greater than or equal
to an agent-specific threshold, called the maximin share of
the agent. Specifically, the maximin share of an agent cor-
responds to the maximum value that the agent can attain for
herself if she is hypothetically asked to partition the set of
goods into n bundles and, then, the remaining (n−1) agents
pick their bundles adversarially. Hence, a risk-averse agent i
would partition the goods (into n bundles) such that value of

2An allocation, among n agents, is called proportionally fair if
every agent’s value for her share is at least 1/n times the total value
of all the goods (Steinhaus 1948).

3www.spliddit.org
4http://www.nyu.edu/projects/adjustedwinner/
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the least desirable bundle (according to her) in the partition
is maximized. The value of the least desirable bundle in such
a partition is called the maximin share of agent i. This def-
inition can be interpreted as a natural generalization of the
classical cut-and-choose protocol.

Although maximin shares provide a natural benchmark to
define fairness, this solution concept has its own drawbacks.
In particular, MMS is not sufficient to rule out unsatisfactory
allocations; see Section 3 for an example. Moreover, differ-
ent MMS allocations can be drastically different in terms of,
say, the social welfare of the agents.

Motivated by these considerations, we define a strictly
stronger notion of fairness, called groupwise maximin share
guarantee (GMMS). Intuitively, GMMS provides an ex-
post fairness guarantee: it ensures that, even after the alloca-
tion has been made, the maximin share guarantee is achieved
not just with respect to the grand bundle of goods, but also
among all the subgroups of agents J ⊆ [n]. Specifically, we
say that an allocation is GMMS if, for all groups J ⊆ [n]
and agents i ∈ J , the value of i’s bundle in the allocation
is no less than the maximin share of i restricted to J . That
is, if the agent i were to repeat the thought experiment (of
dividing all the goods allocated to the agents in group J , so
that the other |J | − 1 agents pick their bundles adversari-
ally) to calculate her maximin share restricted to J , then the
value of her bundle is at least this threshold. This definition
directly ensures that groupwise maximin share guarantee is
a stronger solution concept: GMMS implies MMS. In Sec-
tion 3, we show that GMMS can, in fact, be arbitrarily better
than an allocation that just satisfies MMS.
GMMS also strictly generalizes pairwise maximin share

guarantee (PMMS), a notion defined by (Caragiannis et al.
2016). In PMMS, the maximin share guarantee is required
only for pairs of agents, but not necessarily for the grand
bundle. Section 2.1, provides an example which establishes
that GMMS is a strict generalization of PMMS and MMS.

The relevance of GMMS is also substantiated by the
fact that it implies other complementary notions of fair-
ness, which do not follow from MMS alone. In the context
of indivisible goods, relaxations of envy freeness, such as
EF15 (Budish 2011) and EFX6 (Caragiannis et al. 2016)
have also been studied. In Section 4 we show that (unlike
MMS) GMMS fits into this scale of fairness and, in particu-
lar, a GMMS allocation is guaranteed to be EFX (and hence
EF1). These implications essentially follow from the obser-
vation that, by definition, a GMMS allocation is PMMS as
well. (Caragiannis et al. 2016) have shown that PMMS im-
plies EFX, and hence we obtain the desired implications.

Throughout the paper, we focus on additive valuations,
and a high-level contribution of our work is to show that
under additive valuations, a number of useful (existence, al-
gorithmic, and approximation) results which have been es-

5An allocation is said to be envy-free up to one good (EF1) if
no agent envies any other after removing at most one good from
the other agent’s bundle; see Definition 4.

6An allocation is said to be envy-free up to the least valued good
(EFX) if no agent envies any other agent after removing any posi-
tively valued good from the other agent’s bundle; see Definition 5.

tablished for MMS continue to hold for GMMS as well.

1.1 Our Contributions

In addition to proving a scale of fairness for GMMS, we
establish the following results:

1. Approximate groupwise maximin share allocations al-
ways exist under additive valuations. Prior work has
shown that there are instances wherein no allocation is
MMS (Procaccia and Wang 2014; Kurokawa, Procac-
cia, and Wang 2016). These non-existence results have
motivated a detailed study of approximate MMS alloca-
tions, i.e., allocations in which each agent gets a bundle
of value (multiplicatively) close to her maximin share.
Along these lines, we consider approximate GMMS (see
Definition 3), and show that, under additive valuations, a
1/2-GMMS allocation always exists. In addition, such an
allocation can be found in polynomial time.

2. GMMS allocations are guaranteed to exist when the val-
uations of the agents are either binary or identical.

3. Analogous to the experimental results for MMS (Bou-
veret and Lemaı̂tre 2014), GMMS allocations exist em-
pirically. These simulation results indicate that we do not
fall short on such generic existence results by strengthen-
ing the maximin solution concept.

1.2 Related Work

As mentioned earlier, (Budish 2011) introduced the notion
of maximin share guarantee (MMS), and it has been ex-
tensively studied since then. In particular, (Bouveret and
Lemaı̂tre 2014) showed that if the agents’ valuations are
additive, then an envy free (or proportional) allocation will
be MMS as well. They also established that MMS exists
under binary, additive valuations. Their experiments, using
different distributions over the valuations, did not yield a
single example wherein an MMS allocation did not exist.
(Kurokawa, Procaccia, and Wang 2016) showed that MMS
allocations exist with high probability when valuations are
drawn randomly.

However, (Procaccia and Wang 2014) provided intricate
counterexamples to refute the universal existence of MMS
allocations, even under additive valuations. This motivated
the study of approximate maximin share allocations, α-
MMS, where each agent obtains a bundle of value at least
α ∈ (0, 1) times her maximin share. (Procaccia and Wang
2014) established the existence of 2/3-MMS, and developed
a polynomial-time algorithm to obtain such an allocation
when the number of agents is a fixed constant. Later, (Ama-
natidis et al. 2015) showed that a 2/3-MMS can be com-
puted in polynomial (in the number of players) time.

Approximate maximin share allocations have also been
studied for general valuations. (Barman and Krishnamurthy
2017) have developed an efficient algorithm which finds a
1/10-MMS allocation under submodular valuations. More
recently, (Ghodsi et al. 2017) have improved the approxi-
mation guarantee for additive valuations to 3/4. They have
also developed constant-factor approximation guarantees for
submodular and XOS valuations, along with a logarithmic
approximation for subadditive valuations.

918



(Aziz et al. 2017) studied the fair division of indivisible
chores (negatively valued goods) and have developed an ef-
ficient algorithm which finds a 2-MMS allocation.

(Caragiannis et al. 2016) defined another important
fairness notion called pairwise maximin share guarantee
(PMMS). As mentioned previously, under PMMS, the max-
imin share guarantee is required only for pairs of agents, and
not even for the grand bundle. They also established that
PMMS and MMS are incomparable: neither one of these
solution concepts implies the other.

2 Preliminaries and Notation
We consider the problem of finding a fair allocation of a
set of indivisible goods [m] = {1, . . . ,m}, among a set of
agents [n] = {1, . . . , n}. For a subset of goods S ⊆ [m] and
integer t, let Πt(S) denote the set of all t partitions of S. An
allocation is defined as an n-partition (A1, A2, . . . , An) ∈
Πn([m]), where Ai is the set of goods allocated to agent i.

The preference of the agents over the goods is specified
via valuations. Specifically, we denote the valuation of an
agent i ∈ [n] for a subset of goods S ⊆ [m] by vi(S). In
this work, we assume the valuations to be non-negative and
additive, i.e., vi ({g}) ≥ 0 for all g ∈ [m] and vi(S) =∑

g∈S vi ({g}). For ease of presentation, we will use vi(g)

for agent i’s valuation of good g, i.e., for vi({g}).
As mentioned previously, the fairness notions consid-

ered in this work are defined using thresholds called
maximin shares. Formally, given an agent i, parameter
k ∈ Z+, and subset of goods S ⊆ [m], the k-
maximin share of i restricted to S is defined as μk

i (S) :=
max(P1,...,Pk)∈Πk(S) minj∈[k] vi(Pj). Throughout, MMSi
will be used to denote the maximin share of an agent i with
respect to the grand bundle, MMSi := μn

i ([m]). We will
now formally define maximin share allocation (MMS allo-
cation).
Definition 1 (Maximin Share Allocation). An allocation
(A1, . . . , An) is said to be an MMS allocation iff for all
agents i ∈ [n] we have vi(Ai) ≥ MMSi.

A different solution concept defined by (Caragiannis et al.
2016) requires the maximin share guarantee to hold only for
every pair of agents, i.e., an allocationA = (A1, . . . , An) is
said to achieve pairwise maximin share guarantee (PMMS)
iff for all i, j ∈ [n], we have vi(Ai) ≥ μ2

i (Ai ∪ Aj) and
vj(Aj) ≥ μ2

j (Ai ∪Aj).
In this paper, we strengthen MMS and PMMS, and define

a stronger threshold for each agent i ∈ [n], namely group-
wise maximin share (GMMSi). Formally,

GMMSi = max
J⊆[n],J�i

μ
|J|
i

(⋃
j∈J

Aj

)
.

Now we define groupwise maximin share allocation
(GMMS allocation).
Definition 2 (Groupwise Maximin Share Allocation). An
allocation (A1, . . . , An) is said to be a GMMS allocation
iff for all agents i ∈ [n] we have vi(Ai) ≥ GMMSi.

Note that an allocation (A1, . . . , An) is GMMS iff
vi(Ai) ≥ μ

|J|
i

(⋃
j∈J Aj

)
for all J ⊆ [n] such that i ∈ J .

The fact that there are fair division instances which do
not admit an MMS allocation directly implies that GMMS
allocation are not guaranteed to exist either. Therefore, we
consider approximate GMMS allocations.
Definition 3 (Approximate Groupwise Maximin Share Al-
location). An allocation (A1, . . . , An) is said to be an
α-approximate groupwise maximin share allocation (α-
GMMS) iff for all agents i ∈ [n] we have vi(Ai) ≥
αGMMSi.

A 1-approximate groupwise maximin share allocation is
a GMMS allocation.

2.1 GMMS Strictly Generalizes MMS and PMMS
In this section, we provide an example to show that alloca-
tions which achieve both MMS and PMMS might not be
GMMS. Let us consider an instance with 9 agents and 8
goods G = {g1, g2, . . . , g8}. This ensures that MMSi = 0
for all i ∈ [n] and, hence, all the allocations are MMS. Let
us fix an agent, say i = 1. Let her valuation for 8 goods be
v1(g1) = v1(g2) = v1(g3) = 5, v1(g4) = v1(g5) = 3,
and v1(g6) = v1(g7) = v1(g8) = 1. For all other agents
i ∈ {2, . . . , 9}, let vi(gz) = 0 for all z ∈ {1, . . . , 7} and
vi(g8) = 1. Now, let us consider an allocation A1 = {g1},
A2 = {g2, g4}, A3 = {g3, g5}, A4 = {g6, g7, g8}, and
A5 = A6 = A7 = A8 = ∅. This allocation satisfies
both MMS and PMMS. However, the maximin share for the
group of agents J = {1, 2, 3, 4} is μ4

1(A1∪ . . .∪A4) = 6 >
5 = v1(A1), and hence the allocation is not GMMS. This
illustrates the fact that GMMS is a distinct solution concept
which strictly generalizes both PMMS and MMS. This ex-
ample can be extended to construct instances that admit al-
locations which satisfy the maximin share guarantee for all
subgroups of, say, size at most k, but are still not GMMS.

3 GMMS can be arbitrarily better than MMS
In this section, we provide a class of examples where an
MMS allocation is not necessarily satisfactory in terms of
agents’ valuations. In particular, we show that imposing
GMMS leads to allocations which Pareto dominate an al-
location which only satisfies MMS.

Consider n agents and a set of n + 3 goods (where
[m] = {g1, . . . , gn+3}), along with parameter V and a
sufficiently small ε; 0 < ε � V . The valuations are
assumed to be additive and are as follows:
For agents i ∈ {1, . . . , n− 1},

vi({gz}) =

⎧⎪⎨
⎪⎩

V, z ∈ {1, . . . , n− 3}
V/2, z ∈ {n− 2, n− 1}
V/2− ε, z ∈ {n, n+ 2}
V/2 + ε, z ∈ {n+ 1, n+ 3}

For the agent n,

vn({gz}) =
⎧⎨
⎩

V, z ∈ {1, . . . , n− 1}
0, z ∈ {n, n+ 1}
ε, z ∈ {n+ 2, n+ 3}

Note that in this fair division instance the maximin share
of the first (n−1) agents, MMSi = V for all i ∈ {1, . . . , n}.
In addition, the maximin share of the last agent, MMSn, is
2ε.

Now, consider the allocation A = (A1, . . . , An) wherein
Ai = {gi}, i ∈ {1, . . . , n − 3}, An−2 = {gn−2, gn−1},
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An−1 = {gn, gn+1}, and An = {gn+2, gn+3}. Allocation
A is MMS since vi(Ai) = V for each i ∈ {1, . . . , n − 1}
and vn(An) = 2ε. In this allocation the valuation of agent n
is unsatisfactorily low. Another relevant observation is that
this allocation is not GMMS. Below, we show that in this
instance any GMMS allocation allocates a bundle of value
V to every agent, including agent n.

The fact that A is not GMMS follows by considering the
goods allocated to agents n− 2 and n, i.e., let S := An−2 ∪
An = {gn−2, gn−1, gn+1, gn+3}. Now, μ2

n(S) = V + ε,
but vn(An) = 2ε � V . Furthermore, it can be observed
that it is necessary to allocate the agent n at least one of her
high valued goods {1, . . . , n − 1} to satisfy GMMS. Thus,
GMMS allocation would always ensure that a bundle of at
least V is allocated to all the agents. That is, in this instance,
unsatisfactorily low valuations can be avoided by imposing
the groupwise maximin share guarantee.

4 Scale of Fairness

As mentioned earlier, envy freeness (EF) is a well-studied
solution concept in the context of fair division of divisi-
ble items. However, for indivisible goods, a simple example
with one positively valued good and two agents shows that
envy-free allocations do not always exist. Hence, for indivis-
ible goods, natural relaxations of envy freeness—in particu-
lar, EF1 and EFX—have been considered in the literature.
We now provide formal definitions of these relaxations.
Definition 4 (Envy-free up to one good (Budish 2011)). An
allocation A = (A1, A2, . . . , An) is said to be envy-free up
to one good (EF1) iff for every pair of agents i, j ∈ [n] there
exists a good g ∈ Aj such that vi(Ai) ≥ vi(Aj \ {g}).
Definition 5 (Envy-free up to the least positively val-
ued good (Caragiannis et al. 2016)). An allocation A =
(A1, A2, . . . , An) is said to be envy-free up to the least val-
ued good (EFX) iff for every pair of agents i, j ∈ [n] and
for all goods g ∈ Aj ∩ {g′ ∈ [m] | vi(g′) > 0} (i.e., for
all goods g in Aj which are positively valued by agent i) we
have vi(Ai) ≥ vi(Aj \ {g}).

Note that the above mentioned definitions imply that, for
additive valuations, an EFX allocation is necessarily EF1 as
well. Next we show that, interestingly, these relaxed versions
of envy freeness are implied by GMMS, but not by MMS.
Proposition 1 (Scale of Fairness). In any fair division in-
stance with additive valuations

1. If an allocationA is envy free (EF) then it achieves group-
wise maximin share guarantee (GMMS) as well.

2. If an allocation B is GMMS then it is EFX (and, hence,
EF1) as well.

Proof. First we will show that EF implies GMMS: As-
sume that the allocation A = (A1, . . . , An) is envy free,
that is, for all i, j ∈ [n] we have vi(Ai) ≥ vi(Aj). There-
fore, for any agent i and any group of agents J ⊆ [n]
we have |J |vi(Ai) ≥

∑
j∈J vi(Aj). Since the valuation

vi is additive, this inequality leads to the following bound
vi(Ai) ≥ 1

|J|vi(S); here S = ∪j∈JAj . Now, an av-
eraging argument establishes the following inequality: for

any |J |-partition of S if (P1, P2, . . . , P|J|) ∈ Π|J|(S)
then vi(Ai) ≥ min1≤k≤|J| vi(Pk). Hence, vi(Ai) ≥
max(P1,...,P|J|)∈Π|J|(S) mink vi(Pk) = μ

|J|
i (S), and we get

that A is GMMS.
Next, we argue that GMMS implies EFX: (Caragiannis

et al. 2016) have shown that that PMMS implies EFX. By
definition, GMMS implies PMMS. Hence, a GMMS allo-
cation is guaranteed to be EFX.

Note that (Caragiannis et al. 2016) also provided an ex-
ample to show that maximin share guarantee by itself does
not imply EF1. Hence, an MMS allocation is not neces-
sarily EFX. Consider a fair division instance with three
agents, five goods, and each agent values each good at 1.
The maximin share of all the agents is 1. Thus, the alloca-
tion A1 = {g1, g2, g3}, A2 = {g4} and A3 = {g5} satisfies
MMS, but not EF1. This is because agents 2 and 3 continue
to envy agent 1 even if a single good is removed from A1.

This, overall, shows that while MMS is not enough to
guarantee weaker notions of envy freeness, GMMS ensures
fairness in terms of such notions, and secures a place in the
scale of fairness.

Next we will consider the complementary direction of
going from bounded envy to groupwise maximin fairness.
In particular, we will establish existence and algorithmic
results for approximate GMMS by considering a solution
concept which is stronger than EF1, but weaker than EFX.
Specifically, we will define allocations which are envy-free
up to one less-preferred good (EFL)—see Definition 6
below—and show that such allocations are guaranteed to ex-
ist, when the valuations are additive. Note that, in contrast,
the generic existence of EFX allocations remains an inter-
esting open question. Furthermore, we will prove that EFL
allocations can be computed in polynomial time and, under
additive valuations, such allocations imply 1/2-GMMS.

Definition 6. An allocation A = (A1, A2, . . . , An) is said
to be envy-free up to one less-preferred good (EFL) if for
every pair of agents i, j ∈ [n] at least one of the following
conditions hold:

• Aj contains at most one good which is positively valued
by i; |Aj ∩ {g′ | vi(g′) > 0}| ≤ 1

• There exists a good g ∈ Aj such that vi(Ai) ≥ vi(Aj \
{g}) and vi(Ai) ≥ vi({g}).
The fact that an EFL allocation is EF1 follows directly

from the definitions of these solution concepts. Also, note
that if an allocation (A1, . . . , An) is EFX then for any pair
of agents i, j ∈ [n] with |Aj ∩ {g′ | vi(g′) > 0}| > 1 the
second condition in the definition of EFL holds. In particu-
lar, write Ai

j := Aj ∩ {g′ | vi(g′) > 0} and consider two
distinct goods ĝ, g̃ ∈ Ai

j . Since the allocation is EFX, we
have vi(Ai) ≥ vi(Aj \ {ĝ}) and vi(Ai) ≥ vi(Aj \ {g̃}).
Note that ĝ ∈ Aj \ {g̃}, and, hence, vi(Ai) ≥ vi(ĝ). This
implies that good ĝ satisfies the second condition in Defini-
tion 6. Hence, any EFX allocation is EFL as well.

With this new fairness notion, we have the following chain
of implications: EF⇒ GMMS⇒ EFX⇒ EFL⇒ EF1.
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5 An Approximation Algorithm for GMMS
Our main result in this section shows that 1/2-GMMS allo-
cations always exist under additive valuation, and such allo-
cations can be found efficiently.

Theorem 1. Every fair division instance with additive valu-
ations admits a 1/2-approximate groupwise maximin share
allocation. Furthermore, such an allocation can be found in
polynomial time.

Proof-Sketch The proof proceeds in two steps. First, we pro-
vide a constructive proof for the existence of EFL alloca-
tions, under additive valuations (Section 5.1). Next, we com-
plete the proof by showing that EFL implies 1/2-GMMS (in
Section 5.2)

5.1 Existence of EFL Allocations

This section shows that EFL allocations are guaranteed to
exist when the valuations are additive. Specifically, we de-
velop an algorithm that always finds such an allocation.

Lemma 1. Given any fair division instance with additive
valuations, Algorithm 1 finds an EFL allocation in polyno-
mial time.

Algorithm 1 iteratively allocates the goods and maintains
a partial allocation, A = (A1, . . . , An), of the goods as-
signed so far. In each iteration, the algorithm selects an agent
i who is not currently envied by any other agent, and allo-
cates i an unassigned good of highest value (under vi).

Throughout the execution of the algorithm, the existence
of an unenvied agent is ensured by maintaining a directed
graph, G(A), that captures the envy between agents. The
nodes in this envy graph represent the agents and it con-
tains a directed edge from i to j iff i envies j, i.e., vi(Ai) <
vi(Aj). The following lemma, established in (Lipton et al.
2004), shows that if any iteration leads to a cycle in the
envy graph G(A), then we can always resolve it to obtain
an acyclic envy graph without decreasing the valuation of
any agents. The fact that G(A) is acyclic for a partial allo-
cationA implies that it contains a source node, i.e., an agent
i who is not envied by other agents.

Although, Algorithm 1 is similar to the one devel-
oped in (Lipton et al. 2004)—which efficiently finds EF1
allocations— here, instead of assigning goods in an arbitrary
order, we always allocate to an unenvied agent the available
good she values the most. This is crucial for obtaining an
EFL allocation.

Lemma 2. (Lipton et al. 2004) Given a partial allocation
A = (A1, . . . , An) of a subset of goods S ⊆ [m], we can
find another partial allocation B = (B1, . . . , Bn) of S in
polynomial time such that
(i) The valuations of agents for their bundles do not de-
crease, that is, vi(Bi) ≥ vi(Ai) for all i ∈ [n].
(ii) The envy graph G(B) is acyclic.

Proof of Lemma 1. Write A = (A1, . . . , An) to denote the
allocation returned by Algorithm 1. First, we note that an in-
ductive argument proves thatA is EF1. In fact, we will show
that the EF1 condition holds forAwith respect to the last (in
terms of the algorithm’s allocation order) good g assigned to

Algorithm 1 Finding an EFL Allocation
Input : n agents, m items, and valuations vi{g} for each agent
i ∈ [n] and for each good g ∈ [m].
Output: An EFL allocation.
1: Initialize allocation A = (A1, A2, . . . , An) with Ai = ∅ for

each agent i ∈ [n], and M = [m].
2: Initialize directed envy graph G(A) = ([n], E) where E = ∅.
3: while M �= ∅ do
4: Pick a source vertex i of G(A). {such a vertex always exists,

since G(A) is acyclic.}
5: Pick g ∈ argmaxj∈M vi{g}.
6: Update Ai ← Ai ∪ {g} and M ← M \ {g}.
7: while the current envy graph G(A) contains a cycle do
8: Update A (using Lemma 2) to remove the cycle.
9: end while

10: end while
11: Return A.

each bundle Aj . Write gt to denote the good allocated in the
tth iteration of Algorithm 1; hence, the goods are allocated
in the following order g1, g2, . . . , gm.

The initial partial allocation (∅, ∅, . . . , ∅) is EF1 (in
fact, it is envy free). Now, say that in the jth iteration
the algorithm allocates good gj to agent i. Write Aj =

(Aj
1, . . . , A

j
n) and Aj+1 = (Aj+1

1 , . . . , Aj+1
n ), respectively,

to denote the partial allocations before and after the jth iter-
ation. The induction hypothesis implies thatAj is EF1 with
respect to the last assigned good. Therefore, for every pair of
agents r, s ∈ [n], we have vr(A

j
r) ≥ vr(A

j
s \ {ga}), where

ga is the last good assigned to the bundle Aj
s (i.e., for any

other good gb ∈ Aj
s, we have b < a).

Since the good gj is allocated to agent i, it must be the
case that i is a source vertex in G(Aj), i.e., no agent envies i
under Aj . This implies that, vr(Aj

r) ≥ vr(A
j
i ) = vr((A

j
i ∪{gj})\{gj}) for all r ∈ [n]. Note that at this point of time, gj

is the last good assigned to the bundle Aj
i . In addition, from

the proof of Lemma 2, we know that Aj+1 is a permuta-
tion of the allocation (Aj

1, A
j
2, . . . , A

j
i ∪ {gj}, . . . , Aj

n), and
vr(A

j+1
r ) ≥ vr(A

j
r) for all r ∈ [n]. Hence, for every pair

of agents r, s ∈ [n] there exists a good ga ∈ Aj+1
s such

that vr(Aj+1
r ) ≥ vr(A

j+1
s \ {ga}). In addition, ga is the last

good assigned to the bundle Aj+1
s . That is, the stated prop-

erty holds for Aj+1 as well.
Now, we will use this observation to prove that A is

EFL. Specifically, we show the EFL conditions hold for,
say, agent 1 (analogous arguments establish the claim for
the other agents). Suppose that, during the execution of the
algorithm, agent 1 receives its first good, gt, in the tth it-
eration. Note that the partial allocation before the tth itera-
tion, say At = (At

1, . . . , A
t
n), satisfies |At

i ∩ {g′ ∈ [m] :
v1(g

′) > 0}| ≤ 1 for all i ∈ [n]. This bound follows from
the observation that during any previous iteration s < t, the
selected source vertex i (i.e., the agent that gets a new good
during the sth iteration) does not contain any good which is
positively valued by agent 1; otherwise, i would have been
envied by 1, contradicting the fact that it is a source vertex.
Hence, each bundle in At contains at most one good from
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the set {g′ ∈ [m] : v1(g
′) > 0}.

Let us now consider the final allocation A =
(A1, . . . , An) and any agent j ∈ [n]. If |Aj ∩ {g′ ∈
[m] : v1(g

′) > 0}| ≤ 1, then the first condition in the
definition of EFL holds and we are done, else if |Aj ∩
{g′ ∈ [m] : v1(g

′) > 0} | > 1, then bundle Aj must have
received a good after the tth iteration. This is consequence
of the above-mentioned property of the partial allocationAt.
Write g� to denote the last good allocated to the bundle Aj .
We have � > t, since g� was assigned to Aj after the tth iter-
ation. Also, in the tth iteration good gt was selected instead
of g�, hence it must be the case that v1(gt) ≥ v1(g�).

Note that, as mentioned before, the EF1 condition holds
for Aj with respect to g�, i.e., v1(A1) ≥ v1(Aj \ {g�}). In
addition, Lemma 2 implies that v1(A1) ≥ v1({gt}). There-
fore, if |Aj ∩ {g′ ∈ [m] : v1(g

′)}| > 1 for any j ∈ [n],
then there exists a good g� such v1(A1) ≥ v1(Aj \ {g�})
and v1(A1) ≥ v1(g�). Hence, A is an EFL allocation.

5.2 EFL implies Approximate GMMS

Lemma 3. In any fair division instance with additive valu-
ations, if an allocation A = (A1, . . . , An) is EFL, then it is
1/2-GMMS allocation as well.

Proof. Fix an agent i and a set of k agents, J ⊆ [n] which
contains i, i.e., |J | = k and J � i. Also, let S = ∪j∈JAj

denote the set of all the goods allocated to the agents in J .
We will show that agent if (A1, . . . , An) is EFL, then vi(Ai)
is at least 1

2 times the maximin share of i restricted to S, i.e.,
vi(Ai) ≥ 1

2μ
k
i (S). This establishes the stated claim.

Write Si ⊆ [m] to denote the set of goods which are pos-
itively valued by i, Si := {g′ ∈ [m] | vi(g′) > 0}. Now,
among the set of agents J \{i} consider the ones who are al-
located at most one good from Si; specifically, let T := {j ∈
J \ {i} | |Aj ∩ Si| ≤ 1}. Write J ′ := J \ T , t′ := |J ′|, and
S′ = ∪j∈J ′Aj . Note that the agent i belongs to the group
J ′, and for all j ∈ J ′ we have |Aj ∩ Si| > 1. Therefore, the
fact that A is EFL implies that, for all j ∈ J ′, there exists
a good g(j) ∈ Aj such that vi(Ai) ≥ vi(Aj \ {g(j)}) and
vi(Ai) ≥ vi(g(j)). In other words, for the additive valuation
vi, we have 2vi(Ai) ≥ vi(Aj).

We will now establish the multiplicative bound with re-
spect to μt′

i (S
′) (the maximin share of i restricted to S′) and

prove that μt′
i (S

′) ≥ μt
i(S). This will complete the proof.

Since vi is additive, an averaging argument gives us

μt′
i (S

′) ≤ 1

t′
vi(S

′) =
1

t′
∑
j∈J′

vi(Aj) ≤ 1

t′
2t′vi(Ai)

Here, the last inequality uses the bound 2vi(Ai) ≥ vi(Aj)

for all j ∈ J ′. Therefore, vi(Ai) ≥ 1
2μ

t′
i (S

′). To com-
plete the proof, we need to show that μt′

i (S
′) ≥ μt

i(S).
Note that—while considering the maximin shares of agent
i—we can restrict our attention to Si (the set of goods
which are positively valued by i). In particular, the equal-
ities μt′

i (S
′) = μt′

i (S
′ ∩ Si) and μt

i(S) = μt
i(S ∩ Si) imply

that, without loss of generality, we can work under the as-
sumptions that S ⊆ Si and S′ ⊆ Si. Effectively, for all
j ∈ J , we can slightly abuse notation and denote Aj ∩ Si

by Aj . Now, consider the allocation M = (M1, . . . ,Mt) ∈
argmax

(B1,...,Bt)∈Πt(S)

min
j∈[t]

vi(Bj).

We have, minj∈J vi(Mj) = μt
i(S). Also, note that

|Aj | ≤ 1 for each agent j ∈ K = J \ J ′. Therefore, there
are at most |K| = t − t′ bundles in M with items from
S \ S′. We choose t′ bundles from M = (M1, . . . ,Mt)
which do not contain any item from S \ S′. Let us call these
new bundlesM′ = (M ′

1, . . . ,M
′
t′). By the definition ofM,

the value of each such bundle for agent i is greater than or
equal to μt

i(S), that is, vi(M ′
j) ≥ μt

i(S) for all j ∈ [t′].
Since we have assumed that all items have nonnegative val-
ues, adding more items from the remaining (t− t′) bundles
to any of the bundles in M′ can only increase the value of
the partitions. Thus, μt′

i (S
′) ≥ μt

i(S), which implies that
vi(Ai) ≥ 1

2μ
t
i(S).

Lemmas 1 and 3 directly establish Theorem 1.
We note that both in terms of the algorithm and EFL’s

implication the approximation guarantee established here is
essentially tight; this observation can be proved by consid-
ering simple examples.

6 Guaranteed Existence of GMMS
Allocations in Restricted Settings

In this section, we prove the existence of GMMS for rele-
vant valuation classes.
Theorem 2. Groupwise maximin share allocations always
exist under additive, binary valuations, i.e., such allocations
exist when the additive valuations satisfy vi(g) ∈ {0, 1} for
all agents i ∈ [n] and goods g ∈ [m].

Proof. To prove the theorem, it suffices to show that un-
der additive, binary valuations, EF1 implies GMMS. Re-
call that EF1 allocations are guaranteed to exist. Let A =
(A1, . . . , An) be an EF1 allocation. Fix an agent i and a
group of agents J � i. Also, write S :=

⋃
j∈J Aj . Next we

complete the proof by showing that vi(Ai) ≥ μ
|J|
i (S).

Since the valuations are binary, for any subset of goods
B ⊆ [m], the total value vi(B) is a non-negative integer.
Therefore, μ|J|i (S) must be a non-negative integer. More-
over, since the valuations are additive, we have 1

|J|vi(S) ≥
μ
|J|
i (S). In addition, the facts that (a) A is an EF1 allo-

cation and (b) the maximum value of any good is 1 imply
vi(Ai) ≥ vi(Aj)− 1 for all j ∈ J . Therefore,

vi(Ai) =
1

|J | |J |vi(Ai) ≥ 1

|J |

⎛
⎝vi(Ai) +

∑
j∈J\{i}

(vi(Aj)− 1)

⎞
⎠

≥ 1

|J | (vi(S)− |J |+ 1) =
1

|J |vi(S)−
|J | − 1

|J |
≥ μ

|J|
i (S)− |J | − 1

|J | > μ
|J|
i (S)− 1.

The last inequality vi(Ai)−μ|J|i (S) > −1 implies vi(Ai) ≥
μ
|J|
i (S) since vi(Ai) and μ

|J|
i (S) are integers. Overall, the

inequality vi(Ai) ≥ μ
|J|
i (S) shows that the EF1 allocation

A is GMMS as well. This completes the proof.
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Note that the following theorem holds for general combi-
natorial valuations and is not limited to the additive case.

Theorem 3. If all the n agents in a fair division instance
have the same valuation (i.e., vi = vj for all i, j ∈ [n]), then
a groupwise fair allocation is guaranteed to exist.

Proof. Given a fair division instance with m goods and n
agents with the same valuation function v, we will define
an order on Πn([m]), the set of n-partitions of [m]. For
vectors u, u′ ∈ R

n, we say that u lexicographically domi-
nates u′ if u = u′, or there exists an index a ∈ [n] such
that u(a) > u′(a) and for all b < a we have u(b) = u′(b);
here, u(k) and u′(k) denotes the kth smallest component of
u and u′, respectively. Extending this definition, an allo-
cation (A1, . . . , An) ∈ Πn([m]) is said to lexicographi-
cally dominate another allocation (B1, . . . , Bn) ∈ Πn([m])
iff the vector of valuations (v(A1), . . . , v(An)) lexico-
graphically dominates (v(B1), . . . , v(Bn)). Note that lexi-
cographic domination defines a total order over the equiva-
lence classes of n-partitions. In addition, up to permutations
of the valuation vector, there exists a unique maximal alloca-
tion with respect to this order, i.e., there exists an allocation
A∗ = (A∗1, . . . , A

∗
n) which lexicographically dominates all

other allocations.
We will show that A∗ is GMMS. For contradiction, say

that this is not the case, and the GMMS condition is violated
for subset J ⊆ [n] and agent i ∈ J , i.e., vi(A∗i ) < μ

|J|
i (S);

here S := ∪j∈JA∗j . Since the valuations are identical, the
maximin share of each agent in J restricted to S is the same,
i.e., μ|J|i (S) = μ

|J|
k (S), for all k ∈ J . Hence, GMMS

condition must also be violated for agent argminj∈J v(A∗j ).
This observation and the definition of maximin shares imply
that there exists a |J |-partition of S, say (M1, . . . ,M|J|),
such that min1≤a≤|J| v(Ma) > minj∈J v(A∗j ).

Now, consider an allocation B = (B1, . . . , Bn) obtained
from A∗ by (i) replacing the |J | bundles A∗j s (for j ∈ J)
with Mas (for 1 ≤ a ≤ |J |), and (ii) setting Bk = A∗k for all
k /∈ J . Note that, even under any permutation of the bundles,
the allocation B �= A∗. Also, the construction of B ensures
that it lexicographically dominates A∗. This contradicts the
maximality (under the defined lexicographic order) of A∗
and, hence, the stated claim follows.

7 Some Empirical Results

For an experimental investigation, we generated 1000 ran-
dom instances, for several combinations of n agents and m
goods (n ranging from 3 to 5, and m from 3 to 11), by ran-
domly drawing the valuations from two different distribu-
tions (a) gaussian distribution with mean 0.5, standard de-
viation 0.1 (truncated at 0 to ensure nonnegative valuations)
and (b) uniform distribution [0, 1]. These are the same set of
experiments that (Bouveret and Lemaı̂tre 2014) carried out
for studying the existence of various fairness notions under
additive valuations.

In addition, we considered the modification of these in-
stances wherein all the agents agree on the same ranking
of the goods, but may have different valuations for the same

item. Such instances are said to have same-order preferences
(SOP), and were studied by (Bouveret and Lemaı̂tre 2014).
They showed that, when it comes to (empirically) finding
an MMS allocation, SOP instances are the hardest. We ob-
serve similar results for GMMS: finding a GMMS alloca-
tion, done using brute-force search, requires noticeably more
time in SOP instances, than in non-SOP instances. Our em-
pirical results and observations are summarized below:

1. GMMS allocations exist empirically in all randomly gen-
erated instances (which is similar to the experimental re-
sults for MMS (Bouveret and Lemaı̂tre 2014)). These
simulation results indicate that we may not fall short on
such generic existence results by strengthening the max-
imin solution concept.

2. Allocations generated by the EFL algorithm (Algorithm
1) on the random instances achieve an approximation fac-
tor of 0.98 (on an average) which is better than our theo-
retically obtained worst-case bound of 0.5. The approx-
imation factor (on average) is lower for SOP than for
non-SOP instances. Moreover, we observe that, for ran-
domly generated instances, the approximation factor is
better when the number of items is a multiple of the num-
ber of agents. This may be because of the round robin
nature of the algorithm which gives an agent her most de-
sirable good at each round.

3. As expected, our proposed EFL algorithm ran much
faster than the (exponential-time) algorithm for finding
exact GMMS. Our algorithm was about 107 times faster
than the exact GMMS computation on a machine with a
quad Intel Core i7 processor and 32 GB RAM.

8 Conclusion and Future Work

In this paper, we introduced the concept of GMMS to ad-
dress fair allocation of indivisible goods, thereby strength-
ening the well-studied notions of MMS and PMMS. We es-
tablished the existence of 1/2-GMMS under additive valua-
tions, and developed an efficient algorithm for finding such
allocations. We also proved that under specific settings exact
GMMS allocations always exist. In addition, GMMS allo-
cations were always found in our experiments (over a large
number of randomly generated instances). This indicates
why it seems nontrivial to obtain simpler7 examples which
refute the guaranteed existence of GMMS allocations. Find-
ing an instance which admits an MMS allocation but not a
GMMS allocation remains an interesting, open problem.

Our work addresses key questions about groupwise fair-
ness when the valuations are additive, and it motivates the
study of this notion in more general settings, e.g., under sub-
modular valuations, or under additional constraints, such as
the ones considered by (Bouveret et al. 2017). Another in-
teresting direction of future work is to understand groupwise
fair division of indivisible goods among strategic agents.

7The intricate examples showing the nonexistence of MMS un-
der additive valuations (Procaccia and Wang 2014; Kurokawa, Pro-
caccia, and Wang 2016) also serve as counterexamples for GMMS.
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